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Abstract: Uncertainty distributions for functions of

uncertain variables in uncertainty theory play a sig-

nificant rote. The paper provides the arithmetics of

uncertainty distributions for sum, difference, maxi-

mum and minimum of uncertain variables with ex-

periential uncertainty distributions, and shows the

efficiency of these arithmetics by examples.

Keywords: Uncertainty theory, uncertain vari-

able, uncertainty distribution, experiential uncer-

tainty distribution, arithmetic

§1 Introduction

Probability theory, fuzzy set theory, rough set

theory, and credibility theory were all introduced

to describe non-deterministic phenomena. However,

some of the non-deterministic phenomena expressed

in the natural language, e.g. �about 100km�,�approximately 390 C�, �big size�, are neither

random and nor fuzzy. Liu [8, 10, 11] founded un-

certainty theory, as a branch of mathematics based

on normality, self-duality, countable subadditivity,

and product measure axioms. An uncertain mea-

sure is used to indicate the degree of belief that an

uncertain event may occur. An uncertain variable

is a measurable function from an uncertainty space

to these to real numbers and this concept is used

to represent uncertain quantities. The uncertainty

distribution is a description of an uncertain vari-
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able. Nowadays, uncertainty theory has been ap-

plied to uncertain programming (Liu [9],Gao[4, 5],

Sheng[16], Peng[6], Li[18]), uncertain risk analysis

(Li[19],Yu[23]), uncertain logic (Chen[2]), uncertain

process (Yao[7]) etc ([1, 3, 17, 20, 21]).

The uncertainty distributions of functions of un-

certain variables in uncertainty theory plays a signif-

icant rote. Now the generic form of its inverse un-

certainty distribution has been given by Liu[11](see

Theorem 2.1 in the nether text). However, the

generic form cannot apply to arithmetic of optimiz-

ing straightway, and its corresponding uncertainty

distribution still not been given now. Therefore, fur-

ther, the paper will provides the arithmetics of un-

certainty distributions for sum, difference, maximum

and minimum of uncertain variables with experien-

tial uncertainty distributions based on the generic

form of inverse uncertainty distribution.

The rest of this paper is organized as follows. In

Section 2, some basic concepts and knowledge about

uncertainty theory are recalled. In Section 3, we will

provide the arithmetics of uncertainty distributions

for sum, difference of uncertain variables with expe-

riential distributions, respectively. Section 4 shows

the efficiency of these arithmetics by examples. At

last, a brief summary is given.

§2 Preliminaries

First we recall the foundational concepts and re-

sults about uncertainty theory(Liu [8, 10]).
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Definition 2.1. (Liu [8]) Let Γ be a nonempty set,

and L a σ-algebra over Γ. Each element Λ ∈ L is

called an event. A set function M : L → [0, 1] is

called an uncertain measure if it satisfies the follow-

ing three axioms:

Axiom 1. (Normality Axiom) M{Γ} = 1.

Axiom 2. (Duality Axiom) M{Λ} +M{Λc} = 1

for any event Λ.

Axiom 3. (Subadditivity Axiom) For every count-

able sequence of events {Λi}, we haveM{

∞
⋃

i=1

Λi

}

≤
∞
∑

i=1

M{Λi}.

The triplet (Γ,L,M) is called an uncertainty

space. In order to obtain an uncertain measure of

compound event, a product uncertain measure was

defined by Liu [12], thus producing the fourth axiom

of uncertainty theory:

Axiom 4 (Product Axiom) Let (Γk, Lk,Mk) be un-

certainty space for k = 1, 2, ..., n. Then the product

uncertain measure on Γ is an uncertain measure on

the product σ-algebra L = L1 × L2 × ...×Ln satis-

fying M{

n
∏

k=1

Λk

}

= min
1≤k≤n

Mk{Λk}.

Definition 2.2. (Liu [8]) An uncertain variable is

a measurable function ξ from an uncertainty space

(Γ,L,M) to the set of real numbers, i.e., for any

Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ|ξ(γ) ∈ B}

is an event.

Definition 2.3. (Liu [8]). The uncertainty distri-

bution Φ of an uncertain variable ξ is defined by

Φ(x) =M{ξ ≤ x}

for any real number x, and we use ξ ∼ Φ(x) to denote

ξ has uncertainty distribution Φ.

Liu [10] gave four types of uncertainty distri-

butions to describe uncertain variables. They are

linear uncertainty distribution, empirical uncertainty

distribution, normal uncertainty distribution and

lognormal uncertainty distribution. We only con-

sider empirical uncertainty distribution in the paper.

Therefore the empirical uncertainty distribution is

only stated in the following.

Let ξ be an uncertain variable. Assume that we

have obtained a set of expert’s experimental data

(x1, α1, x2, α2, ..., xn, αn)

that meet the following consistence condition ( per-

haps after a rearrangement)

x1 < x2 < ... < xn, 0 < α1 ≤ α2 ≤ ... ≤ αn ≤ 1.

Based on those expert’s experimental date, Liu [10]

suggested the following empirical uncertainty distri-

bution.

Definition 2.4[10]. An uncertain variable ξ is said

to has an empirical uncertainty distribution if

Φ(x) =



















































0,

if x < x1

αi +
(αi+1 − αi)(x − xi)

xi+1 − xi

,

if xi < x < xi+1, 1 ≤ i ≤ n

1,

if x > xn

(1)

denoted by ε(x1, α1, x2, α2, ..., xn, αn) (see Figure 1).

Figure 1 Empirical uncertainty distribution

Definition 2.5. An uncertainty distribution Φ

of ξ said to be regular if its inverse function Φ−1(α)
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exists and is unique for each α ∈ [0, 1]. It is said to

be inverse uncertainty distribution of ξ.

Obviously, empirical uncertainty distribution

ε(x1, α1, x2, α2, ..., xn, αn) has a inverse uncertainty

distribution

Φ−1(α) =



















































x1

if α < α1

xi +
(xi+1 − xi)(α− αi)

αi+1 − αi

,

if αi < α < αi+1, 1 ≤ i ≤ n

xn,

if αn < α

(2)

where x1 < x2 < ... < xn and 0 ≤ α1 ≤ α2 ≤ ... ≤

αn ≤ 1.

If ψ is regular, uncertainty distribution ψ is con-

tinuous and strictly increasing at each point x satis-

fying 0 < ψ(x) < 1. Also, inverse uncertainty distri-

bution ψ−1 is continuous and strictly increasing in

(0, 1).

Definition 2.6. (Liu [12]) The uncertain variables

ξ1, ξ2, · · · , ξm are said to be independent ifM{

m
⋂

i=1

(ξi ∈ Bi)

}

= min
1≤i≤m

M{ξi ∈ Bi}

for any Borel sets B1, B2, · · · , Bm of real numbers.

Theorem 2. 1. (Liu [10, 11]) Let ξ1, ξ2, · · · , ξn be

independent uncertain variables with regular uncer-

tainty distributions Φ1,Φ2, · · · ,Φn, respectively. If

f(x1, x2, ..., xn) is strictly increasing with respect to

x1, x2, ..., xm, and strictly decreasing with respect to

xm+1, xm+2, ..., xn, then ξ = f(ξ1, ξ2, · · · , ξn) has an

inverse uncertainty distribution

Ψ−1(α) = f
(

Φ−1
1 (α),Φ−1

2 (α), ...,Φ−1
m (α),

Φ−1
m+1(1 − α), ...,Φ−1

n (1 − α)
)

.
(3)

Theorem 2.2 (Liu [15]) Let ξ1, ξ2, · · · , ξn be

independent uncertain variables with uncertainty

distributions Φ1,Φ2, · · · ,Φn, respectively. If

f(x1, x2, ..., xn) is strictly increasing with respect to

x1, x2, ..., xm, and strictly decreasing with respect to

xm+1, xm+2, ..., xn, then ξ = f(ξ1, ξ2, · · · , ξn) has an

expected value

E[ξ] =
∫ 1

0
f

(

Φ−1
1 (α),Φ−1

2 (α), ...,Φ−1
m (α),

Φ−1
m+1(1 − α), ...,Φ−1

n (1 − α)
)

dα.
(4)

Theorem 2.3. (Liu [10]) Let ξ has em-

pirical uncertainty distribution, i.e., ξ ∼

ε(x1, α1, x2, α2, ..., xn, αn). Then,

E[ξ] =
α1 + α2

2
x1 +

n−1
∑

i=2

αi+1 − αi−1

2
xi (5)

+(1 −
αn−1 + αn

2
xn)

where x1 < x2 < ... < xm and 0 ≤ α1 ≤ α2 ≤

...αn ≤ 1.

§3 Arithmetics of uncertainty distri-

butions

In the Section, Our purpose is to find the arith-

metics of uncertainty distributions for sum, differ-

ence, maximum and minimum of uncertain variables

with experiential uncertainty distributions.

Let ξ has empirical uncertainty distribu-

tions, i.e., ξ ∼ ε(xi, αi, xi+1, αi+1), then aξ ∼

ε(axi, αi, axi+1, αi+1) is obvious, where a is a con-

stant. In order to simplify representation, we not

relate to this problem in the discussing of the paper.

Theorem 3.1. Let ξ and η have empirical un-

certainty distributions, i.e., ξ ∼ ε(xi, αi, xi+1, αi+1)

and η ∼ ε(yi, αi, yi+1, αi+1). Then, ξ ± η ∼ ε(xi ±

yi, αi, xi+1 ± yi+1, αi+1).

The conclusion of the above theorem is obvious

from Theorem 2.1. Thus, the following Deduction is

gained.

Deduction 3.1. Let ξ and η have

empirical uncertainty distributions, i.e.,

ξ ∼ ε(x1, α1, x2, α2, , ..., xn, αn) and η ∼

ε(y1, α1, y2, α2, , ..., yn, αn).Then, ξ ± η ∼

ε(x1 ± y1, αi, x2 ± y2, α2, ..., xn ± yn, αn).
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Theorem 3.2. Let ξ and η have empirical uncer-

tainty distributions, i.e., ξ ∼ ε(xi, αi, xi+1, αi+1)

and η ∼ ε(yi, αi, yi+1, αi+1). Then,

ξ ∨ η ∼































































ε(xi ∨ yi = yi, αi, xi+1 ∨ yi+1 = yi+1, αi+1),

if xi ≤ yi, xi+1 ≤ yi+1

ε(xi ∨ yi = xi, αi, xi+1 ∨ yi+1 = xi+1, αi+1),

if yi ≤ xi, yi+1 ≤ xi+1

ε(xi ∨ yi, αi, zi(i+1), βi(i+1), xi+1 ∨ yi+1, αi+1),

if xi ≤ yi, xi+1 ≥ yi+1

xi ∨ yi, αi, zi(i+1), βi(i+1), xi+1 ∨ yi+1, αi+1),

if yi ≤ xi, yi+1 ≥ xi+1

where,

βi(i+1) = αi +
(xi − yi)(αi+1 − αi)

(yi+1 − yi) − (xi+1 − xi)
.

and

zi(i+1) = xi +
(xi+1 − xi)(βi(i+1) − αi)

(αi+1 − αi)
.

Proof. It is obvious (see Figure 2) for ξ ∨ η ∼

Figure 2 Parallel empirical uncertainty distribution

ε(yi, αi, yi+1, αi+1), if xi ≤ yi, xi+1 ≤ yi+1, and ξ ∨

η ∼ ε(xi, αi, xi+1, αi+1), if yi ≤ xi, yi+1 ≤ xi+1.

Note that inverse empirical uncertainty distri-

butions of ξ and η are

x = xi +
(xi+1 − xi)(α− αi)

(αi(i+1) − αi)

and

y = yi +
(yi+1 − yi)(α − αi)

(αi(i+1) − αi)
,

Figure 3 Intersectant empirical uncertainty distri-

bution

respectively.

Since the solution of the following equation

xi +
(xi+1 − xi)(α− αi)

(αi(i+1) − αi)
= yi +

(yi+1 − yi)(α− αi)

(αi(i+1) − αi)

is

α = αi +
(xi − yi)(αi+1 − αi)

(yi+1 − yi) − (xi+1 − xi)
,

denoted by βi(i+1), if (xi − yi)(xi+1 − yi+1) < 0.

Therefore, coordinate of point of intersection (see

Figure 3) for

x = xi +
(xi+1 − xi)(α − αi)

(αi(i+1) − αi)

and

y = yi +
(yi+1 − yi)(α − αi)

(αi(i+1) − αi)

is (βi(i+1), zi(i+1)), where

zi(i+1) = xi +
(xi+1 − xi)(βi(i+1) − αi)

(αi+1 − αi)
.

In order to give a generic conclusion,

we stipulate that ε(xi, αi, xi+1, αi+1) =

(xi, αi, ∅, ∅, xi+1, αi+1). Thus the conclusion of

Theorem 3.2 can be stated as

ξ∨η ∼ ε(xi∨yi, αi, zi(i+1), βi(i+1), xi+1∨yi+1, αi+1),

where

βi(i+1) =



























∅,

if (xi − yi)(xi+1 − yi+1) ≥ 0

αi +
(xi − yi)(αi+1 − αi)

(yi+1 − yi) − (xi+1 − xi)
,

if (xi − yi)(xi+1 − yi+1) < 0

(6)
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i = 1, 2, ..., n− 1 and

zi(i+1) =































∅,

if βi(i+1) = ∅

xi +
(xi+1 − xi)(βi(i+1) − αi)

(αi+1 − αi)
,

if βi(i+1) 6= ∅

(7)

i = 1, 2, ..., n− 1.

We have the following generic circs.

Deduction 3.2 Let ξ and η have em-

pirical uncertainty distributions, i.e.,

ξ ∼ ε(x1, α1, x2, α2, ..., xn, αn) and η ∼

ε(y1, α1y2, α2, ..., yn, αn). Then,

ξ∨η ∼ ε(x1∨y1, αi, z12, β12, x2∨y2, α2; z23, β23, x3∨y3, α3,

..., xn−1 ∨ yn−1, αn−1, z(n−1n), β(n−1)n, xn ∨ yn, αn),

where,

βi(i+1) =



























∅,

if (xi − yi)(xi+1 − yi+1) ≥ 0

αi +
(xi − yi)(αi+1 − αi)

(yi+1 − yi) − (xi+1 − xi)
,

if (xi − yi)(xi+1 − yi+1) < 0

(8)

i = 1, 2, ..., n− 1 and

zi(i+1) =































∅,

if βi(i+1) = ∅

xi +
(xi+1 − xi)(βi(i+1) − αi)

(αi+1 − αi)
,

if βi(i+1) 6= ∅

(9)

i = 1, 2, ..., n− 1.

We can gained the following conclusions by sim-

ulating Theorem 3.2 and Deduction 3.2.

Theorem 3.3. Let ξ and η have empirical uncer-

tainty distributions, i.e., ξ ∼ ε(xi, αi, xi+1, αi+1) and

η ∼ ε(yi, αi, yi+1, αi+1).Then,

ξ ∧ η ∼































































ε(yi, αi, yi+1, αi+1),

if xi ≤ yi, xi+1 ≤ yi+1

ε(xi, αi, xi+1, αi+1),

if yi ≤ xi, yi+1 ≤ xi+1

ε(xi ∧ yi, αi, zi(i+1), βi(i+1), xi+1 ∧ yi+1, αi+1),

if xi ≤ yi, xi+1 ≥ yi+1

xi ∧ yi, αi, zi(i+1), βi(i+1), xi+1 ∧ yi+1, αi+1),

if yi ≤ xi, yi+1 ≥ xi+1

(10)

i.e.,

ξ∧η ∼ ε(xi∧yi, αi; zi(i+1), βi(i+1), xi+1∧yi+1, αi+1)),

where,

βi(i+1) =



























∅,

if (xi − yi)(xi+1 − yi+1) ≥ 0

αi +
(xi − yi)(αi+1 − αi)

(yi+1 − yi) − (xi+1 − xi)
,

if (xi − yi)(xi+1 − yi+1) < 0

(11)

and

zi(i+1) =































∅,

if β = ∅

xi +
(xi+1 − xi)(βi(i+1) − αi)

(αi+1 − αi)
,

if β 6= ∅

(12)

Deduction 3.3. Let ξ and η have

empirical uncertainty distributions, i.e.,

ξ ∼ ε(x1, α1;x2, α2; , ..., xn, αn) and η ∼

ε(y1, α1, y2, α2, ..., yn, αn). Then, ξ ∧ η ∼

ε(x1 ∧ y1, αi, z12, β12, x2 ∧ y2, α2, z23, β23, x3 ∧

y3, α3, ..., xn−1 ∧ yn−1, αn−1, z(n−1), β(n−1)n, xn ∧

yn, αn),

Where,

βi(i+1) =



























∅,

if (xi − yi)(xi+1 − yi+1) ≥ 0

αi +
(xi − yi)(αi+1 − αi)

(yi+1 − yi) − (xi+1 − xi)
,

if (xi − yi)(xi+1 − yi+1) < 0

(13)
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i = 1, 2, ..., n− 1 and

zi(i+1) =



























∅,

if β = ∅

xi +
(xi+1 − xi)(β − αi)

(αi+1 − αi)
,

if β 6= ∅

(14)

i = 1, 2, ..., n− 1.

Definition 3.1. Let ξ has empirical uncertainty dis-

tributions, i.e, ξ ∼ εξ(x1, α1, x2, α2, ..., xn, αn). Then

(α1, α2, ..., αn)

are said to be a measures vector of ξ.

Definition 3.2. Let ξ and η have em-

pirical uncertainty distributions, i.e., ξ ∼

ε(x1, α1, x2, α2, ..., xn, αn) and η ∼ ε(y1, α1 =

β1, y2, β2, ..., ym, βm = αn) respectively. Then

(α1 = γ1, γ2, ..., γh−1, αn = γ|W |)

said to be dyad of measures vector of ξ and η, where,

γ1, < γ2 < ... < γ|W |, i.e., it is a order of set

W = {β1, β2, βm} ∪ {α1, α2, αn}, where |W | denotes

cardinal number of the set W.

We can prove the following theorem.

Theorem 3.4. Let ξ and η have em-

pirical uncertainty distributions, i.e., ξ ∼

ε(x1, α1, x2, α2, ..., xn, αn) and η ∼ ε(y1, α1 =

β1, y2, β2, ..., yn, αn = βm), respectively, then

ξ ∼ ε(u1, α1 = γ1, z2, γ2, ..., uh−1, γh−1, uh, αn = γh)

= ε(x1, α1, x2, α2, ..., xn, αn)

and

η ∼ ε(v1, α1 = γ1, z2, γ2, ..., vh−1, γh−1, vh, βm = αn

= γh) = ε(y1, α1 = β1, y2, β2, ..., yn, αn = βm),

where for k =, 1, 2, ..., h,

uk =



























xt,

if γk = αt ∈ {α1, α2, αn}

αe +
(xe+1 − xe)(γk − αe)

αe+1 − αe

,

if αe < γk = βt ∈ {β1, β2, βm} < αe+1,

(15)

vk =



























yt,

if γk = βt ∈ {β1, β2, βm}

βe +
(ye+1 − ye)(γk − βe)

βe+1 − βe

,

if βe < γk = αt ∈ {α1, α2, αn} < βe+1

(16)

and we call

ε(u1, α1 = γ1, z2, γ2, ..., uh−1, γh−1, uh, αn = γh)

and

ε(v1, α1 = γ1, v2, γ2, ..., vh−1, γh−1, vh, αn = γh)

as the expansions of

ξ ∼ ε(x1, α1, x2, α2, ..., xn, αn)

and η ∼ ε(y1, α1 = β1, y2, β2, ..., yn, αn = βm), re-

spectively, where h is the cardinal number of the set

W = {β1, β2, βm} ∪ {α1, α2, αn}.

For example, if ∼ ε(3, 0.1, 6, 0.15, 7, 0.18, 19, 0.2)

and η ∼ ε(6, 0.1, 7, 0.16, 8, 0.19, 20, 0.2). Then

(0.1, 0.15, 0.18, 0.2)

is the measures vector of ξ, and (0.1, 0.16, 0.19, 0.2)

is the measures vector of η. It follows that

(0.1, 0.15, 0.16, 0.18, 0.19, 0.2)

is dyad of measures vector of ξ and η. Thus by The-

orem 3.5

ξ ∼ ε(6, 0.1, 0.15, 7, 0.16, 0.18, 8, 0.19, 20, 0.2)

and

η ∼ ε(6, 0.1, 7, 0.16, 8, 0.19, 20, 0.2)

are the expansions of

ξ ∼ ε(3, 0.1, 6, 0.15, 7, 0.18, 19, 0.2)

and

η ∼ ε(6, 0.1, 7, 0.16, 8, 0.19, 20, 0.2),

respectively.
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§4 Example

Suppose that workpieces 1 and workpieces 2 ac-

cording to a schedule (1, 2) are processed on ma-

chines 1 and machines 2 in turn [22], and the times

that all workpieces are processed on all machines are

uncertain variables ξrk, r = 1, 2, k = 1, 2 with known

experiential uncertainty distributions

ψξrk
∼ ε((x1

rk, 0.1, x
2
rk, 0.2, x

3
rk, 0.3, x

4
rk, 0.4, x

5
rk, 0.5,

x6
rk, 0.6, x

7
rk, 0.7, x

8
rk, 0.8, x

9
rk, 0.9), r = 1, 2, k = 1, 2.

where xi
rk, r = 1, 2, k = 1, 2, i = 1, 2, ..., 9 are given

by table 1.

Note that the processing time for each given

workpiece on different machines are unequal, hence

latency time may be bringed between two adjacent

workpieces on the same machine, where assume that

transfer times of workpieces on different machines are

contained in the processing times. Now we calculate

the completion times of all workpieces processed on

all machines.

We use to denote Xrk the completion time of

workpiec r on k-th machine, r = 1, 2, k = 1, 2. Then

the completion times Xrk of workpieces r on ma-

chines k, r = 1, 2, k = 1, 2 are, respectively

(1) X11 = ξ11.

(2) X12 = ξ11 + ξ12.

(3) X21 = ξ11 + ξ21.

(4) X22 = (ξ11 + ξ12) ∨ (ξ11 + ξ21) + ξ22.

The completion time of all workpieces processed

on all machines is

X22 = (ξ11 + ξ12) ∨ (ξ11 + ξ21) + ξ22.

From Theorem 2.1, its inverse uncertainty distribu-

tions is

ψ−1
X22

= (ψ−1
ξ11

+ ψ−1
ξ12

) ∨ (ψ−1
ξ11

+ ψ−1
ξ21

) + ψ−1
ξ22
.

By Deduction 3.1 we have

ξ11 + ξ12 ∼ ε(3, 0.1, 8, , 0.2, 12, , 0.3, 14, 0.4,

16, 0.5, 18, 0.6, 20, 0.7, 23, 0.8, 32, 0.9)

and

ξ11 + ξ21 ∼ ε(2, 0.1, 9, 0.2, 12, 0.3, 14, 0.4, 16, 0.5;

18, 0.6, 20, 0.7, 25, 0.8, 30, 0.9).

It from Deduction 3.2 that

(ξ11 + ξ12) ∨ (ξ11 + ξ21) ∼

ε(3, 0.1, 5.5, 0.15, 9, 0.2, 12, 0.3, 14, 0.4, 16, 0.5;

18, 0.6, 20, 0.7, 25, 0.8, 27.5, 0.85; 33, 0.9).

Thus from Deduction 3.1 we have

X22 = (ξ11 + ξ12) ∨ (ξ11 + ξ21) + ξ22) ∼ ε(4, 0.1,

8.5, 0.15, 14, 0.2, 18, 0.3, 21, 0.4, 24, 0.5, 27, 0.6,

30, 0.7, 37, 0.8, 41.5, 0.85, 49, 0.9).

It follows from Theorem 2.3 that E[X22] = 17.9175.

§5 Conclusion

The paper provided the arithmetics of uncer-

tainty distributions for sum, difference, maximum

and minimum of uncertain variables with experien-

tial uncertainty distributions( see Figure 4 for pri-

mary results of the paper), and showed the efficiency

of these arithmetics by examples.
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