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Abstract: Based on uncertainty theory, a two-

stage supply chain model is presented, where the

customers’ demands are characterized as uncertain

variables. The objective is to minimize the com-

bined costs incurred in the manufacturing and lo-

gistics phases. When these uncertain variables are

linear, the objective function and constraints can be

converted into crisp equivalents, then can be solved

by traditional methods. An example is given to il-

lustrate the model and the converting method.

Keywords: Uncertain demand; Manufacturing; Lo-

gistics; Two-stage; Supply chain.

§1 Introduction

A supply chain is generally viewed as a network

of some business entities including suppliers, plants,

distribution centers and customers, who are orga-

nized to covert raw materials into specified products

and distribute these products to customers. The sup-

ply chain design is to determine how to choose the

entities and distribute goods to satisfy the demands

of customers with minimum total cost. It provides

an optimal platform to manage supply chain effec-

tively and plays an important and strategic role in

supply chain management.

In recent years, the supply chain design has been

studied widely in the field of supply chain manage-

ment. In 1974, Geoffrion and Graves [7] studied a

multi-commodity single-period distribution system

Proceedings of the Twelfth International Conference on Elec-

tronic Business, Xi’an, China, October 12-16, 2012, 242-251.

and solved it by Benders Decomposition. In [4], Co-

hen et al. presented a dynamic, nonlinear mixed inte-

ger programming model, in which the operation of a

network of suppliers, manufacturers and customers

is considered. Syarif et al. [19] formulated the lo-

gistic chain network problem as a 0-1 mixed integer

linear programming model, and proposed the span-

ning tree-based genetic algorithm for optimal solu-

tion. In order to improve the efficiency of genetic

algorithm, the fuzzy logic controller concept is hy-

bridized in the proposed method for auto-tuning the

GA parameters[18]. Yan et al. [22] applied the mixed

integer programming modelling techniques to supply

chain design with consideration of bills of materials.

The majority of these researches studied the

supply chain design problem with deterministic pa-

rameters. In practice, however, it is usually diffi-

cult to foretell the demands of customers and the

different operating costs to be crisp values, namely,

these parameters are uncertain. Traditionally, in lit-

eratures, these uncertain parameters in supply chain

design are considered as random variables and have

been modelled by probability distribution. Cohen

and Lee [5] studied the whole supply chain design

by four stochastic sub-models. The optimal solution

for each sub-model is solved individually under some

assumptions, and heuristic procedure was developed

for the optimal solution when these four sub-models

are integrated. Gutierrez et al. [8] proposed a robust

optimization framework to seek network configura-

tions for network design in random environment and

modified the Benders decomposition algorithm [3] to

solve it. Alonso-Ayuso et al. [1] proposed a Branch
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and Fix Coordination approach for solving two-stage

stochastic supply chain design problems. Santoso et

al. [20] proposed a stochastic programming model

for solving supply network design problems of a re-

alistic scale, and gave a solution algorithm integrat-

ing a sampling strategy with an accelerated Benders

decomposition scheme. As known, the probability

distribution is usually derived from history record.

However, when these historical data is not avail-

able or unreliable, the probabilistic framework is not

suitable. In this case, uncertain parameters can be

given based on experience by a leader’s subjective

judgement. These parameters are often given by

vague and imprecise phrase, namely, they are fuzzy

numbers. In this case, fuzzy set theory provides the

appropriate framework to cope with this kind of un-

certainty. A few researchers studied the supply chain

with fuzzy parameters. Petrovic et al. [16, 17] devel-

oped a fuzzy isolated inventory model to determine

the order-up-to level for each individual site indepen-

dently on the serial supply chain. And a simulation

approach was developed to evaluate the performance

of the entire supply chain. Wang [21] developed a

fuzzy decision methodology to determine inventory

strategies and evaluate the performances of a supply

chain with fuzzy parameters. In a real market, the

decision makers focus on different points to configure

their supply chain network.some the decision makers

want to minimize the expected cost, some the deci-

sion makers concern on the chance with which the

total cost is less than a given cost, and the others set

some confident levels as an appropriate safety mar-

gin to constrain the total cost of supply chain net-

work. In [9], Ji presented a model to maximize the

credibility degree by dependent chance programming

[10, 11] for supply chain network design, in which the

demands of customers and the costs of purchasing,

transportation and distribution are fuzzy numbers,

and designed an effective genetic algorithm based on

fuzzy simulation to solve it.

When historical data are not available to esti-

mate a probability distribution, we have to invite

some domain experts to evaluate their belief degree

that each event will occur. Since human beings usu-

ally overweight unlikely events, the belief degree may

have much larger variance than the real frequency.

Perhaps some people think that the belief degree is

subjective probability. However, it showed that it is

inappropriate because probability theory may lead

to counterintuitive results in this case. Similar para-

doxes will appear with fuzzy theory. For example, a

variable in fuzzy set theory should be characterized

by a membership function. Suppose it is a trian-

gular fuzzy variable ξ = (0.4, 0.6, 0.9). Based on the

membership function, the variable is exactly 0.6 with

belief degree 1 in possibility measure. However, this

conclusion is unacceptable because the belief degree

of exactly 0.6 is almost zero. In addition, the vari-

able being exactly 0.6 and not exactly 0.6 have the

same belief degree in possibility measure, which im-

plies that the two events will happen equally likely.

This conclusion is quite astonishing and hard to ac-

cept. In order to deal with these phenomena, un-

certainty theory was founded by [12] in 2007 and

refined by [13] in 2010. Nowadays uncertainty the-

ory has become a branch of mathematics for mod-

eling human uncertainty, and have been developed

and applied widely. Based on uncertainty theory, a

two-stage supply chain model is presented in this pa-

per, where the customers’ demands are characterized

as uncertain variables. The objective is to minimize

the combined costs incurred in the manufacturing

and logistics phases.

The rest of the paper is organized as follows.

For better understanding of the paper, some neces-

sary knowledge about uncertain variable will be in-

troduced in Sect. 2. In Sect. 3, uncertain supply

chain model which has been the basis of our work is

described, where the customers’ demands is charac-

terized as uncertain variables. Subsequently, a two-



244 Yufu Ning, Huanbin Sha, Lixia Rong

stage uncertain supply chain model is presented in

Sect. 4. In Sect. 5, the objective function and

constraints of the two-stage uncertain supply chain

model are converted into crisp equivalents when the

customers’ demands are characterized as linear un-

certain variables. Then, the model can be solved by

traditional methods. In Sect. 6, a numerical exam-

ple will be given. Finally, in Sect. 7, some conclusion

remarks will be given.

§2 Preliminary

To better understand the proposed models for

uncertain supply chain, we will review some neces-

sary knowledge about uncertainty theory in this sec-

tion.

Definition 1 ([14]) Let Γ be a nonempty set, τ a

σ-algebra over Γ, and M an uncertain measure, M
satisfies the conditions:

(1)M{Γ} = 1;

(2)M{Λ}+M{Λc} = 1 for any event Λ;

(3)M{
∞⋃

i=1

Λi} ≤
∞∑

i=1

M{Λi} for every countable se-

quence of events {Λi}.
Then the triplet (Γ, τ,M) is called an uncertainty

space.

Definition 2 ([14]) An uncertain variable ξ is

a measurable function from an uncertainty space

(Γ, τ,M) to the set of real numbers, i.e., for any

Borel set B of real numbers, the set

{ξ ∈ B} = {r ∈ Γ|ξ(r) ∈ B} (1)

is an event.

Definition 3 ([14]) The uncertainty distribution Φ

of an uncertain variable ξ is defined by

Φ(x) = M{ξ ≤ x} (2)

for any real number x.

Definition 4 ([14]) Let ξ be an uncertain variable

with regular uncertainty distribution Φ. Then the in-

verse function Φ−1 is called the inverse uncertainty

distribution of ξ.

Definition 5 ([14]) Let ξ be an uncertain variable.

Then the expected value of ξ is defined by

E[ξ] =
∫ +∞

0

M{ξ ≥ r}dr−
∫ 0

−∞
M{ξ ≤ r}dr (3)

provided that at least one of the two integrals is finite.

Theorem 1 ([14]) Let ξ be an uncertain variable

with regular uncertainty distribution Φ. If the ex-

pected value exists, then

E[ξ] =
∫ 1

0

Φ−1(α)dα (4)

Lemma 1 ([14]) Let ξ and η be independent uncer-

tain variables with finite expected values. Then for

any real numbers a and b, we have

E[aξ + bη] = aE[ξ] + bE[η]. (5)

Definition 6 ([14]) An uncertain variable ξ is called

linear if it has a linear uncertainty distribution

Φ(x) =


0, if x ≤ a,

(x− a)/(b− a), if a ≤ x ≤ b

1, if x ≥ b

(6)

denoted by L(a, b) where a and b are real numbers

with a < b. The inverse uncertainty distribution of

linear uncertain variable L(a, b) is

Φ−1(α) = (1− α)a + αb (7)

Theorem 2 ([14]) Assume that ξ1 and ξ2 are in-

dependent linear uncertain variables L(a1, b1) and

L(a2, b2), respectively. Then the sum ξ1 + ξ2 is also

a linear uncertain variable L(a1 + a2, b1 + b2), i.e.,

L(a1, b1) + L(a2, b2) = L(a1 + a2, b1 + b2). (8)
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The product of a linear uncertain variable L(a, b) and

a scalar number k > 0 is also a linear uncertain vari-

able L(ka, kb), i.e.,

kL(a, b) = L(ka, kb) (9)

Theorem 3 ([14]) Let ξ thicksimL(a, b) be a linear

uncertain variable. Then its expected value is

E[ξ] =
∫ 1

0

((1− α)a + αb)dα = (a + b)/2. (10)

§3 Problem statement

The supply chain model was originally proposed

by McDonald and Karimi [15] in 1997. This model

was aimed at determining the optimal allocation

of an enterprise’s limited resources so as to satisfy

the uncertain product demands in the most cost-

effective way. The supply chain network considered

in the model consists of multiple production sites,

potentially located globally, manufacturing multiple

products. The demand for these products exists at

a set of customer locations. The planning horizon,

in keeping with the midterm nature of the model,

ranges from around 1 to 2 years. Each production

site is characterized by one or more single stage

semi-continuous processing units having limited

capacity. The various products, which are grouped

into product families, compete for the limited capac-

ity of these processing units. The decision making

process at the tactical level can be decomposed

into two distinct phases: the manufacturing phase

and the logistics phase. The manufacturing phase

focuses on the efficient allocation of the production

capacity at the various production sites with an aim

to determining the optimal operating policies. Sub-

sequently, in the logistics phase, the post-production

activities such as demand satisfaction and inven-

tory management are considered for effectively

meeting the customer demand. The variables of

supply chain model are characterized as following.

Sets

{i} set of products

{f} set of product families

{j} set of processing units

{s} set of production sites

{t} set of time periods

{c} set of customers

Parameters

FCfjs fixed production cost for family f on

unit j at site s

vijs variable production cost for product

i on unit j at site s

pis price of raw material i at site s

tss′ transportation cost from site s to s
′

tsc transportation cost from site s to c

hist inventory holding cost for product i

at site s in period t

ζis safe stock violation penalty for

product i at site s

µic revenue per unit of product i sold to

customer c

Rijst rate of production of product i on

unit j at site s in period t

βi′ is yield adjusted amount of product i

consumed to produce i
′
at site s

λif 0-1parameter indicating whether

product i belongs to family f

Hjst production capacity of unit j at site

s in period t

MRLfjs minimum run length for family f on

unit j at site s

dict demand for product i at customer c

in period t

IL
ist safety stock for product i at site s in

period t

Variables

Yfjst binary variable indicating whether

product family f is manufactured on

unit j at site s in period t

Pijst production amount of product i on

unit j at site s in period t
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RLijst run length of product i on unit j at

site s in period t

FRLijst run length of product f on unit j at

site s in period t

Cist consumption of product i at site s in

period t

Wiss′ t intersite shipment of product i from

site s to s
′
in period t

Aist amount of product i available for

supply at site s in period t

Iist inventory of product i at site s in

period t

Sisct supply of product i from site s to

customer c in period t

I−ict shortage for product i at customer c

in period t

I∆
ist deviation below safety of product i

at site s in period t

The objective function (11) of the deterministic

supply chain planning model, captures the combined

costs incurred in the manufacturing and logistics

phases. The manufacturing phase costs include

fixed and variable production charges, cost of

raw material purchase and transportation charges

incurred for the intersite shipment of intermediate

products. The subsequent logistics phase costs are

comprised of the transportation charges incurred

for shipping the final product to the customer,

inventory holding charges, safety stock violation

penalties and penalties for lost sales. The decisions

made in the manufacturing phase establish the

location and timing of production runs, length of

campaigns, production amounts and consumption of

raw materials. Specifically, Pijst, RLijst, FRLfjst,

Aist, Cist, Wiss′ t, Yfjst constitute the manufacturing

variables, and uniquely define the production levels

and resource utilizations in the supply chain,

min
∑

f,j,s,t FCfjsYfjst +
∑

i,j,s,t vijsPijst

+
∑

i,s,s′ ,t tss′ Wiss′ t +
∑

i,s,c,t tscSiss′ t

+
∑

i,s,t histIist +
∑

i,s,t ζisI
∆
ist

+
∑

i,c,t µicI
−
ict +

∑
i,s,t pisCist.

(11)

These manufacturing variables are constrained by

the manufacturing constraints given by (12)-(18).

The production amount of a particular product is

defined in terms of the rate of production and the

campaign run length by (12),

Pijst=RijstRLijst. (12)

The input-output relationships between raw mate-

rials and final products, accounting for the bill-of-

materials, are given through (13),

Cist =
∑
i′

βi′ is

∑
j

Pijst. (13)

Redundancy in the intersite shipment of intermedi-

ate products is eliminated by (14), which forces the

products shipped to a particular site in a particular

period to be consumed in the same period,

Cist =
∑
s′

Wiss′ t. (14)

The allocation of products to product families is

achieved through (15). Grouping of products into

product families is typically done to account for the

relatively small transition times and costs between

similar products,

FRLfjst =
∑

λif =1

RLijst. (15)

(16) models the capacity restrictions while (17) pro-

vides upper and lower bounds for the family run

lengths,

FRLfjst =
∑

λif≤1

Hjst, (16)
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MRLfjsYfjst ≤ FRLijst ≤ HjstYfjst. (17)

The amount available for supply in the logistics

phase following the manufacturing phase is defined

through (18). The decisions made in the logistics

phase, termed the logistics variables, are Iist, Sisct,

I−ict, I∆
ist. The corresponding logistics constraints are

given by (19)-(22),

Aist = Iic(t−1) +
∑

j

Pijst −
∑
s′

Wiss′ t. (18)

The corresponding logistics constraints are given by

(19)-(22). The linking between the manufacturing

and logistics phases is captured by (19). The inven-

tory level, which is determined by the amount avail-

able for supply and the actual supplies to the various

customers, is defined by (19),

Iist = Aist +
∑

c

Sisct. (19)

No overstocking is permitted at the customer (20)

and the customer shortages are carried over time

(21),

E[
∑

s,t′≤t

Sisct′ −
∑
t′≤t

dict′ ] ≤ 0, (20)

E[I−ic(t−1) + dict −
∑

c

Sisct] ≤ I−ict ≤ E[
∑
t′≤t

dict′ ],

(21)

where dict′ and dict are all uncertain variables.

(22) models the violation of the safety stock levels.

Establishing of safety stock targets for the inventory

level can be viewed as an aggregate deterministic

attempt to buffer against unpredicted contingencies

such as demand variations and production rate fluc-

tuations,

IList − Iist ≤ I∆
ist ≤ IL

ist. (22)

The other constants are constrained by (23),

Pijst, RLijst, FRLijst, Cist,Wiss′ t,

Aist, Iist, I
−
ict, I

∆
ist, Sisct ≥ 0, Yfjst ∈ {0, 1}.

(23)

So, the supply chain model which aims to minimize

the combined costs incurred in the manufacturing

and logistics phases can be characterized as follow-

ing,



(11)

s.t.

(12)− (23).

(24)

§4 Two-stage supply chain model

with uncertain customer demand

One of the most popular frameworks for plan-

ning under uncertainty is two-stage programming

[2, 6]. In this method, the decisions and constraints

of the system are classified into two sets. The first-

stage variables, also known as design variables, are

determined to the resolution of the underlying uncer-

tainty. Contingent on these ’here-and-now’ decisions

and the realizations of the uncertain parameter, the

second-stage or control variables are determined to

optimize in the face of uncertainty. These ’wait-and-

see’ recourse decisions model how the decision maker

adapts to the unfolding uncertain events. The pres-

ence of uncertainty is reflected by the fact that both

the second-stage decisions as well as the second stage

costs are probabilistic in nature. The objective is,

therefore, to minimize the sum of the first stage costs,

which are deterministic, and the expected value of

the second-stage costs. The classification of the de-

cisions of the midterm planning model into manufac-

turing and logistics naturally fits into the two-stage

stochastic programming framework as described as

following. The midterm production-planning model

under demand uncertainty is formulated as the fol-

lowing two-stage uncertain supply chain model. The

model of the first-stage is (25),
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min
∑

f,j,s,t FCfjsYfjst +
∑

i,j,s,t vijsPijst

+
∑

i,s,s′ ,t tss′ Wiss′ t +
∑

i,s,t pisCist

+Eict[Q]

subject to :

(12)− (18).

(25)

The second-stage of the supply chain can be model-

ing as (26),

Q = min
∑

i,s,c,t tscSiss′ t

+
∑

i,s,t histIist +
∑

i,s,t ζisI
∆
ist

+
∑

i,c,t µicI
−
ict

subject to :

(19)− (22).

(26)

In the above models, the manufacturing vari-

ables are considered as the first-stage, while the logis-

tics decisions are modeled as the second-stage. The

manufacturing decisions are made prior to the real-

ization of the uncertain demand. The logistics de-

cisions, which essentially aim at satisfying the cus-

tomer demand in the most cost effective way while

accounting for inventory management, are postponed

to after the demand is realized. The objective func-

tion of the model is composed of two terms. The first

term captures the costs incurred in the manufactur-

ing phase. The second term quantifies the costs of

the logistics decisions and is obtained by applying the

expectation operator to an embedded optimization

problem. Two-stage uncertain supply chain model

provides an effective tool for managing the risk ex-

posure of an enterprise. The uncertainty in the prod-

uct demand is translated into the uncertainty in the

logistics decisions through the second stage inven-

tory management problem. This implies that inven-

tory levels, supply policies, safety stock deficits and

customer shortages are contingent on the first-stage,

manufacturing decisions and the demands realized.

Suppose that all the uncertain variables in

Model (26) can be characterized as linear ones, the

model can be converted into crisp equivalent. It is

obvious that Model will be a nonlinear programming,

and can be solved by many traditional methods. The

steps will be introduced in the following.

§5 Crisp equivalents

In order to solve the proposed models by tra-

ditional methods, constraints (20) and (21) will be

converted into the corresponding crisp equivalents in

this section.

In accordance with the property of the expected

value of linear uncertain variables, we have the fol-

lowing theorem.
Theorem 4 Let dict′ and dict be independent uncer-

tain variables for all i, c, t and t
′
. Then constraint

(20) is equivalent to the following deterministic con-

straint,

E[
∑
t′≤t

dict′ ]−
∑

s,t′≤t

Sisct′ ≥ 0. (27)

When the parameters dict′ is a linear uncertain vari-

able L(aict′ , bict′ ), based on Lemma 1 and Theorem

3, the constraint (20) is converted into the following:

(
∑

s,t′≤t

Sisct′ −
∑
t′≤t

(aict′ − bict′ )/2) ≥ 0. (28)

Similarly, the constraint (21) is equivalent to the fol-

lowing deterministic constraint,

I−ic(t−1) + E[dict]−
∑

c

Sisct ≤ I−ict ≤ E[
∑
t′≤t

dict′ ].

(29)

When the parameters dict and dict′ are all linear

uncertain variable L(aict, bict), L(aict′ , bict′ ), respec-

tively, based on Lemma 1 and Theorem 3, the con-

straint (20) is converted into the following:

I−ic(t−1) + (aict − bict)/2−
∑

c Sisct

≤ I−ict ≤
∑

t′≤t(aict′ − bict′ )/2.
(30)
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The second-stage model (26) of the two-stage supply

chain planning can be converted into the following

crisp equivalent,

Q = min
∑

i,s,c,t tscSiss′ t

+
∑

i,s,t histIist +
∑

i,s,t ζisI
∆
ist

+
∑

i,c,t µicI
−
ict

subject to :

(19), (22), (28), (30).

(31)

Then, the two-stage supply chain model with cus-

tomers’ demands can be also converted into crisp

equivalent. It can be solved by traditional methods,

for example, using LINDO or Matlab toolbox.

§6 Numerical example

In this section, we consider an example to illus-

trate the modeling idea and test the effectiveness of

the proposed models. For simplicity, suppose that

there are 1 product, 1 product family, 1 processing

unit, 2 production sites, 1 time period and 2 cus-

tomers. So, there are 27 constant and 2 uncertain

variables. The uncertain customers’ demands are

given in Table 1. Table 1 summarizes the param-

eters dict as linear uncertain variables. In Table 2

other parameters in this model are assumed to crisp

numbers.

Table 1 Uncertain customers’ demands
c dict

1 L(100, 120)

2 L(90, 110)

The objective function of the second-stage (26)

can be converted into the following form based on

data in Tables 1-2,

3S1111 + 2S1121 + 2S1211 + 3S1221 + 4I111

+5I121 + 10I∆
111 + 9I∆

121 + 15I−111 + 20I−121.
(32)

Table 2 Other parameters related to the model
FC111 = 600 FC112 = 500 υ111 = 5

υ112 = 4 p11 = 2 p12 = 2.5

t
′

12 = 5 t
′

21 = 5 t11 = 3

t12 = 2 t21 = 2 t22 = 3

h111 = 4 h121 = 5 ζ11 = 10

ζ12 = 9 µ11 = 15 µ12 = 20

R1111 = 0.6 R1121 = 0.4 λ11 = 1

H111 = 110 H121 = 120 MRL111 = 100

MRL112 = 80 IL
111 = 110 IL

121 = 100

The constraints can be converted into the fol-

lowing,

I111 = A111 − S1111 − S1121

I121 = A131 − S1311 − S1321

S1111 + S1211 ≤ 110

S1121 + S1221 ≤ 100

110− S1211 − S1111 ≤ I−111 ≤ 110

100− S1221 − S1121 ≤ I−121 ≤ 100

110− I111 ≤ I∆
111 ≤ 110

100− I121 ≤ I∆
121 ≤ 100

S1111, S1121, S1211, S1221, I111, I121,

I∆
111, I

∆
121, I

−
111, I

−
121, A111, A121 ≥ 0.

(33)

Up to now, the model (26) can be converted into the

crisp one with the objective function (34) and con-

straints (35). It is a nonlinear integer programming

and can be solved by traditional method. In this

paper, the software LINDO is applied to solve the

model. The optimal objective value is 1360.00, and

the optimal logistics plan solution is shown in Table

(3).

Table 3 Optimal logistics plan
variable S1111 S1121 S1211 S1221 I111 I121

value 0 100 110 0 110 100

variable I∆
111 I∆

121 I−111 I−121 A111 A121

value 0 0 0 0 210 210
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The objective function of the first-stage (25) can be

converted into the following form based on data in

Tables 1-2,

600Y1111 + 500Y1121 + 5P1111 + 4P1121

+2C111 + 2.5C121 + 5W1121 + 5W1211.
(34)

The constraints can be converted into the fol-

lowing,

P1111 = 0.6RL1111

P1121 = 0.4RL1121

C111 = P1111

C121 = P1121

C111 = W1121

C121 = W1211

FRL1111 = RL1111

FRL1121 = RL1121

FRL1111 ≤ H111

FRL1121 ≤ H121

80Y1121 ≤ FRL1121 ≤ 120Y1121

100Y1111 ≤ FRL1111 ≤ 110Y1111

210 = P1111 −W1121

210 = P1121 −W1211

Y1111, Y1121 ∈ {0, 1},
C111, C121,W1121,W1211, P1111, P1121, FRL1111,

FRL1121, RL1111, RL1121,H111,H121 ≥ 0.

(35)

Up to now, the model (26) can be converted into the

crisp one with the objective function (34) and con-

straints (35). It is a nonlinear integer programming

and can be solved by traditional method. In this

paper, the software LINDO is applied to solve the

model. The optimal objective value is 54650.00, and

the optimal manufacturing plan solution is shown in

Table (4).

§7 Conclusions

The supply chain planning aims to minimize the

combined costs incurred in the manufacturing and

logistics phases. In this paper, a two-stage supply

Table 4 Optimal manufacturing plan

variable Y1111 Y1121 C111 C121 W1121

value 0 1 0 4800 0

variable W1211 P1111 P1121 FRL1111 FRL1121

value 459 0 4800 0 120

variable RL1111 RL1121 H111 H121

value 0 120 0 120

chain model with uncertain customer’s demands is

proposed. When the uncertain variables are all lin-

ear, the model can be converted into a crisp equiva-

lent, then can be solved by software LINDO. An ex-

ample illustrates the effectiveness of the model and

the converting method. When the uncertain vari-

ables are irregular, uncertain simulation methods or

hybrid Intelligent Algorithms will be introduced. In

following papers, the uncertain supply chain models

will be researched deeply.
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