View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by AIS Electronic Library (AlSeL)

Association for Information Systems

AIS Electronic Library (AlSeL)

ICEB 2008 Proceedings International Conference on Electronic Bu?ligggs)

Fall 9-30-2008

Unified Data Access for Global Electronic Business

Thian-Huat Ong

Follow this and additional works at: https://aisel.aisnet.org/iceb2008

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AlSeL). It has been accepted for inclusion in ICEB 2008 Proceedings by an authorized administrator of AIS
Electronic Library (AlSeL). For more information, please contact elibrary@aisnet.org.

https://core.ac.uk/display/301389177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2008
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2008?utm_source=aisel.aisnet.org%2Ficeb2008%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Proceedings of the Eighth International Conference on Electronic Business 2008

Unified Data Access for Global Electronic Businesses

Thian-Huat Ong, California State University, Sacramento, USA, ongt@csus.edu

Abstract

Databases are critical in managing business knowledge assets. SQL is the de facto way of accessing data because of
its simplicity, which allows end users to get what they want effectively. However, as businesses become more
globally and electronically interconnected, the need for automated data access increases accordingly and the
simplicity of SQL quickly disappears. This is primarily due to the large number of competing technologies that
facilitate automated data access, with factors including different programming languages, different database
application programming interfaces, different database management systems, and different operating systems. In
global businesses or extended networks of businesses, it is common to have many different competing and
sometimes incompatible technologies working together at the same time. This research provides a new solution, a
unified way to access data regardless of the underlying technologies. Therefore, businesses can save time and cost
by focusing on getting the data they want, instead of focusing on how to get the data.

Keywords: unified database access, 1-to-1 SQL mapping paradigm, programming-language-independent, DBMS-
independent, software development productivity.

1. Background

SQL, Structure Query Language, is the fundamental way of accessing data stored in a database [1]. The language is
intuitive, so many users are able to learn the language quickly and put it to use immediately. However, to process a
large number of business transactions or to analyze vast amounts of business data, automated data access is needed.
Database application developers must write programs that can access databases to retrieve and store data. Typically,
the process depends on the choice of programming languages, database application programming interfaces (API),
database management systems (DBMSes), and operating systems. A global business is highly likely to have a
mixture of different components at the same time, even within a single department, because new technologies are
introduced and integrated while legacy systems are still being used and maintained.

Competing technologies exist at the same time because they have their own values and strengths. However,
managing many different technologies at the same time is highly cost ineffective, and it can be a challenge to find
developers who are familiar with all these different technologies. The problem is a well recognized one, as many
researchers and commercial products are producing many solutions to this difficult problem. For example, different
worthwhile efforts have been put into creating a unified database application programming interface (API), such as
ODBC [2], JDBC [3], and ADO.NET [4]. Each was successful, yet none has become a clear winner. Part of the
reason is that each API is highly tied to its host language, yet no database application developers or businesses as a
whole use only one programming language. Consequently, many language-independent solutions have been
produced, such as using middleware solutions or standardizing on XML [5] as the data exchange or storage
standard. Yet these solutions do not offer the same space or time efficiency and convenience.

Since the early days of databases, SQL has been the standard language to query databases. In the domain of
accessing data programmatically a single standard similar to SQL has never existed for very long. Researchers and
practitioners by now probably believe that this will never happen, as evidenced by the popularity of middleware
solutions as well as many researchers championing the idea that XML should be the only standard that should exist
to solve the data access problem once and for all. Contrary to the common belief, this research provides a unified
implementation that shows otherwise. Better yet, this research provides a breakthrough way of accessing data that is
intuitive but its performance rivals or exceeds existing approaches.

213

Proceedings of the Eighth International Conference on Electronic Business 2008

Unlike previous attempts which were closed source, the author believes that publishing the source codes of this
research (online at http://www.tudbc.org) allows businesses to have better control over how they want to access their
data and customize it to fit their needs.

2. TUDBC: Truly Unified Database Connectivity

Truly Unified Database Connectivity (TUDBC) provides a single unified API for accessing data, regardless of
programming languages, application programming interfaces (APIs), database management systems (DBMSes), and
operating systems. In the past, each programming language required a unique style of coding for data access
programming. Figure 1 shows an example of how TUDBC is used consistently across different programming
languages. Figure 1 also highlights the consistency of TUDBC across different types of languages. This is
particularly important for global businesses with multiple databases, because a single unified API saves on both the
time and cost of learning, using and managing data access. Because the programming logic remains the same,
businesses will have greater certainty that the programs will work correctly.

SQL Statements

OBEGIN TRANSACTION;

@ INSERT INTO STUDENT (NAME, AGE) VALUES ('John Doe',19);

©INSERT INTO GRADE (ID, COURSE, GRADE) VALUES (Q@RIDENTITY, 'MIS101','A');
OCOMMIT TRANSACTION;

TUDBC’s One-to-One Mapping of SQL Statements

Source Codes for Java, C#, J#, VB.NET, Python, and Ruby
General Syntax: object.method (parameter. . .)
Oconnection.transactionBegin () ;
@®studentInsertSQL.insert (student) ;
OgradeInsertSQL. insert (student.id, grade);
Oconnection.transactionCommit () ;

Source Codes for Perl, PHP, and C++ (same syntax but without '$')
General Syntax: Sobject->method (Sparameter. . .)
OSconnection->transactionBegin () ;
@®SstudentInsertSQL->insert ($student) ;
©sgradeInsertSQL->insert (Sstudent->id, S$grade);
Osconnection->transactionCommit () ;

Source Codes for C

General Syntax: classname method (object, parameter...)
OTUDBCConnection_transactionBegin(connection);
@StudentlnsertSQLiinsert(studentInsertSQL, student) ;
GGradeInsertSQLiinsert(gradeInsertSQL, student->id, grade);
OTUDBCConnection_transactionCommit(connection);

Figure 1. One-to-one mapping of SQL statements to various programming languages.

Two production-quality source codes are currently released on the website, including C# (and any other .NET
languages such as VB.NET, F#, J#, etc.) and Java (another language widely used in businesses). Many other
languages are actively being developed, including PHP (one of the most popular web application languages), Ruby
(one of the newest programming language), C (one of the oldest programming language), C++ (one of the oldest
object-oriented programming language), Perl, and Python. Keep in mind that any .NET programming languages
(such as VB.NET, F#, J#, etc) can immediately use the C# library to begin using TUDBC. The coverage shows that
TUDBC works for both the newer preferred object-oriented programming languages and the traditional procedural
programming languages (such as C).

214

Proceedings of the Eighth International Conference on Electronic Business 2008

TUDBC is intuitive, as shown in the one-to-one mapping between SQL statements and TUDBC programming
statements. The intuitiveness lets TUDBC achieve the same level of ease of use as SQL, which is not available in
any past database APIs, middleware, or even XML. Past database APIs were usually more focused on a lower level
of abstraction. For example, Figure 2 shows how one SQL statement translates into many programming statements,
which loses one-to-one correspondence to the SQL statement. Furthermore, each language has significant
differences that prevent developers from switching from one language to another easily. The implication for
businesses is that business users can now focus more on business logic and getting the actual data, instead of being
distracted by complex lines of codes about how to get the data. Furthermore, they are no longer tied to any particular
database vendors, and they can freely choose the best performing vendors without changing source codes.

One SQL Statement

INSERT INTO STUDENT (NAME,AGE,GPA) VALUES ('John Doe',19,3.75);

Many Programming Statements

Source Codes for Java with JDBC

PreparedStatement pst = connection.prepareStatement (
"INSERT INTO STUDENT (NAME,AGE,GPA) VALUES (?2,?2,?2)");

pst.setString (1, "John Doe");

pst.setInt (2, 19);

pst.setDouble (3, 3.75);

pst.execute();

Source Codes for C# with ADO.NET
SglCommand cmd = new SglCommand (
"INSERT INTO STUDENT (NAME,AGE,GPA) VALUES (@name, @age, @phone)",
connection) ;
cmd.Parameters.Add ("@name", SglDbType.VarChar, 30);
cmd.Parameters.Add ("Cage", SglDbType.SmalllInt);
cmd.Parameters.Add ("@phone”™, SglDbType.Float);
cmd.Prepare () ;
cmd.Parameters["@name"] .Value = "John Doe";
cmd.Parameters["@age"] .Value = 19;
cmd.Parameters["@phone"].Value = 3.75;
cmd.ExecuteNonQuery () ;

Figure 2. Old APIs mapping one SQL statement to many programming statements.

Currently, TUDBC works with all top major database management systems, including Oracle, SQL Server, MySQL,
and DB2. It also works with databases popular for small businesses such as Access and Derby. Many businesses
have data in text files and Excel spreadsheets, and TUDBC offers the same consistent support for them as well.
Because TUDBC source codes are published, users can extend TUDBC to support virtually any possible databases
or they can wait for them to be included in the next release.

3. Performance

One of the common concerns with a unified solution is space and time efficiency, as evidenced in middleware
solutions and XML. TUDBC has its own unique caching mechanism to cache both SQL statements and database
connections. Therefore it is able to provide performance that is close-to-the-best or the best performance in various
settings. Interested readers are referred to the website to read about the experiments in detail.

One significant feature of the performance enhancement is that it is hidden from developers. While developers still
write programs in the same way, by simply using TUDBC they get built-in performance enhancement. This has
significant implication for online businesses. Web applications usually demand high performance. Yet achieving
high performance usually introduces a complex mechanism that is difficult to manage and debug. On the other hand,
TUDBC provides performance without sacrificing intuitiveness or simplicity. Similarly, the performance

215

Proceedings of the Eighth International Conference on Electronic Business 2008

enhancement means that large amounts of data analysis can be done more quickly, which is particularly important
for global businesses with large data warehouses and complex analytical needs.

4. Conclusion

TUDBC provides a unified solution for global businesses with complex database requirements for multiple
platforms and high performance. TUDBC is intuitive because it corresponds directly to SQL statements, which
allows database application developers to think and write programs more intuitively in terms of SQL statements.
TUDBC has unified and consistent support for different programming languages, different database application
programming interfaces, different database management systems, and different operating systems. Last but not least,
TUDBC offers close-to-the-best or the best performance in various comparison settings. The implication of TUDBC
is that global businesses can now better manage their data access by using TUDBC, which has the potential of
improving productivity by increasing quality while saving time and cost.

References

[1] Chamberlin, D.D. and Boyce, R.F., SEQUEL: A structured English query language. In Proceedings of the ACM
SIGFIDET (now SIGMOD) Workshop on Data Description, Access and Control, (Ann Arbor, Michigan, 1974),
249-264.

[2] Microsoft. ODBC Overview. http://support.microsoft.com/kb/110093

[3] Sun Microsystems. JDBC Overview. http://java.sun.com/products/jdbc/overview.html

[4] Sceppa, D. Programming Microsoft ADO.NET 2.0 Core Reference. Microsoft Press, 2006.

[5] World Wide Web Consortium. XML Standard. http://www.w3.org/XML/.

216

	Unified Data Access for Global Electronic Business
	tmp.1582634533.pdf.KcAZ4

