
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2010 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-1-2010

An Integrated Bus and Taxi Routes for a Mobile Trip Planning An Integrated Bus and Taxi Routes for a Mobile Trip Planning

System System

Shin-Shiang Lan

Kun-Ting Chen

Chien Chen

Jing-Ying Chen

Rong-Hong Jan

See next page for additional authors

Follow this and additional works at: https://aisel.aisnet.org/iceb2010

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2010 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301388424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2010
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2010?utm_source=aisel.aisnet.org%2Ficeb2010%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Authors Authors
Shin-Shiang Lan, Kun-Ting Chen, Chien Chen, Jing-Ying Chen, Rong-Hong Jan, and Da-Chun Chang

 Shin-Shiang Lan, Kun-Ting Chen, Chien Chen, Jing-Ying Chen, Rong-Hong Jan, Da-Chun Chang

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

An Integrated Bus and Taxi Routes for a Mobile Trip Planning System

Shin-Shiang Lan
1
, Kun-Ting Chen

1
, Chien Chen

1
, Jing-Ying Chen

1
, Rong-Hong Jan

1
,

Da-Chun Chang
1,2

1
Department of Computer Science, National Chiao Tung University, Hsin-Chu, Taiwan

2
Emerging Smart Technology Institute, Institute for Information Industry, Taipei, Taiwan

E-mail: {bluelewis.cs96g,quentin2007.cs96g}@g2.nctu.edu.tw,

{chienchen,jyc,rhjan,dcchang}@cs.nctu.edu.tw

Abstract

With the popular usage of Google Maps and smart

phones, more and more people are using smart

phones to surf and inquire about travel information.

As a result, every major city plans to push the

existing online public transportation trip planning

system beyond traditional computer users to mobile

phone users. The trip planning system is based on

the starting and ending points that a user inputs,

and guides the user to take a bus or metro through

an electronic map interface. The system usually

provides different kind of alternative travel routes

with the estimated time of arrival. However, people

who use the public transport system may encounter

some uncertainties, such as long waiting times,

long routes, long walking distances, etc. In each big

city, the taxi is a universal transport vehicle which

is available at almost anytime, anywhere. Taxis can

save passengers’ walking distance and travel time

with a deficit of high cost. Therefore, we design a

trip planning system to unify the Taipei public

transportation system with taxis. The users can

inquire of a travel route through the mobile phones.

This system uses Google Maps as a base map. The

users assign an upper limit of fare which they are

willing to pay. The system will balance between

travel time and travel cost to obtain a route which

may combine usage of the bus and taxi. Because of

the high density of bus stations in Taipei city, the

route search may consume a lot of system

resources. We propose an improvement method to

eliminate some intermediate bus stations in route

search processing.

Keywords: trip planning, bus information system,

Google Maps, Taxi.

1. Introduction

In response to the global effort on the energy

conservation and carbon dioxide emission

reduction, we must encourage people to use public

transportation systems instead of private cars. In

order to reach more public transportation

passengers, a trip planning system for the public

transport system, which provides people with

guidance for their trip just like a Global Positioning

System (GPS) used in a private sedan, is needed.

With the increase of cellphone users, designing a

mobile trip planner for the billion cellphone users

has a lot of potential impact to popular users of

public transit. In a large metropolitan area, a trip

planning system is used generally to guide the user

to ride on the buses through an electronic map

interface. Usually a user makes an inquiry to the

trip planner for route information. A trip planner

demonstrates a route with bus information and the

estimated time of arrival. Some extra travel

conditions can be specified in a trip planner to meet

the user’s demands, such as the shortest travel time,

least number of transfers, walking distance

limitation, transportation vehicle choice, etc.

However, if the users’ source and destination

locations are far away from any bus station, the

current trip planning system, such as Google Maps,

will ask you to take a long walk which could take

hours. Even if the users’ locations are close to a bus

station, the bus route could have a long waiting

time. Sometime the user may have a very tight

schedule. Those reasons may diminish the users’

wish to travel by bus. On the contrary, when the

users have a time constraint in their travel, the taxis

in a city are the transportation vehicles which may

supply the users’ needs, but have a relatively high

cost. If the users do not want to spend much money,

but also want to achieve a reasonable travel time,

they can plan a trip with a combination of bus and

taxi routes. Therefore, the present paper proposes

to unite bus and taxi routes in a trip planning

system. It lets the users make the best choice to

meet their travel time and cost constraints.

Our goal is to design a seamless mobile trip

planning system to combine the Taipei bus and taxi

route information. Like most modern travel

planning systems, we use Web 2.0 to achieve an

interactive and integrative application. Our system

uses Google Maps as the base map. The system

interacts with user by AJAX technological

development's Google Map API. Simultaneously,

we also design an Android handset client program

to allow the users to plan their trip using a mobile

device. Taipei's bus density is quite high. The

number of bus stations in Taipei is much larger

than the number of bus routes. If we take the

transportation network path finding method in [1],

each bus station must contain the arrival time

information which creates a huge memory usage

requirement and causes low system efficiency.

565

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

Therefore in this paper we propose an enhanced

path finding method, which can dynamically

produce data, and which may abbreviate some of

the station’s information after processing, enabling

the data processing quantity to be reduced

effectively. The remainder of this paper is

organized as follows. Section II compares existing

trip planning systems in several major cities as well

as some related work on path finding algorithms.

Section III presents our system architecture.

Subsequently, Section IV proposes an effective

algorithm to reduce memory requirement of the trip

planner. Our path finding algorithm to integrate bus

and taxi routes is portrayed in section V. Section

VI presents our emulation results, and Section VII

concludes the paper.

2. Related Works

We survey several trip planning systems used in

various oversea and domestic cities. We compare

their functionality through detailed observation and

hand on exercise. Overseas cities have New York

City [2], Chicago [3], Paris [4], and London [5];

domestic city has Taipei [6]. In addition, we also

evaluate the global system Google Maps [7] and

the local system UrMap [8] in Taiwan.

Remarkably, New York map demonstrates a 2D

and 3D option. London has support for nineteen

languages and bike routes. Paris has a fashion web

design and allows viewing of incredible details.

Google Maps can show the street camera views.

We glance over the domestic and foreign systems

and summary functionalities of existing systems

and our trip planner in Table 1, where we explain

each kind of functions as followings:

 Fastest: Find a path with a shortest arrival

time

 Walk: The walking distance user can tolerate

 Transfers: Find a path with minimal transfers

 Waiting time: The waiting time user can

tolerate

 Cost: The expense user willing to pay

 Map: Have a map to guide the user

 3D: Have a 3D map interface

 Taxi: Support taxi

As shown in Table 1, the majority of trip planning

systems do not have the Cost and Waiting time

options. Most of overseas systems implement Walk

and the Transfers function. Only two systems have

more powerful 3D maps. Our system implements

the complete collection of functions, except for the

3D option. Most importantly, we add taxi route into

the trip planner, which others cities don’t have.

Table 1: The functionality of different trip planning

systems

In term of path finding algorithms, Florian [9]

proposes a shortest time-dependent path algorithm

based on Dijkstra’s shortest path algorithm.

Florian’s work considers different routes and

transfer station traffic [10][11] at different times in

the planning of paths in the public transit network.

Moreover, Florian proposes a dynamic module for

the public transmit network and models the route

with data structures [12],[13]. Huang [1] modifies

Dijkstra’s shortest path algorithm and presents a

path finding algorithm using pattern first search

(PFS) approach. Huang sets the time for the source

and computes the shortest time-dependent path

reachable from source to destination.

Huang’s method is built on a graph model, i.e.

public transit system graph NET(L, N, S) that

consists of bus routes (Line), transfer stations

(Node), and stations which cannot transfer (Stop).

For each station the bus routes that go through it

are recorded, and for each bus route the stations

that are on the routes in which the bus passes are

also recorded. Each station contains one timestamp

for each bus route, as well as the following

quantities:

 t: The time at which the user arrives

 r: The bus line which the user takes to this

station

 x: The previous transfer station at which the

user takes bus line r

 t
x
: The departure time at which the user

leaves transfer station x

The algorithm needs to define a temporary node set,

which records the nodes to update for the next step.

It sorts the time value t of nodes in this set, sets the

departure time on the source node, and sets infinite

time for the others. The algorithm starts at the

source node and searches the neighbors reachable

from the source node. A new arrival time is

calculated and compared with the original time for

all the nodes through which the bus line r passes

and which are downward nodes from the source. If

the new time is shorter than original one, the

algorithm updates the station’s timestamp (t, r, x, t
x
)

with the new time value and adds the node to the

 Fastest Walk Cost Transfers Waiting Map 3D Taxi

New York O O O O X O O X

Chicago O O O O X X X X

London O O X O X O X X

Paris O O X O X O O X

Taipei O X X X X O X X

UrMap O X X X X O X X

Google O X X X X O X X

Ours O O O O O O X O

Shin-Shiang Lan, Kun-Ting Chen, Chien Chen, Jing-Ying Chen, Rong-Hong Jan, Da-Chun Chang 566

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

set. At each next step, the node with the minimum

time in the node set is picked and the process

repeats until the destination is found or the set

becomes empty.

Note that when the number of Stops is excessively

large, the amount of data to process will also

increase. We found that when we consider only the

bus lines and transfer stations without the stations

that cannot be used for transfer, it can reduce

unnecessary data processing. We will explain in

more details about this reduction in the section 4.

Figure 1: System Architecture

3. System Model

Our trip planning system allows the users to plan

for trip with Web browsers as well as with handset

running the Android platform. Both the server

program and client-side programs are implemented

in JAVA technology, which supports both

client-side and server-side application development

and avoids the need to deal with multiple

programming languages during development

process. When using the trip planning system, users

mark the source and destination points on the map

interface, and the system supports various timing

constraints that can be specified by the users.

People can change their preferences and priorities

in different situations. We further include taxi as an

additional option to the available transportation

types.

The trip planning system contains three main

components: the client interface, the travel

planning module, and the database. The client

interface provides viewing and option setting

operations, the trip planning server program

implements the trip planning algorithm, and the

database includes both static route data and

real-time bus and traffic data retrieved from a

remote transportation information server. Figure 1

shows the system architecture.

Figure 2.1: Client Interface Model

Figure 2.2: Client Interface Model

The Web client, as shown in Figure 2.1, uses

Google Maps as the base interface. The user

interaction is further enhanced using the Ajax

framework EXT JS [14]. The other handset-based

client is based on the Android platform as shown in

Figure 2.2. Both clients support timing options

such as waiting time and walking distance when

planning trips. The system returns a computed path

according to the options users select, such as the

shortest path with constraints to minimize the

waiting time, or the maximum walking distance

allowed. We denote different colors for different

bus lines and show them on the map interface.

The trip planning module considers both the bus

and the taxi to compute the shortest time-dependent

path, and returns the resulting path, the transfer

station information, and an estimate of total

traveling time and arrival time. We will describe

the planning algorithm in more details later.

Finally, the database server is based on

PostgreSQL and includes PostGIS which provides

extensions and many plug-in libraries. We use

Taipei public bus stations and lines information in

our trip planning algorithm [15] supported by the

Taipei city government. When trip planning

algorithm is running, we also connect to the remote

database server to obtain immediate Taipei public

bus information [15].

4. Enhance Method

When the number of public bus stations becomes

too large and the bus lines passing them become

too dense, the amount of data to process grows

tremendously. We propose a method that improves

on Huang’s algorithm by alleviating some

unnecessary computation and reducing the memory

usage. The idea is that, generally speaking, the

number of stations is more than the number of bus

lines, and each station has many bus lines passing

through it. Take Taipei public bus transportation as

an example, the number of bus lines is 429, while

the number of stations is 6782.

Shin-Shiang Lan, Kun-Ting Chen, Chien Chen, Jing-Ying Chen, Rong-Hong Jan, Da-Chun Chang 567

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

Suppose there are two bus stations in public bus

line. If the bus lines which pass the downward bus

station are the subset of the bus lines which pass

the upward station, and moreover, if the bus line

passing these two stations goes through the same

path between the two stations, it indicates that

transfers in downward station is unnecessary, since

taking the upward station as transfer station is

enough.

For example, Figure 3 shows A, B, C, and D as

transfer stations. L1, L2, L3 represent three

different bus lines. Take stations A and B as an

example, the bus lines passing through A and B go

through the same path between A and B, and B is

not a destination point. The line set at node B {L1,

L2} is a subset of line set in node A, that is, {L1,

L2, L3}, which means no transfer in node B is

necessary, and we can eliminate the B transfer

node.

Figure 3: Bus Line Example

4.1 Algorithm

The modified algorithm is as follows. The public

transit system graph NET(L, N) consists of the

transfer station nodes N, and bus lines L. We use

the Huang’s method to do path searching and use

similar parameters (t, r, x, t
x
) as in Huang’s. Step (6)

is modified with the above mentioned method.

During initialization, i.e., in step (1), we start only

with the initial source node, unlike the Huang’s

method which initializes all the transfer nodes in

the beginning, and thus the memory usage is less in

our algorithm. The algorithm is summarized as

follows:

(1) Initialize source node NS(t0, null, null, ∞),

the set of active lines serving the node, and

the set of active nodes serving the line,

Set T←{NS}

(2) If T is an empty set, stop. Destination is

unreachable.

(3) Select a node Nj : for all Nj ∈T, such that tj

is minimal

(4) If Nj = ND, stop, destination arrived.

(5) For each line p’ which passes Nj in addition

to the line p that has time stamp tj, let v’ be

the set of such p’ that satisfies the waiting

time condition from the user.

(6) If v’ is not null, then for each downward

node N’, if the lines of N’ is the subset of

the lines of Nj, then it doesn’t create time

stamp on N’;

else, get a new arrival time t
*
= travel(p’,

Nj→N’), If t
*
+ tj＜t’ ,

then update n’ by t’=t
*
+ tj, T←T∪{ N’}

(7) T ← T － { Nj }

(8) Go to step (2).

Figure 4: Example

4.2 Example

Figure 4 illustrates the bus transit system graph,

including three bus lines (L1, L2, L3) and six bus

stations (NS, ND, N1, N2, N3, N4). First, the system

initializes the bus station set for each bus line and

the bus line set for each bus station. We set the

departure time at NS as 7:00.

Step 1:

The line set on NS is {L1, L2, L3}:

The station set on L1 is { NS, N1, N3, ND}, and we

consider only downward stations {N1, N3, ND}.

The line set on N1 is {L1, L2}, which is the subset

of line set on NS, so it doesn’t update. The line set

on N3 is {L1, L3}, and it is the subset of line set on

NS, so it doesn’t update. ND is the destination, so it

calculates the time from NS to ND through line L1,

create timestamp on ND. Figure 5 (a) shows the end

of examining L1.

The station set on L2 is {N2, NS, N1, N4, ND}, and

we consider only downward stations {N1, N4, ND}.

The line set on N1 is {L1, L2}, which is the subset

of line set on NS, so it doesn’t update. The line set

on N4 is {L2, L3}, which is the subset of line set

on NS, so it doesn't update. ND is the destination,

and since the time from NS to ND through route L2

is more than the original time, so it doesn't update.

Figure 5 (b) shows the end of examining L2.

The station set on L3 is {NS, N2, N3, ND, N4}, and

we consider only downward stations {N2, N3, ND}.

The route set on N2 is {L2, L3}, which is the

subset of line set on NS, so it doesn't update. The

line set on N3 is {L1, L3}, which is the subset of

Shin-Shiang Lan, Kun-Ting Chen, Chien Chen, Jing-Ying Chen, Rong-Hong Jan, Da-Chun Chang 568

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

line set on NS, so it doesn't update. ND is the

destination, the time from NS to ND through route

L3 is more than the original time, so it doesn't

update. Figure 5 (c) shows the end of examining L3

Step 2:

Take the node ND from the set, finish.

Figure 5: State

5. Path Finding Algorithm Combining

Taxi and Bus

In order to have more versatile routes in the

planning of trip and to provide more flexible

choices for different users’ preferences and priority

with respect to time, we consider adding taxi

support in addition to taking public transportations.

We consider the case where a taxi can connect two

bus lines which do not intersect, and thus it allows

the user to have more trip planning options.

Accordingly, in the traffic network illustrated in

section 4, in addition to the public transit routes, we

add the taxi edges between each pair of transfer

stations.

When performing search on the trip planning

algorithm, stations except the source and the

destination node can have many timestamps. The

source and the destination nodes have only one

timestamp. For example, suppose the user sets the

budget condition. Before the algorithm reaches the

destination node, the accumulated cost may exceed

the user’s budget if taking into account only the

shortest time-dependent path, so the transfer station

records both the accumulated cost and time

conditions. There are two kinds of situations in

such transfer station records: either having less

time with higher budget or longer time but lower

budget.

When performing search on the trip planning

algorithm, due to various user conditions and the

chosen optimization condition, for example,

suppose the user sets the budget upper-bound

condition and should search for shortest

time-dependent path. Before the planning trip

reaches the destination node, the accumulated cost

may exceed the user budget condition if taking into

account only the shortest time-dependent path, so

the transfer station records both the accumulated

cost and time conditions.

The algorithm updates the path records in the

transfer station depending on the computed time

and budget for the current path. We consider three

cases. In the first case, it deletes all the worse path

records and inserts the new record if the new record

has better arrival time and the budget is within

upper-bound compared with the path records stored

in the station. In the second case, it doesn’t update

if the arrival time is better than the stored path

records but the budget is over upper-bound

condition. Finally, if it is not either of the above

situations, for example, the arrival time is worse

even if the budget is under the bound, it still

doesn’t update the records.

5.1 Algorithm:

The algorithm considers the routes with respect to

bus, walking, and taxi, and computes the arrival

time and budget. The detail is as follows.

(1) Under the distance of walk condition,

starting from source, search for those stations

that are reachable by walking, and those

stations that are reachable by taxi under the

budget condition.

(2) Find the bus lines set for each station

obtained from (1), for each bus line, if the

stations it passes are those in (1), update the

records on the stations.

(3) For stations from step (2), search for stations

that are reachable by walking, check if it can

update the time stamp in the records.

(4) From stations by step (2), search for stations

that are reachable by taxi, check if it can

update the time stamps in the records.

(5) Add the records added from (2), (3), and (4)

to record set.

(6) If there is nothing in the record set or the

record on the end node, finish.

(7) Take the records from record set in

non-decreasing order. Take the node on the

record as the start node, if it is the taxi that is

the previous path, then neglect (9) (10).

(8) Find the bus lines that pass through the start

station by step (7). Check if it can update the

records on the stations on the bus route.

(9) For the stations on the records by step (7),

search for stations that are reachable by

walking, check if it can update records on

those stations.

(10) For station on the records by step (7),

search for stations that are reachable by taxi,

check if it can update records on those

stations.

(11) Add records from (8), (9), and (10) to

record set, go to (6).

Shin-Shiang Lan, Kun-Ting Chen, Chien Chen, Jing-Ying Chen, Rong-Hong Jan, Da-Chun Chang 569

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

We use an example to illustrate the extended

algorithm. In Figure 6, suppose the budget

condition is 90, the source node is S, and the

destination node is D. N1, N2, N3 are stations.

Figure 6: Example

Step 1:

From the source node, S can take bus to N1 and N2,

and can take taxi to N1, N2 while still under budget

condition. The result is as Table 2.

Record Previous Line Node Time Cost

1 0 L1 N1 7:15 15

2 0 Taxi N1 7:05 70

3 0 L1 N2 7:20 15

4 0 Taxi N2 7:07 75

Table 2: Step 1

Step 2:

Take record 2 with the smallest time stamp. Node

N1 can take bus line L1 to N3 and D. The

additional record is as Table 3.

Record Previous Line Node Time Cost

5 2 L2 N3 7:21 85

6 2 L2 D 7:25 85

Table 3: Step 2

Step 3:

Take record 4 with the smallest time stamp. Node

N2 can take bus line L2 to N3. The additional

record is as Table 4.

Record Previous Line Node Time Cost

7 4 L2 N3 7:23 85

Table 4: Step 3

Step 4:

Take record 1 with the smallest time stamp. Node

N1 can take bus line L2 to N3 and D, also can take

taxi to N2, N3 and D under budget condition. The

newly added record is as Table 5.

Record Previous Line Node Time Cost

8 1 Taxi D 7:19 85

9 1 Taxi N3 7:20 85

Table 5: Step 4

Step 5:

Take record 6 whose node is D, finish.

Record Previous Line Node Time Cost

1 0 L1 N1 7:15 15

8 1 Taxi D 7:19 85

Table 6: Step 5

From Table 6 we know that the shortest time path

is from S to N1 by bus line L1 at arrival time 7:15,

and then from N1 to D by taxi at arrival time 7:19.

6. Emulation

In order to understand our system's functionalities,

we have made a series of emulations. We take a

sample area of 3.735 kilometer-long and 2.632

kilometer-wide rectangular regions in the center of

Taipei, and randomly create sources and

destinations with distances away from each other

limited by 2, 3, and 4 kilometers. We also randomly

select two end points located on any part of the

Taipei metropolitan area with distance away

between 5 and 10 kilometers. Each test result is

obtained by averaging 100 times of emulation for

each kind of distance respectively.

First, we would like to know whether our trip

planner can find a quicker path if the user is willing

to walk for a little bit longer. The emulation

employs the same bus waiting time, and a 4

kilometers/hour walking speed. The trip is for bus

only. Figure 7 presents the successful probability of

planning a trip versus walk distance. The result

shows that when the user is willing to walk a

longer distance, the opportunity for finding a path

is higher in Taipei city center. However, if the

source and destination are not in the city center,

such as the results for the 5 and 10 kilometers, the

chance of finding bus station is much lower, even

the user is willing to walk 500 meters. Therefore,

integrating taxi into a trip planning system can be

very helpful to encourage people to plan some part

of their trip to involve public buses.

Then, our following emulations are for planning a

trip with bus and taxi information. Our goal is to

show the relation of cost limit, and the successful

rate of planning a trip and travel time. Apparently,

Shin-Shiang Lan, Kun-Ting Chen, Chien Chen, Jing-Ying Chen, Rong-Hong Jan, Da-Chun Chang 570

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

the curves in Figure 8 depict that when we combine

bus and taxi information with higher upper limits

of cost, the chance of finding a path is much higher.

The 10 kilometer case eventually will reach a

100% successful rate. Figure 9 further shows when

the cost upper limit is higher; the time to arrive at

the destination is quicker. Of course, if you don’t

care how much you spend on the transportation,

our trip planner will give you a shortest time taxi

route. In 2 kilometers case, the fare surpasses 85

upper limits; you will be given a direct route to the

destination by the taxi.

Figure 7 Successful rate verse walking distance

Figure 8 Succesful rate verse cost limit

Figure 9 Succesful rate verse cost limit

7. Conclusion

This paper designs and implements a mobile trip

planning system for public transportation systems

in the Taipei metropolitan area. Since taxis are an

important transportation vehicle in almost every

major city, we propose to blend the taxi routes into

the public transportation trip planning system. It

has an advantage of fulfilling user constraints in

both travel time and transportation cost. Thus, the

people who are located far away from bus stations

can still plan part of their trip using buses.

Moreover, we propose an enhanced method to

reduce the system memory requirement and

increase request processing speed. Currently, we

are testing our integrated trip planning system with

the addition of Taipei Metro Rapid Transit (MRT)

system and bicycle routes. People can specify how

many calories they would like to burn using a

bicycle for their trip. Our system will plan a route

to combine MRT, bus, and bicycle accordingly. In

the future, we will integrate our system with taxi

operators to achieve a seamless transfer. Our final

goal is to establish an integrated mobile trip

planning system for seamless transportation

networks.

Acknowledgements

This study is conducted under the “III Innovative

and Prospective Technologies Project” of the

Institute for Information Industry which is

subsidized by the Ministry of Economy Affairs of

the Republic of China.

 References

[1] R. Huang, “A Schedule-based Pathfinding

Algorithm for Transit Networks Using

Pattern First Search,” Geoinformatica, vol.1,

no. 2, pp.269-285, June 2007.

[2] MTA NYC Transit - Trip Planner

http://tripplanner.mta.info/

[3] Plan Your Trip With the RTA!

http://tripsweb.rtachicago.com/

[4] RATP Transports en île de France

http://www.ratp.info/touristes/

[5] Transport for London: http://www.tfl.gov.uk/

[6] 5284 front page: http://5284.taipei.gov.tw/

[7] Google Maps API

http://code.google.com/intl/zh-HK/apis/maps

[8] UrMap: http://www.urmap.com/

[9] M. Florian, “Finding shortest time-dependent

paths in schedule-based transit networks: a

label setting algorithm,” in Niguel H.M.

Wilson and Agostino Nuzzolo (Eds.),

Schedule-based Dynamic Transit Modeling:

Theory and Applications, pp. 43–53,

Dordrecht Kluwer, 2004.

[10] R. Huang and Z.-R. Peng, “An

object-oriented GIS data model for transit

trip planning system,” in TRB, National

Research Council (Eds.), Transportation

Research Record, no. 1804, pp. 205–211,

TRB, National Research Council,

Washington DC, 2002.

[11] R. Huang and Z. Peng, “A spatiotemporal

Shin-Shiang Lan, Kun-Ting Chen, Chien Chen, Jing-Ying Chen, Rong-Hong Jan, Da-Chun Chang 571

http://code.google.com/intl/zh-HK/apis/maps

The 10th International Conference on Electronic Business, Shanghai, December 1 - December 4, 2010

data model for dynamic transit networks,”

International Journal of Geographic

Information Science, vol. 22, no. 5, pp.

527-545, 2008.

[12] F. Russo, “Schedule-based dynamic

assignment models for public transport

networks,” in Niguel H.M. Wilson and

Agostino Nuzzolo (Eds.), Schedule-based

Dynamic Transit Modeling: Theory and

Applications, pp. 79–93, Dordrecht Kluwer,

2004.

[13] C.O. Tong and S.C. Wang, “Minimum path

algorithms for a schedule-based transit

network with a general fare structure,” in

Niguel H.M. Wilson and Agostino Nuzzolo

(Eds.), Schedule-based Dynamic Transit

Modeling: Theory and Applications, pp.

241–261, Dordrecht Kluwer, 2004.

[14] Ext JS Cross-Browser Rich Internet

Application Framework

http://www.sencha.com/products/js/

[15] Taipei City ATIS Web: http://its.taipei.gov.tw/

Shin-Shiang Lan, Kun-Ting Chen, Chien Chen, Jing-Ying Chen, Rong-Hong Jan, Da-Chun Chang 572

http://www.sencha.com/products/js/
http://its.taipei.gov.tw/

	An Integrated Bus and Taxi Routes for a Mobile Trip Planning System
	Authors

	tmp.1582370554.pdf.w2eTI

