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Abstract:  In evaluating modeling quality, risk level 

and general quality management "6 sigma rules" are 

popular among statisticians and quality engineers 

today. The "6 sigma rules" of Gaussian distribution are 

very simple and elemental. If switching the working 

environment from the probability measure based to the 

uncertain measure based, the simple "6 sigma rules" 

will be no longer simple. In this paper, we investigate 

the problems when facing Liu's uncertain normal dis-

tribution which can only facilitate interval variance or 

standard deviation. Consequently, the way to define 

"uncertain 6 sigma rules" are described and discussed 

and thus those to practical applications. 

Keywords: uncertain measure, uncertain normal dis-

tribution, Gaussian distribution, 6 sigma rules   

 

1. Introduction 
In this paper, we will investigate "6 sigma rules" under 

uncertain normal distributions. The meaning of the 6 

sigma rules is not in the sense as quality management 

strategy "6 sigma" initiated by Motorola in 1986 [7]. 

Rather, we use term "6 sigma rules" to refer to as an 

elemental fact of a Gaussian (Normal) distribution. In 

probability theory [1] the Gaussian (Normal) distri-

bution plays a fundamental role and facilitates the 

statistical modeling, estimation and inference. Practi-

cally no matter engineers in industries or statisticians 

in various fields rely on the knowledge on mean and 

standard deviation because the risk level and quality 

                                                        
Proceedings of the Twelfth International Conference on Elec-
tronic Business, Xi'an, China, October 12-16, 2012, 224-231. 

are quantified by these two parameters.  

The way to specify "6 sigma rules" may be a too 

easy and elementary to be ignored by statisticians. We 

should be fully aware that  the simplest "6 sigma 

rules" are composed of the foundation on which the 

modern quality control and Markov pattern analysis 

are rooted.  

Figure 1 demonstrates the rules (i.e., the proba-

bility laws actually [9]) that the probability grades fall 

between unit sigma  away from mean  .  Table I 

further emphasizes the probability rules that Figure 1 

shown.  

An example is the strange quality problems oc-

curred in Japanese car industry. If the traditional 

probabilistic "6 sigma rules" really exist objectively, 

then the out control (beyond 6 sigma) is 0.27% level. 

But what happened from time to time, the out control 

(beyond 6 sigma) risk level is much higher than that 

of probability law. These facts may imply that an in-

dustrial environment may be explained by Liu's un-

certain measure theory [2, 3, 4, 5, 6, 7] because of the 

production system complexity and human behavior 

involvement. 

However, what we are interested to ask is: does 

uncertain theory have the counterpart - "the uncertain 

6 sigma rules"? To address such a simple question, 

we have to review the relevant uncertain variable and 

distribution theory. 

 It is well known that the probability distribu-

tion upon which a random variable is fully defined, is 

equivalent to corresponding probability measure [1]. 
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But in uncertain theory [2, 3, 4, 5, 6, 7], an uncertain 

distribution cannot fully specify an uncertain variable 

because an uncertain variable can only completely 

defined by an uncertain measure! 

 
Figure 1: Area’s percentage (measuring grades) between sigma increments (standard deviations) under a Gaus-

sian (normal density) curve 

 

Table I: Area’s probability grades between sigma in-

crements (standard deviations)  

Area between 

the interval 

limits 

Probability grades of a 

(standard) Gaussian (normal) 

distribution 

 , 3   0.00135 

[-3,-2] 0.02140 

[-2,-1] 0.13591 

[-1,0] 0.34134 

[0,1] 0.34134 

[1,2] 0.13591 

[2,3] 0.02140 

 3,  0.00135 

The structure of the remaining sections is stated 

as follows. Section II will be used to review Liu’s 

axiomatic uncertain measure and uncertain normal 

variable theory [7]. In Section III, we will derive the 

interval variance given Liu’s ([7]) uncertain normal 

distribution. Section IV serves the discussions on the 

uncertain 6 sigma rules given Liu’s ([7]) uncertain 

normal distribution.  Section V concludes the paper. 

 

2. Uncertain Normal Variable 
Since an uncertain variable is fully defined by its un-

certain measure, it is necessary to review the uncertain 

measure theory. Uncertain measure is an axiomatically 

defined set function mapping from a  -algebra of a 

given space (set) to the unit interval [0,1], which pro-

vides a measuring grade system of an uncertain phe-

nomenon and facilitates the formal definition of an 

uncertain variable. 
Let   be a nonempty set (space), and  A  

the  -algebra on  . Each element, let us say, 
A   ,  A A  is called an uncertain event. A 

number denoted as  A ,  0 1A  , is assigned 

to event  A A , which indicates the uncertain 
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measuring grade with which event  A A  occurs. 

The normal set function  A satisfies following 

axioms given by Liu [7]: 
Axiom 1: (Normality)   1  . 

Axiom 2: (Self-Duality)   is self-dual, i.e., 

for any  A A ,     1cA A   .  

Axiom 3: ( - Subadditivity) 

 
11

i i
ii

A A
 



 
 

 
   for any countable event se-

quence  iA . 

Definition II.1: (Liu [6, 7]) Any set function 
( ) [ ]: 0,1A X   satisfies Axioms 1-3 is called an un-

certain measure. The triple ( )( ), ,AX X   is called the 

uncertain measure space. 

Definition II.2: (Liu [6, 7]) An uncertain varia-
ble   is a measurable mapping, i.e., 

     : , ,     A B , where  B  denotes 

the Borel  -algebra on  ,  � . 

Definition II.3: (Liu [6, 7]) The uncertain dis-
tribution  : 0,1   of an uncertain variable   on 

( )( ), ,AX X   is 

    x x        (1)

An uncertain variable is completely specified by 

its uncertain measure, while an uncertain variable is 

only partially defined by the corresponding uncertain 

distribution. In other words, using an uncertain dis-

tribution to specify an uncertain variable, certain un-

certainty will be brought in.  

Liu [2, 3, 4, 5, 6, 7] proposed his version of 

normal uncertain variable with the uncertain distribu-

tion different from that in probability theory. Let us 

review Liu’s [4] normal uncertain variable and its 

distribution.  

Definition II.4: (Liu [6, 7]) An uncertain varia-
ble   is called normal if its uncertain distribution 

takes the form 

 
 

3

1
,

1
x

x x

e
 


 
  



  (2)

 

 
    Figure 2: The standard uncertain normal distribution ( 0, 1   ) 

 Definition II.5: (Liu [6, 7]) An uncertain nor-

mal distribution is standard if the uncertain distribu-

tion takes the form 

 0

3

1
,

1
x

x x

e



  



  (3)

The standard uncertain normal distribution func-
tion ( 0, 1   ) is plotted in Figure 2: 

Remark II.6: The normal uncertain distribution 

has a derivative function 
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 
 

1
,

2 3 1 ch
3

x x

x


 


 
 

  
 

  

(4)

We can establish that there is difference in areas 

under the Gaussian density curve and Liu's normal 

derivative function curve. Table II lists the area's 

measuring grades between unit increments under the 

uncertain standard normal derivative function curve. It 
should be aware that we call  x the derivative 

function of an uncertain normal distribution function, 

whose density function is undefined. 

Figure 3 demonstrates the area's measuring 

grades between unit increments under the standard 

normal derivative function curve. Immediately, we 

see some similarity between Figure 1 and Figure 3, 

but we have to emphasize the terminology difference 

because of the different measure systems. We utilize 

Table III to summarize the similarity between Liu's 

normal uncertain variable (standard and general) and 

Gaussian (normal) random variable (standard and 

general). The difference in Table III is that    and 

 f  are called density function, while  0  and 

   are called derivative functions. 

Table II: Area’s measuring grades between unit in-

crements under the standard normal derivative func-

tion  

Area's grades be-

tween the interval 

limits 

under derivative 

curve 

Uncertain standard 

normal uncertain distri-

bution 

  , 3   0.004315 

 [-3,-2] 0.021577 

 [-2,-1] 0.114288 

 [-1,0] 0.359820 

 [0,1] 0.359820 

  [1,2] 0.114288 

 [2,3] 0.021577 
  3,  0.004315 

 
Figure 3: Area’s measuring grades between unit increments (standard deviations) under an uncertain normal de-

rivative function curve 
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TABLE III: Basic comparisons between Liu's normal uncertain variable and Gaussian (i.e., normal) random va-

riable  

 Normal Uncertain Variable Normal Random Variable 

 

 

 

Standard 

0  Z  

 0

1

2 3 1 cosh( )
3

x
x





  

21
exp

22

x
x


 

  
 

 

 0

3

1

1
x

x

e



 



    
x

x s ds


    

 

 

 

General 

  X  

 
 

1

2 3 1 cosh
3

x

x


 



   
 

 
2

1
exp

2 2

x
f x


 

  
      

 

 
 

3

1

1
x

x

e
 


 
 


    

x

F x f s ds


   

Link 0     X Z    

 

Up to now, what we see is the high similarity 

between Liu's normal uncertain variable and Gaus-

sian (i.e., normal) random variable. Does the similar-

ity lead us to have "6 sigma rules" in applying uncer-

tain normal variable? Section III will give further 

exposure. 

 

3. Variance of An Uncertain Normal Dis-
tribution Given Distribution Function  
Let us start with the general definition of the expecta-
tion of an uncertain variable, denoted by     .  

Definition III.1: (Liu, [6], [7]) Let be a uncer-

tainty variable on an uncertainty measure space 
  , ,  A . The expectation   is defined by 

 (5)

provided that one of the two integrals exists at least. 
Theorem III.2: (Liu, [7]) Let be an uncertain 

variable with a given uncertain distribution function 

 having a finite expectation  . Then the upper 

bound of the variance of   is 

      2
,

0

2 1u r r r dr    


        (6)

Proof:  

 

  

    

    

      
      

2

2

0

0

0

0

0

1

2 1

x dx

x x dx

x x dx

x x dx

r r r dr

 

 

 

 

   

   

 

 











   

  

    

     

     

     













 

 

 
(7)

By changing variable x r . 
Theorem III.3: (Liu, [7]) Let be an uncertain 

variable with a given uncertain distribution function 

 having a finite expectation  . Then the lower 

bound of the variance of   is 

    2
,

0 0

1l x dx x dx    
 

        (8)

Proof:  

     
0

0

r dr r dr  




      
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 

  

    

    

    

2

2

0

0

0 0

0 0

2
,

1

l

x dx

x x dx

x dx dx x dx

x dx x dx 



 

 

   

   

 







 

 

   

  

    

      

     







 

 



 

 

 

(9)

Theorem III.4: Given the uncertain normal dis-

tribution  

 
3

1
, ,

1
x

x x

e
 





  



� 
(10)

Then the variance  V  takes an interval form: 

 2 2
, ,

1

2 u uV      (11)

i.e., the variance of an uncertain normal variable is an 
interval having the longest length 2

, 2u . 

Proof: Based on Theorem III.3 and Theorem 

III.4, the variance of an uncertain normal variable 

takes an interval value:  

 2 2
, ,l uV      (12)

Examining the ratio of 2 2
, ,l u   under given uncer-

tain normal distribution function in Eq. (10):  

    

    

2
,

2
,

0 0

0 0

1

1

1

2

l

u

x dx x dx

x dx x dx








 

 

 

 

     


     



 

 

 
(13)

The ratio is 1/2, which leads to the conclusion of 

the theorem. 

Remark III.5: In Liu's work, the variance of an 

uncertain normal variable taking the distribution 

function as shown in Eq. (10) is stipulated as upper 

bound and denoted as 2 . It is definitely an advan-

tage in theoretical developments to have the stipula-

tion. The parameter 2 has direct link with variance. 

   

 
 

  

2

2

3

12
2

2
0

2 2

2

2

V E

1

1

3
ln ln 1

3
4 2 2

6

x
x d

e

u u du

 

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




 






 


   
 
     
 

  

  
        




  
(14) 

Nevertheless, the interval form of a variance 

should deserve further attention because there is no 

counterpart in probabilistic statistics, in which a sta-

tistic is supposed be a scalar real-valued function.  

 

4. Uncertain 6 Sigma Rules 
R.E. Moore [8] proposed interval algorithm theory in 

1965.  It involves inevitable the interval uncertainty 

concept. We could not find a very strict definition of it, 

rather, we would like interpret it intuitively. For ex-
ample,  V  is interval-valued, which can be ex-

pressed as 2 2
, ,,l u     . The interval uncertainty means 

that any value between the lower bound and the upper 

bound of the interval variance could be the variance 
with certain risk. In other words, the lower bound 2

,l

could be the variance, or, the upper bound 2
,u could 

be the variance too. Actually, 2 2 2
,var , ,,l u        

could be defined as the variance of uncertain variable 
 with certain degree of risk. 

Theorem IV.1: Let an uncertain variable   de-

fined by its uncertain distribution having two para-

meters. If the lower bound over the upper bound ratio 
of the interval variance 2 2

, ,,l u     , 2 2
, , 0.5l u    , 

then the uncertain distribution takes a form: 

 
 

3

1
, .

1
x

x x

e
 


 
  



  
(15)

where  is the expectation and 2 is the stipulated 
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variance parameter. 

Theorem IV.1 is a converse of  Theorem III.4. 

As a matter of fact, among two parametric distribu-

tion family, the lower bound over the upper bound 
ratio of the interval variance 2 2

, ,,l u     reaches the 

minimum, 1/2. Therefore, the ratio of the two bounds 

indicates the uncertain distribution.  

When discussing the uncertain 6 sigma rules, it 

is inevitable to engage interval-valued standard devi-

ation. 

Definition IV.2: Let the variance of uncertain 
variable  be 2 2

, ,,l u     . Then the standard devia-

tion interval is defined by 

2 2
, , , , ,, ,Std l u l u               . (16)

Theorem IV.3: Given an uncertain normal dis-

tribution with a form as Eq.(15), the standard devia-
tion interval ,Std can be expressed by 

, ,

1
,

2
u u   

 
 

. 

Therefore, the discussions of the uncertain 6 

sigma rules rely on the specification of the sigma 

which is the "unit". We calculate the sizes of measure 

grade under three different sigma units the lower 

bound , 2u , the midpoint   ,1 1 2 2u , and 

the upper bound ,u  for a given uncertain normal 

distribution curve. Table III lists those values. 

From Table III, it can claim that the stipulated 
standard deviation ,u  as sigma "unit" will give 

the highest coverage between -3sigma and +3sigma 

interval, 0.991371, while beyond  3sigma intervals, 

the coverage is 0.008629. If we takes the standard 
deviation , 2u  as sigma unit, coverage be-

tween -3sigma and +3sigma interval, 0.958231, while 

beyond  3sigma intervals, the coverage is 0.041769, 

which is 4.84 times larger than that of the stipulated 

sigma unit. If we takes the standard deviation 

 , 1 2 1 2u   as sigma unit, coverage between 

-3sigma and +3sigma interval, 0.980955, while 

beyond  3sigma intervals, the coverage is 0.019045, 

which is 2.21 times larger than that of the stipulated 

sigma unit. 

Table III. Values of the measuring grades under an uncertain normal distribution curve with three sigma values: 

the lower bound, the midpoint, and the upper bound  

Area coverage Lower bound 

, 2u  
Midpoint  

  ,1 1 2 2u  

Upper bound 

,u  

 , 3   0.020884 0.009523 0.004315 

 3 , 2    0.050534 0.033736 0.021577 

 2 ,    0.145698 0.132092 0.114288 

 , 0  0.282883 0.324650 0.359820 

 0,  0.282883 0.324650 0.359820 

 , 2   0.145698 0.132092 0.114288 

 2 ,3   0.050534 0.033736 0.021577 

 3 ,   0.020884 0.009523 0.004315 

Remark IV.4: Because most of the statisticians 

and engineers are familiar with probabilistic 6 sigma 

rules, sometimes it is unconscious to use probabilistic 

6 sigma rules into the environment under uncertain 

distribution. Nevertheless, a wrong choice of sigma 

unit could lead to a 4.84 times of higher risk level! 

Therefore, the identification of working environment 

is critical: is it governed by probability measure? Or, 
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is it governed by the uncertain measure. 

         

5. Concluding Remarks 
The purpose of this paper is actually a promotion of 

Liu's uncertainty theory [6, 7]. The angle is slightly 

different from those involving mathematic treatments 

of high level. In this paper, we first review the 

well-known "6 sigma rules" of Gaussian distribution 

in order to trigger a simple question: does "6 sigma 

rules" have similar form if we change the working 

environment from Kolmogorov's [1] probability 

theory into Liu's uncertainty theory [6, 7]? To address 

such a element but simple question, we review a few 

simple results of Liu’s [7] axiomatic uncertain meas-

ure theory, then carry on an investigation of the va-

riance of an uncertain normal distribution. It is a big 

surprise that the concept of the uncertain 6 sigma rules 

and the applications are very delicate.   

Many deviations in the interval-valued variance 

or standard deviation are direct consequences of Liu's 

interval limits [7].  But the interval-valued variance 

for the uncertain normal distribution revealed that the 

normal uncertain distribution enjoys a special inter-
val-valued variance, 2 2

, ,2 ,u u     , whose lower limit 

is half of the upper limit, 2
,u .    

As the first consequence of the interval-valued 

variance, then the out control (beyond 6 sigma) is 

increasing up to two times level than that of the 

Gaussian regime if picking the upper limit 
2
,u  as 

the variance parameter. Otherwise, the risk level 

would be much higher up to five times than that of 

Gaussian 0.27% level. 

The curious problem is why should we consider 

the switching working environment issue? There are 

many possible answers. For example, in complex 

system modeling, the uncertainty is hardly to be ex-

plained by probability theory. Rather, Liu's uncer-

tainty theory [6, 7] may pave the way to explore the 

uncertainty in complex system modeling.  

Finally, we should stress that to apply the uncer-

tain 6 sigma rules depends upon the observational 

knowledge of the variance or standard deviation of an 

uncertain distribution if the uncertain normal envi-

ronment is identified.  The right choice is to search 

the upper bound of the variance sequence if we are 

able to obtain the sequence.   
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