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Uncertain Regression Modeling Given the Observational Distributions  

Renkuan Guo 

University of Cape Town, Private Bag, Rondebosch 7701, Cape Town, South Africa 

 

Abstract:  In regression theory, the distribution of the 

error terms occupies a critical position, particularly 

when switching the data environment from probability 

theory to uncertainty theory. On the probabilistic 

platform, the variance-covariance matrix for standard 

regression model is assumed by an identity matrix 

with a positive constant multiplier. On the uncertain 

measure foundation, for given observational distribu-

tions, the variance-covariance is  an interval-valued 

matrix. In this paper, we derive the interval-valued 

variance for given uncertain normal distribution. 

Further, we derive the interval-valued auto variance 

matrix for the observational error terms being the 

members of an uncertain canonical process.  This 

new model may be regarded as an extension to the 

uncertain canonical process regression models, but its 

interval-valued variance-covariance matrix is also 

intrinsic to the uncertain canonical process, which 

results in an interval-valued weighted regression 

model.   

Keywords: Uncertain measure, uncertain normal 

distribution, uncertain canonical process, auto cova-

riance matrix, weighted regression model  

 

1. Introduction 
Linear regression models [1], [3], [4], [5], [12], [14] 

are the most familiar statistical models. It is also 

well-known that in probability theory the Gaussian 

distributional theory plays a fundamental role and 

facilitates linear regression modeling.  

Linear regression models can work by switching 

the platform from probability measure into the uncer-
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tain measure. The fundamental problem in switching 

working environment is necessary to define and cal-

culate the variance-covariance matrix of the observa-

tions.  

Dai et al [2] derived the upper bound of the auto 

covariance matrix of the uncertain canonical process 

and Guo et al [6] further developed the upper bound 

of the auto covariance matrix of the uncertain integral 

driven process. Based on those foundational efforts in 

[2] and [6], Guo et al [4] developed the scalar uncer-

tain canonical regression models accordingly.  

Nevertheless, we have to aware that Guo's [4] 

uncertain canonical regression models are very spe-

cial since the auto covariance matrix with members 

being scalar numbers by taking the upper limits. 

Therefore the uncertain canonical process regression 

is not in its general form, because the uncertain ob-

servations could only facilitate interval-valued va-

riance logically.  

To a better understanding the nature of working 

environment switching, let us review Liu's uncertain-

ty theory which was founded in 2007 [7] and refined 

in [8], [9]. Nowadays uncertainty theory has become 

a branch of mathematics with many decent applica-

tions.  

The core concept in uncertainty theory is the 

uncertain measure, which is a set function defined on 

a sigma-algebra generated from a non-empty set. 

Formally, let   be a nonempty set (space), and 
 A  the  -algebra on . Each element, let us say,

A  ,  A A  is called an uncertain event. A 

number denoted as  A ,  0 1A  , is assigned to 

event  A A , which indicates the uncertain mea-

suring grade with which event  A A  occurs. The 
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normal set function  A satisfies following axioms 

given by Liu [9]. 
Axiom 1: (Normality)   1  . 

Axiom 2: (Self-Duality)   is self-dual, i.e., 

for any  A A ,     1cA A   .  

Axiom 3: ( - Subadditivity)  
11

i i
ii

A A
 



 
 

 
   

for any countable event sequence iA . 

Definition I.1: (Liu, [7], [8], [9]) A set function 
( ) [ ]: 0,1X  A  satisfies Axioms 1-3 is called an un-

certain measure. The triple ( )( ), ,X X A  is called an 

uncertainty space. 

Definition I.2: (Liu, [7], [8], [9]) An uncertainty 
variable is a measurable function  from an uncer-

tainty space ( )( ), ,X X A to the set of real numbers, i.e., 

for any Borel set B of real numbers, the set 
      : B      B A , i.e., the pre-image of B 

is an event within .X  

Definition I.3: (Liu, [7], [8], [9]) The uncertain 
distribution  : 0,1   of an uncertain variable   

on ( )( ), ,AX X   is 

    x x        (1)

An uncertain variable is completely specified by 

its uncertain measure, while an uncertain variable is 

only partially defined by the corresponding uncertain 

distribution. In other words, using an uncertain dis-

tribution to specify an uncertain variable, certain un-

certainty will be brought in. 

In this paper, we intend to extend the uncertain 

canonical regression models developed by Guo et al 

[4] from scalar version into interval-valued version. 

The interval-valued models do not need to estimate 

the weight matrix as in fitting the classical weighted 

regression models using data replications. Rather, the 

interval weight matrix is intrinsic to the uncertain 

canonical process without data involvement of any 

kind.  

The structure of the paper are as follows: Section 

II reviews the classical regression model theory. In 

Section III, we will derive the interval-valued va-

riance for a given uncertain normal distribution. Sec-

tion IV contributes the development of the intrinsic 

interval-valued auto covariance matrix of a standard 

uncertain canonical process. In Section V, we develop 

an interval-valued version of uncertain canonical 

process regression model. The last section offers a 

few concluding remarks. 

 

2. A Review of Basic Regression Model  
In statistical linear regression theory, [3], [12], [14], 

the basic assumptions are: 

Assumption 1: The model takes a form: 

0 1 1  1 2i ,i p,i p,i iy x ... x , i , , ,nb b b e= + + + + =   (2)

Assumption 2: The error terms satisfy several 

conditions: 

(1) zero mean 

[ ] 0  1 2i , i , , ,nE = =e   (3)

 (2) constant variance (homoscedasticity) 

[ ] 2  1 2iV , i , , ,ne s= =   (4)

 (3) mutually uncorrelated 

0   1 2i j , i j , i, j , , ,ne eé ùE = ¹ =ê úë û   (5)

Assumption 3: 1 2 px ,x , ,x are not random 

variables. They are fixed values of explanatory va-

riables, with 

[ ] ty | x x .bE =  (6)

 Assumption 4: ( )20
d

i N ,e s , 1 2i , , ,n=  .  

In matrix presentation, Eq. (36) can be written as  

y X b e= +  (7)

where the design or regressor matrix X is given by 
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(8)

It is obvious that the regression model va-
riance-covariance is 2

n nI  . The ordinary least 

square method will give the model estimation and 

analysis. The Gauss-Markov theorem guarantees the 

BLUE property [3], [13] of the coefficient estimators. 

If the regression model variance-covariance is not
2

n nI  but 2
n nV  , then the weighted least square 

estimation is necessary. But the estimation of  model 
variance-covariance matrix n nV   requires sampling 

replications at each specific explanatory  variable 

combination, which requires the model analyst to 

plan and collect a large sample. Nevertheless, Gaus-

sian process regression, [12], [14], is a Bayesian re-

gression model which take the intrinsic va-

riance-possible remedy, whose variance-covariance 

matrix uses the prior covariance of the members of a 

delicate-chosen Gaussian process. 

 

3. Interval Variance of an Uncertain Normal 
Distribution 
Differently from a probability distribution, which fully 

specifies every measurable event, the uncertainty dis-
tribution can only characterize events

,
 and equiva-

lently, the events  z  for any z . In uncer-

tainty theory, only uncertain measure, rather than un-

certain distribution, can fully specify an arbitrary 

measurable event. 

Definition III.1: (Liu, [7], [8], [9]) The uncer-
tainty variables 1 2, , , n   on  , , A are said to 

be independent if 

   
1

1

min
n

i i i ii n
i

B B 
 



 
   

 
   

for any Borel sets  1 2, , , nB B B  B  

Theorem III.2: (Liu, [7], [8], [9]) Let 

1 2
, , ,

n     be uncertainty distributions for the 

univariate uncertainty variables 1 2, , , n   on 

  , ,  A respectively. Let  1 2, , , n    be the joint 

distribution of uncertainty vector  1 2, , , n   . If  

1 2, , , n    are independent, then 

     
1 2 1 2, , , 1

, , , min
in n ii n

x x x x    
     (9)

for any real numbers 1 2, , , nx x x    

Definition III.3: (Liu, [7], [8], [9]) An uncertain 
variable   is called normal if the uncertain distribu-

tion takes the form 

 
 

3

1
,

1
x

x x

e
  


 

  



  (10)

Definition III.4: (Liu, [7], [8], [9]) An uncertain 

normal distribution is standard if the uncertain distri-

bution takes the form 

 
0

3

1
,

1
x

x x

e
 


  



  (11)

It is obvious that an uncertain normal variable  can 

be expressed by an standard uncertain normal variable

0  

0     (12)

Definition III.5: (Liu, [7], [8], [9]) Let be a 

uncertainty variable on an uncertainty measure space 
  , ,  A . The expectation   is defined by 

     
0

0

  




      r dr r dr  (13)

provided that at least one of the two integrals exists. 
Theorem III.6: (Liu, [9]) Let be an uncertain 

variable with a given uncertain distribution function 

 having a finite expectation  . Then the upper 

bound of the variance of   is 
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      2
,

0

2 1u r r r dr    


      (14)

and the lower bound of the variance of   is 

    2
,

0 0

1l x dx x dx    
 

      
 

(15)

Proof:  

 

  

    

    

      
        

    

2

2

0

0

0

0

0 0

2
,

1

2 1 2

2 1 2

u

x dx

x x dx

x x dx

x x dx

r r r dr

s s ds s s ds

 

 


 



 

 

   

   

 

 

 













 

   

  

    

     

     

     

     













 



 

 

 

(16)

By changing variable x r . On the other hand,  

 

  

    

    

    

    

2

2

0

0

0 0

0 0

0 0

2
,

1

2 1 2

l

x dx

x x dx

x dx dx x dx

x dx x dx

r r dr r r dr

 

 



 

 

   

   

 

 







 

 

 

   

  

    

      

     

     







 

 

 



 

  (17)

Definition III.7: The ratio 2 2
, ,l u   , denoted 

by  , is called as the spread ratio of an uncertain 

variable, i.e.,  

    

    

2
,

2
,

0 0

0 0

1

1

l

u

s s ds s s ds

s s ds s s ds





 

 






 

 

 

 



     


    

 

 

 
(18)

    Remark III.8: The variance of an uncer-

tain variable given the uncertain distribution 
function, denoted by  V  , is no longer a 

scalar positive real-valued number. The spread 

ratio,  ,  represents the uncertainty degree in 

the variance of an uncertain variable given the 

distribution function. It is obvious that the 

spread ratio 

1
,1

2
     

 (19)

It is also worthwhile to comment that according 

to Moore [13], an interval number contains interval 
uncertainty. For example, interval number [1,2] 



means any element belonging to this interval 
 1, 2  may be the representative of  with a cer-

tain risk level. Thus  represents the risk in the va-

riance of an uncertain variable given the distribution 

only. 

Theorem III.9: The variance of an uncertain 

variable given the uncertain distribution function, 
 V  , is an interval-value:  

 2 2 2
, , ,l u uV         (20)

Proof: The variance of an uncertain variable 

   2
V         (21)

and according to Definition III.7,  
2
,

2
,

l

u









  

Therefore   
2 2
, ,l u    

Combining the results of Theorem III.6, we can 
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conclude that:  

 2 2 2
, , , .l u uV         

Theorem III.10: Let  be an uncertain normal 

variable defined by Definition III.3, Eq.(11), then 

1
.

2
   (22)

Proof:  

 

      
    

 

 

2

0

0 0

1

0

1

0

1

1

1 1 exp
3

1 exp
3

x x dx

x dx x dx

x
dx

x
dx

 

 

 

 

 

 


 




 







   

     

     

                       

                 



 





 

i.e.,  

 

 

   

2

1
2

0

1
2

0

1

2

0

1

2

0

2
,

1 1 exp
3

1 1 exp
3

2 1 1 exp
3

2 1 1 exp
3

u

z d z

z d z

z dz

z dz



 

 

 















   
             
              

             
            











 

Furthermore,  

  

 

  

    

    

    

2

2

0

0

0 0

0 0

1 1

2

0 0

2
,

1

2 1 1 exp 1 exp
3 3

l

x dx

x x dx

x dx dx x dx

x dx x dx

z z dz z z dz

 



 

 

   

   

 

 







 

 

  

   

  

    

      

     

                               






 

 

 



 

  (23)

Now, we need to show that 
1

0

1

0

1 1 exp
3

1 exp
3

z z dz

z z dz









            

  
   

  





 
(24)

Therefore,  
1

0

1

0

0

0

1 1 exp
3

1
1 1

exp
3

exp
3

1

exp 1
3

exp
3

1

exp 1
3

1

exp
3

z z dz

z dz

z

z

z dz

z

z

z dz

z

z

z

























            
  
  
              
  
  

   
     

  
  
  

   
     

  














0

1

0

1

1 exp
3

dz

z z dz






  


  
   

  





 

(25)

Finally,  
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2
,

2
,

1

0

1

0

1 1 exp
3

2 1 1 exp
3

1

2

l

u

z dz

z dz




















            
            







 

Remark III.11: In the family of uncertain va-

riables given the distributional form, the spread ratio
 1 2,1   and the length of the interval variance is 

  2
,1 u   in general. When the uncertain distribu-

tion is normal,  the spread ratio  reaches the min-

imum value 1/2. In other words,  the interval va-

riance of an uncertain normal variable defined by 

Eq.(11) enjoys the longest length, i.e., 
2 2
, 2 2.u     

 

4. The Auto covariance of an uncertain ca-
nonical process 
 
An uncertain process  ,  0t t  is a family of uncer-

tainty variables indexed by t and taking values in the 

state space   .  

Definition IV.1:  (Liu, [7], [8], [9]) Let
  , 0tC t  be an uncertain process. If 

(1) 0 0C  and all the trajectories of realizations are 

Lipschitz-continuous; 
(2)  , 0tC t  has stationary and independent incre-

ments; 
(3) Every increment t s sC C  is a normal uncertainty 

variable with expected value 0 and variance 2t , i.e., 
the uncertainty distribution of t s sC C  is 

 
1

1 exp
3








       
  

t s sC C

z
z

t
 (26)

then  , 0tC t   is called an uncertain canonical 

process. 

Definition IV.2: The auto covariance is the co-

variance between two members sC and tC , denoted 

by  s tC C for , ,  .s t s t   
Theorem IV.3: Assuming that  , 0tC t  is a 

standard uncertain canonical process. Then for 
,s t  the auto covariance for a standard uncertain 

canonical process  , 0tC t  is   

, ,
2s t

st
st     

 (27)

Proof: Notice that 0C  ,  0,   is an 

arbitrary index. Thus it is logical to state that 
 t sC s t C because  

0

0

t

s

C t t

C s s




   (28)

which implies the linear relation  t sC t s C . Fur-

thermore,  

    0t sC C     (29)

Thus, 

 

 

 

 

2

2

0

0

s t

s s

s

C C

t
C C

s

t
C

s

t
s

s

stV







        
        
        



 
(30)

Recall for standard uncertain normal distribution, the 

interval variance is 

 0

1
,1

2
V      

 (31)

Finally,  

  ,
2s t

st
C C st

     
 (32)

Remark IV.3: The linearity between any two 

members of a standard uncertain canonical process 
 , 0tC t  should be understood as the sense at 

   1t sC t s C  . 

Definition IV.4: The auto covariance matrix 

 i js s
n n




  , of members 
1 2
, , ,

ns s sC C C  in a standard 

uncertain canonical process  , 0tC t  is defined by 
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1 1 2 1

1 2 2 2

1 2

n

n

i j

n n n

s s s s s

s s s s s
s s

n n

s s s s s

V C

V C

V C

 

 


 



    
     
 
 

    






   



 (33)

Theorem IV.5: The auto covariance matrix 
 i js s

n n



  , of members 

1 2
, , ,

ns s sC C C  in a standard 

uncertain canonical process  , 0tC t  is an interval 

matrix, whose element is 

  ,
2i j

i j
s s i j

n n
n n

s s
s s




  
       
  (34)

Proof: According to Definition IV.4, the auto 

covariance matrix 

 i js s
n n




   

whose  ,
th

i j   element (at ith row and jth column) is 

given by Theorem IV.2: Eq.(27):   

, , .
2s t

st
st     

 

Thus we reach the conclusion. 

Remark IV.6: The upper bound of the auto co-

variance derived in this paper  sup
i js s i jC C s s     

is much simplified comparing to the expression de-

rived by Dai et al [2]. Nevertheless the current result 
still making intuitive sense if letting j is s the limit 

will be the upper bound of the variance 

 22 2
, sup

s ii
C u s iC s         

. The elements of the in-

terval auto covariance matrix  i js s
n n




  , of members 

1 2
, , ,

ns s sC C C  in a standard uncertain canonical 

process  , 0tC t  are consistent. Now we are ready 

to investigate the uncertain canonical regression 

modeling issue. 

 

5. The General Uncertain Canonical Process 
Regression 
The general uncertain regression model to be pro-

posed will take a conditional form  

0 2 1

,  1, 2, ,
ii i m mi s

i

y x x C

s i n

       






 (35)

where y is the response variable, 1 2, , , mx x x are m  

explanatory variables without uncertain influences, 
and ,

isC 1,2, ,i n  are the uncertain error terms 

from a standard uncertain canonical process 
 , 0tC t  . 

The matrix version of (33) is 

y X C    (36)

where 

1

2

1 11 1

2 12 2

1

0

1

1

1
,  ,

1

,  

n

m

m

n n mn

s

s

m s

y x x

y x x
y X

y x x

C

C
C

C






 

   
   
    
   
   
   

  
  
      
  
    




    


 

 (37)

Theorem V.1: The basic uncertain regression 

model in Eq. (36) or Eq. (37) have the following 

properties: 
(1)   0C  ; 

(2) y X      ; 

(3) The variance-covariance matrix   tV C CC    

is the interval-valued auto covariance matrix  mul-

tiplying a constant positive multiplier 2 , i.e., 2  . 

Therefore the uncertain canonical regression is 

an interval-valued  weighted regression model. 

Proof: Based on the Definition IV.1 of a standard 
uncertain canonical process  , 0tC t  , 

1 2
, , ,

ns s sC C C are members of the uncertain canonical 

process, whose indices are times  ,  1,2, ,is i n  , and 

therefore 0 0i is s iC C C s   are uncertainty variables 

with an uncertain normal distribution 

 
0

1

1 exp
3

z
z




       
  

 (38)



Uncertain Regression Modeling   239 

 

Then, the expectation 0
isC    

and the variance  

2 22,
is i iV C s s       . Hence    0C   　 y X   

are proved  

As to Property (3) in the Definition IV.1, we noted 
the error vector is composed of 

1 2
, , ,

ns s sC C C  

sequentially, according to Theorem IV.5, it is simple 

to establish that 

 
 

2

2

2

2 2,

i j

t

s s
n n

i j i j
n n

CC

s s s s





 








    



   

 (39)

The regression model is an interval-valued weighted 
one since the variance-covariance is not 2

n nI   but 

rather is  2 2,i j i j
n n

s s s s


   .  

Remark V.2:  From the model formulation and 

Theorem V.1 statement and proof, it should be em-

phasized that a key feature of this basic uncertain 

regression model lies in the error term assumption: 
errors

1 2
, , ,

ns s sC C C    are members of an uncer-

tain canonical process, whose indices are 
,  1, 2, ,is i n  . In classical regression model, the 

error terms are not taken sequentially. In other words, 

sequential order of error terms plays a fundamental 

role in uncertain regression. In that sense, it is logical 

to describe an uncertain regression model as a se-

quential regression model. Furthermore, if we define 

a scalar variance-covariance matrix 

 2,i j i j
n n

s s s s


      according to Moore's 

interval uncertainty [13], then the scalar matrix

would facilitate an coefficient vector estimator with 

BLUE property of the so-called scalar uncertain ca-

nonical regression in terms of the Gauss-Markov 

Theorem, [3], [12], [15]. 

Theorem V.3:  (Gauss-Markov Theorem) The 

estimator of the coefficient vector in the scalar un-

certain regression defined by Remark V.2 is BLUE 

(Best - minimum variance, Linear, Unbiased Estima-

tor), i.e.,   11 1ˆ t tX X X y
     is BLUE. 

Proof: The estimator of  ,   11 1ˆ t tX X X y
    , 

is linear in response values 2 2, , , ny y y  as is obvious 

from the a  1 m n matrix pre-multiplier. The un-

biasedness follows from:  

 
 
 

11 1

11 1

11 1

ˆ

t t

t t

t t

X X X y

X X X y

X X X X



 

 

 

 

   
      

     

   

 
(40)

Then, let us assume another unbiased estimator 

  11 1t tAy X X X D y
      , then 

  
  
  
 

11 1

11 1

11 1

t t

t t

t t

X X X D y

X X X D y

X X X X DX

I DX







 

 

 

   
       

      

   

 



 (41)

Then 0DX   is implied. Now, let us examine the 

variance of  ,  

  11 1

1

ˆ

ˆ ˆ ˆ

t t

t t t

V V X X X y Dy V Dy

V D CC D V D D V

 

  

 



               
                  


 (42)

Remark V.4: More importantly, we should be 

fully aware that the scalar variance-covariance matrix 

  is an arbitrary one in the autovariance matrix de-

fined by the members in a standard uncertain canoni-
cal process  , 0 ,tC t therefore in the general un-

certain canonical regression with interval-valued auto 

covariance matrix  2,i j i j
n n

s s s s


   the BLUE prop-

erty should be held for the interval-valued estimator 

of the coefficient vector in certain sense. Furthermore, 

it is important to emphasize that the auto covariance 

interval matrix   is available according to Theo-

rem IV.5. There is no need to estimate it by replicated 

observations from each combination of the explana-

tory variables. 
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6. Conclusion 
Although the uncertain measure theory is very abstract, 

it is necessary to develop some uncertain statistical 

models for those practitioners in applied scientific or 

engineering fields.  In this paper, we develop regres-

sion model given the error vector taken from a stan-

dard canonical process with a positive multiplier. Due 

to interval variance fact,  the covariance can only take 

interval form accordingly, since the distribution func-

tions for members in a standard canonical process are 

given but the uncertain measures are not. The devel-

opment takes the advantage in a standard canonical 

process, whose member can be represents by standard 

uncertain normal variable, thus the linear relationship 

between members is established. In general, for un-

certain processes we can also develop the inter-

val-valued auto covariance matrix as long as they are 

uncertain canonical process  driven, similar to [8].  

 

Acknowledgements 
This research is partially supported financially by the 

South African National Research Foundation 

(FR2011040400096).  

 

References  
[1] Billard, L. and Diday, E., Regression Analysis for 

Interval-Valued Data, In: Data Analysis, Classi-

fication and Related Methods, Proceedings of the 

7th Conference of the International Federation of 

Classification Societies, Springer-Verlag, Bel-

gium, 2000, pp. 369-374. 

[2] Dai, W., Guo, R. Guo, D. and Cui, Y.H. , The 

Autocorrelation of a Standard Uncertain Canon-

ical Process. In the Proceedings of the Second 

International Conference on Uncertainty Theory 

(ICUT2011 http://orsc.edu.cn/icut), August 6-11, 

2011, Lhasa, Tibet, China, pp 6-12, Editors: 

Kaoru Hirota, Dan A. Ralescu, Jin Peng. ISSN 

2079-5238. Copyright © 2011 by International 

Consortium for Uncertainty Theory. 

[3] Draper, N. and Smith, H., Applied Regression 

Analysis, 2nd Edition, John Wiley & Sons Inc, 

New York, USA, 1966. 

[4] Guo, R., Guo, D., Dunne, T. and Thiart, C., 

DEAR Model – The Theoretical Foundation, 

Journal of Uncertain Systems, vol.3, no. 1, 36-51, 

2009.  

[5] Guo, R. and Guo, D., Random Fuzzy Variable 

Foundation for Grey Differential Equation Mod-

elling, Soft Computing, vol. 13, no. 2, 185-201, 

January, 2009.  

[6] Guo, R., Cui, Y.H. and Guo, D., Uncertainty 

Linear Regression Models, 2011, Journal of 

Uncertainty Systems.  

[7] Guo, R., Dai, W., Guo, D., Cui, Y.H. and Dunne, 

T. Uncertain Canonical Process Regression 

Models. In the Proceedings of the Second Inter-

national Conference on Uncertainty Theory 

(ICUT2011 http://orsc.edu.cn/icut), August 6-11, 

2011, Lhasa, Tibet, China, pp 36-44, Editors: 

Kaoru Hirota, Dan A. Ralescu, Jin Peng. ISSN 

2079-5238. Copyright © 2011 by International 

Consortium for Uncertainty Theory. 

[8] Guo, R., Guo, D., and Cui, Y.H.,  The Autocor-

relation of an Uncertain Integral Driven Process. 

In the Proceedings of the Second International 

Conference on Uncertainty Theory (ICUT2011 

http://orsc.edu.cn/icut), August 6-11, 2011, Lhasa, 

Tibet, China, pp 116-122, Editors: Kaoru Hirota, 

Dan A. Ralescu, Jin Peng. ISSN 2079-5238. 

Copyright © 2011 by International Consortium 

for Uncertainty Theory. 

[9] Liu, B.D., Uncertainty Theory: An Introduction 

to Its Axiomatic Foundations, Second Edition, 

Springer-Verlag Heidelberg, Berlin, 2007. 

[10] Liu, B.D., Uncertainty Theory: A Branch of 

Mathematics of Modelling Human Uncertainty, 

Springer-Verlag, Berlin, 2010. 



Uncertain Regression Modeling   241 

 

[11] Liu, B.D., Uncertainty Theory, 2012. (Drafted 

Fourth Edition) 

[12] Myers, R.H., Classical and Modern  Regression 

with Applications, Duxbury Press, 2nd Edition, 

March 28, 2000. 

[13] Moore, R.E., Interval Analysis, Prentice-Hall, 

Englewood Cliff, NJ., 1966. 

[14] Rasmussen, C.E. and Williams, C.K.I., Gaussian 

Processes for Machine Learning, MIT Press, 

2006. 

[15] Searle, S.R., Matrix Algebra Useful For Statistics, 

John Wiley & Sons Inc, New York, USA, 1982. 

[16] Williams, C.K.I. and Rasmussen, C.E., Gaussian 

processes for regression, In: Touretzky, D. S., 

Mozer, M. C. , and Hasselmo, M. E. , (eds), Ad-

vances in Neural Information Processing Systems, 

Volume 8, pp. 598-604, MIT Press, 1996. 

 


	Uncertain Regression Modeling Given the Observational Distributions
	tmp.1582089175.pdf.0Cdui

