
RESEARCH PAPER

Efficient Model Points Selection in Insurance by Parallel Global
Optimization Using Multi CPU and Multi GPU

Ana Maria Ferreiro-Ferreiro • José Antonio Garcı́a-Rodrı́guez •

Luis A. Souto • Carlos Vázquez

Received: 21 February 2019 / Accepted: 19 August 2019 / Published online: 9 December 2019

� Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Abstract In the insurance sector, Asset Liability Man-

agement refers to the joint management of the assets and

liabilities of a company. The liabilities mainly consist of

the policies portfolios of the insurance company, which

usually contain a large amount of policies. In the article,

the authors mainly develop a highly efficient automatic

generation of model points portfolios to represent much

larger real policies portfolios. The obtained model points

portfolio must retain the market risk properties of the initial

portfolio. For this purpose, the authors propose a risk

measure that incorporates the uncertain evolution of

interest rates to the portfolios of life insurance policies,

following Ferri (Optimal model points portfolio in life,

2019, arXiv:1808.00866). This problem can be formulated

as a minimization problem that has to be solved using

global numerical optimization algorithms. The cost func-

tional measures an appropriate distance between the orig-

inal and the model point portfolios. In order to solve this

problem in a reasonable computing time, sequential

implementations become prohibitive, so that the authors

speed up the computations by developing a high perfor-

mance computing framework that uses hybrid architec-

tures, which consist of multi CPUs together with

accelerators (multi GPUs). Thus, in graphic processor units

(GPUs) the evaluation of the cost function is parallelized,

which requires a Monte Carlo method. For the optimization

problem, the authors compare a metaheuristic stochastic

differential evolution algorithm with a multi path variant of

hybrid global optimization Basin Hopping algorithms,

which combines Simulated Annealing with gradient local

searchers (Ferreiro et al. in Appl Math Comput

356:282–298, 2019a). Both global optimizers are paral-

lelized in a multi CPU together with a multi GPU setting.

Keywords Model points portfolio � Risk functional �
Hybrid optimization algorithms � Differential evolution �
Basin hopping � Monte Carlo simulation � HPC � Multi

CPU � Multi GPU

1 Introduction

The motivation of this work arises from a very relevant

problem in finance, and particularly for life insurance

companies: the so-called asset liability management (ALM).

ALM consists of the joint management of assets and lia-

bilities portfolios to ensure the future wealth and profitability

of the insurance company (for example, see Corsaro et al.

2010; Fernández et al. 2018; Gerstner et al. 2008; Schmeiser

and Wagner 2014; Corlosquet-Habart et al. 2015 and the

references therein). For this purpose, it is important to

compute the balance sheet projection: the joint projection of

the future cash flows of assets and liabilities portfolios.

Traditionally, the projected cash flows have been com-

puted for some previously designed scenarios to stress the

ALM model of the company. However, nowadays the

importance of stochastic ALM models for insurance com-

panies has increased, mainly due to new regulations and a

stronger competition. With Solvency II (Sandström 2010;

Accepted after two revisions by the editors of the special issue.

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s12599-019-00626-y) contains sup-
plementary material, which is available to authorized users.

A. M. Ferreiro-Ferreiro � J. A. Garcı́a-Rodrı́guez �
L. A. Souto � C. Vázquez (&)

Department of Mathematics and CITIC, University of A Coruna,

Faculty of Informatics, 15071 A Coruña, Spain

e-mail: carlosv@udc.es

123

Bus Inf Syst Eng 62(1):5–20 (2020)

https://doi.org/10.1007/s12599-019-00626-y

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301387114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1808.00866
https://doi.org/10.1007/s12599-019-00626-y
http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-019-00626-y&domain=pdf
https://doi.org/10.1007/s12599-019-00626-y

M. Merz and Wuthrich 2010) insurance companies are

allowed, and even encouraged, to develop their own in-

house ALM models and simulators to asses their risks. In

the case of banks, the ALM is also required to manage

liquidity risk in the Basel III regulation. The increase in

computational power, thanks to the modern hardware

architectures, allows the computation of more accurate

approximations of the portfolio evolution with models of

increasing complexity.

Computing these projections for the original portfolios,

usually comprising a high number of policies (hundreds of

thousands) on the liabilities side, usually leads to a highly

demanding computational time task or is even prohibitive in

reasonable time schedules. With this in view, insurance com-

panies are allowed to compute these projections by replacing

the original policies portfoliowith some suitable representative

set of contracts, usually known as the relatedmodel points (see

Corlosquet-Habart et al. 2015). Thus, previous to the ALM

computations, the model points selection is applied on the lia-

bilities side to obtain a reduced portfolio of policies which

mimics the much larger real portfolio. Next, the ALM balance

sheet projections are computed by means of Monte Carlo

simulation, taking into account the more manageable model

points portfolio. The alternative consideration of each policy in

the original portfolio would become prohibitively time-con-

suming and memory-consuming.

This new portfolio could be understood as a compressed

version of the original one that should retain the same risk

properties (see EIOPA2010 2010, for further details). In

order to measure to what extent these risk properties are

retained in this replacement, we need to choose an appro-

priate functional. This risk functional is usually defined in

terms of the fluctuation of some underlying stochastic risk

factors inside a time horizon. The interest rate term struc-

ture and the mortality trend of the population are two of the

main factors when dealing with the valuation and the risk

management of life insurance products (Jalen and Mamon

2009). For example, in Denuit and Trufin (2015) the choice

of the model points aims to control the impact on Tail-Var

and related risk measures. More recently, in Goffard and

Guerrault (2015) an alternative method to group policies in

model points is related to the Best Estimate Liabilities. As

indicated in Goffard and Guerrault (2015), model points

are usually incorporated in commercial actuarial software

and information systems, such as MG-ALFA (see MG-

ALFA 2019) and GGY-AXIS (see GGY-Axis 2019). In

Ferri (2019), a first attempt to introduce the proposed

mathematical and computational methodologies for the

automatic selection of model points based on the mini-

mization of a risk functional is addressed. In this case, the

main underlying risk factor is the interest rate, although the

methodology can be extended to incorporate mortality risk,

which also is relevant in life insurance portfolios (Jalen and

Mamon 2009), or additional risk factors. We have chosen a

LIBOR marked model for the stochastic evolution of

interest rates, but alternative models in the literature can be

used.

Once the risk measure functional has been chosen, its

value has to be approximated by using a Monte Carlo

algorithm to simulate the involved risk factors. Thus,

finding the structure of the model points portfolio can result

in a very hard computational problem. More precisely,

finding the new model points portfolio can be posed as a

global optimization problem, where we have to minimize

the distance between both portfolios in terms of the chosen

risk measure.

Multi CPUs and GPUs settings have been widely used

for accelerating the implementation of Monte Carlo

numerical methods, particularly in finance. For example, in

Fernández et al. (2018) a parallel Monte Carlo ALM bal-

ance sheet projection was performed in GPUs; in Ferreiro

et al. (2014) SABR/LIBOR models for the evolution of

interest rates including stochastic volatility smile are con-

sidered for the pricing and calibration of interest rate

derivatives and parallelization is addressed by means of

GPUs and multi CPUs; in Corsaro et al. (2010) ALM

balance sheet projections are obtained by a parallel

implementation of Monte Carlo methods in multi CPUs; in

Lee et al. (2012) a study on the advantages of GPUs to

perform massively parallel simulations of advanced Monte

Carlo methods is presented; and recently in Leitao and

Oosterlee (2017) GPUs technology is successfully applied

to modern Monte Carlo type methods for multi-dimen-

sional Bermudan options pricing.

Due to their stochastic nature, global optimization

methods are also good candidates for parallelization. For

example: the parallelization using hybrid architectures

(accelerators, GPUs) for image recognition, parallel Dif-

ferential Evolution and the GPU parallel cost function was

presented in Casella et al. (2018); in Zhu (2011) a mas-

sively parallel DE-pattern search was implemented in

GPUs; in Tasoulis et al. (2004) a parallel Differential

Evolution (DE) method was implemented in multi CPU; in

McCarty and McGuire (2018) a parallel multi CPU version

of the Monotonic Basin Hopping for thrust optimization

was presented; in Ferreiro et al. (2013) the authors pro-

posed a parallel version of the Simulated Annealing (SA)

algorithm; and in Ferreiro et al. (2019a) a parallel multi

path version of Basin Hopping (BH) for multi CPUs or

multi GPUs was presented.

The plan of this paper is as follows. In Sect. 2 we recall

the insurance problem and introduce the risk functional for

a given interest rate model. More precisely, we describe the

model points portfolio selection problem, we present the

definition of the risk measure and we show the numerical

discretization of the cost function using a Monte Carlo

123

6 A. M. Ferreiro-Ferreiro et al.: Efficient Model Points Selection in Insurance by Parallel Global Optimization…, Bus Inf Syst Eng 62(1):5–20 (2020)

numerical method. Section 3 is devoted to the HPC

implementation of the optimization problem. We show the

efficient GPU implementation of the cost function, and we

briefly describe the global optimization algorithms (DE and

a multi path BH algorithm) and its parallel implementation

in a multi CPU framework. In this paper we apply these

algorithms to the optimization of the risk functional mea-

sure, for obtaining the model point portfolio. In Sect. 4, we

show the numerical experiments. First, we illustrate the

parallel performance of the cost function. Second, we show

some examples with known solution to validate the con-

vergence of the optimization algorithms. After validating

the methodology, we finally apply the technique of the

model points portfolio generation to a general insurance

liability portfolio.

In Appendix 1, we recall the LIBOR market model that

represents one of the building blocks of our risk functional.

In Appendix 2, we show the used biometric survival model.

In Appendix 3 we show the code listings.

2 Optimization Problem

In this section we describe the global optimization prob-

lem. In Sect. 2.1 we introduce the cost function, while

Sect. 2.2 presents the numerical discretization for its

evaluation.

First, we describe the financial setting of the problem

that can be framed in the life insurance policies portfolios.

The cost function is given by the risk measure associated

with the model points representation of a portfolio con-

sisting of with-profit life insurance policies, i.e., policies

that may pay a benefit to the policy holder. Thus, the

portfolio is a set of I � J with-profit life insurance policies

corresponding to a set of ages X ¼ fx1; . . .; xIg and

maturities Y ¼ fy1; . . .; yJg, so that X and Y are two sets of

real numbers, such that xi � 0 and yj � 1, for i ¼ 1; . . .; I

and j ¼ 1; . . .; J. These contracts pay a lump sum benefit in

case of the death of the policy owner, provided that it

occurs until a specific date that is defined in the contract.

We assume that we are dealing with policies that are

unaffected by credit risk, i.e., the insurance company always

guarantees the entire benefit that is provided for in the

contract. On the other hand, we do not analyze the revenues

received by the insurance company and thus we do not take

into account the premiums stream of the contract nor any

further expenses that are the responsibility of the client.

2.1 Cost Function: Risk Functional

For computing the Model Points Risk Estimation we apply

the theory presented in Ferri (2019). For this purpose, we

start from a given policy portfolio v ¼ ðvijÞ with I � J

policies, as described above. Next, we fix a set of insurance

policies portfolios W containing policies with fixed L ages

and M maturities, with L and M smaller than I and J,

respectively. We refer to any element w ¼ ðvlmÞ 2 W as

one model points portfolio in that set.

Moreover, we understand the model points risk func-

tional RðwjvÞ as the error that occurs when the original

portfolio v is replaced by the model points portfolio

w 2 W. Such an error is assessed as the average changes of

the difference between the two portfolios in terms of the

stochastic fluctuation of the interest rate risk term structure.

The model point w�ðvÞ that minimizes this functional is

understood as the best representation of the original port-

folio v preserving the risk associated to the underlying

stochastic interest rates evolution.

As we are considering the term structure as the only risk

factor, we must select a model for the evolution of interest

rates. It is important to notice that this choice is by no

means a limitation in the application of our methodology,

as any stochastic model can be plugged into the developed

software toolbox and its Monte Carlo simulation can ben-

efit from the parallel implementation. Although in the

present work we consider a LIBOR market model (Brigo

and Mercurio 2006), any short rate model (Vasicek, CIR,

Black-Karasinski,...) could be used. Furthermore, if we aim

to incorporate the recent presence of negative rates in yield

curves then suitable recent models like shifted LIBOR

(Dutra-Lopes and Vázquez 2019), shifted SABR or free

boundary SABR (Antonov et al. 2015) can be considered.

Once we fix an interest rates model, the model points

risk functional induced by a portfolio v over W admits the

form:

RðwjvÞ ¼ E

�Z
I

����
X
n

B̂nðtÞ R�
nðvÞ �R��

n ðwÞ
� �����

2

W

ð1� tÞdt
�
;

for any w 2W;

ð1Þ

where:

– I ¼ ð0; 1Þ, which corresponds to one year period.

– The expressions for R�
nðvÞ and R��

n ðwÞ are given by:

R�
nðvÞ ¼

X
i;j

vijSTðxi; TnÞ1fTn � yjg;

R��
n ðwÞ ¼

X
l;m

wlmSTðxl; TnÞ1fTn � ymg:

– B̂nðtÞ is linked to the discounted bond price for a given

interest rates model. For example, in the case of the

LIBOR model we have B̂nðtÞ ¼ enðtÞ~BnðtÞ [see Appen-

dix 1, Eqs. (10) and (11)],

123

A. M. Ferreiro-Ferreiro et al.: Efficient Model Points Selection in Insurance by Parallel Global Optimization…, Bus Inf Syst Eng 62(1):5–20 (2020) 7

– Sðxi; TnÞ is the survival rate, which is understood as the

proportion of those individuals labelled by xi 2 X that

survive to the age xi þ Tn. The survival rate can be

computed using past survival tables or from a mortality

model. In our case we use the model of Appendix 2.

Note that when replacing LIBOR with an alternative

interest rate model, we just take it into account when

computing the term B̂nðtÞ. By using expression (1) we

consider the error in norm L2, which fits with the chosen

optimization methods that require differentiability. In case

we considered the more robust for outliers L1 norm, then

alternative methods should be used.

With the previous notations, the selection of model

points policy portfolio w� for an original portfolio v is

posed as the global optimization problem

w�ðvÞ ¼ argmin w2W RðwjvÞ: ð2Þ

Note that the model points risk functional is identified as

the cost function or objective function in the optimization

literature. The parameters to optimize are the nominals of

each model point.

In view of the nature of the global optimization problem

(2), we need to propose efficient numerical methods to

evaluate the risk functional Rð� j vÞ [given by expression

(1)] and also efficient optimization methods to minimize its

value.

2.2 Monte Carlo Numerical Discretization

In order to discretize the cost functional (1), the involved

expectation is computed by Monte Carlo simulation, so that

each simulation requires the computation of the evolution

of the interest rates according to the chosen model. In this

paper we choose the LIBOR market model (see Appendix

1), thus following the ideas in Brigo and Mercurio (2006),

taking logarithmic rates and using Ito lemma in (7), the

forward rate Fn dynamics satisfy the following equation

with deterministic diffusion coefficient:

d lnFnðtÞ ¼ rnðtÞ
Xn
k¼1

.nkskrkðtÞFkðtÞ
1þ FkðtÞsk

dt

� rnðtÞ2

2
dt þ rnðtÞdWnðtÞ;

ð3Þ

where Fn denotes the forward rate with maturity Tn,

n ¼ 1; . . .;N, sn ¼ Tn � Tn�1 is the associated accrual, rn
is the volatility of Fn, and qnk is the correlation between

forward rate Fn and Fk.

Next, applying the classical Euler–Maruyama

scheme for the time discretization of (3), we get

ln F̂nðt þ DtÞ ¼ ln F̂nðtÞ þ rnðtÞ
Xn
k¼1

qnkskrkðtÞF̂kðtÞ
1þ skF̂kðtÞ

Dt

� rnðtÞ2

2
Dt þ rnðtÞðŴnðt þ DtÞ � ŴnðtÞÞ;

ð4Þ

for n ¼ 1; . . .;N, where F̂nðtÞ is the approximation of the

forward rate FnðtÞ and Ŵnðt þ DtÞ � ŴnðtÞ �
ffiffiffiffiffi
Dt

p
Nð0; 1Þ

simulates the increment of the multidimensional Wiener

process dWnðtÞ at time t. The discretization is performed

over a uniform mesh defined by the mesh nodes tq ¼ qDt,
for q ¼ 0; . . .;Nt where Dt denotes the constant time step in

the Euler-Maruyama scheme, which exhibits strong con-

vergence of order 1/2 in Dt.
Next, we describe the discretization of expression (1) for

the functional R(w|v). More precisely, if we denote by

R̂ðwjvÞ its approximation, then

R̂ðwjvÞ ¼ 1

Np

XNp

p¼1

1

Nt

XNt

q¼1

jjRpqðwjvÞjj2ð1� tqÞ
 !

¼ 1

Np

XNp

p¼1

1

Nt

XNt

q¼1

RpqðwjvÞ � C � Rt
pqðwjvÞð1� tqÞ

 !
;

where C denotes the correlation matrix, Nt is number of time

steps, Np the number of simulations and Rpq is defined by:

RpqðwjvÞ ¼
XN
n¼1

ðR�
pqðvÞ � R��

pqðwÞÞmpqðTnÞ; ð5Þ

with the vector mpqðTnÞ given by

mpqðTnÞ ¼ �pnðtqÞ~Bp
nðtqÞ

¼ �~Bp
nðtqÞ

Xn
k¼1

sk
1þ skFnðtqÞ

RkðtqÞ;

with

~Bp
nðtqÞ¼

snrnðtqÞFp
nðtqÞ

1þ snF
p
nðtqÞ

;

where index p is associated to a particular simulation of

forward LIBOR rates and discounted bond price, index q is

related to time tq and index n is related to maturity Tn in the

tenor structure. Moreover, we have used the notation

R�
pqðvÞ ¼

X
i;j

vijSTðxi; TnÞðTn � yjÞ;

R��
pqðwÞ ¼

X
l;m

wlmSTðxl; TnÞðTn � ymÞ;

where vij denotes the nominal of contracts with age xi and

maturity yj in the original portfolio, while wlm denotes the

analogous in the model points portfolio. The pseudocode for

the risk functional discretization is shown in Algorithm 1.

123

8 A. M. Ferreiro-Ferreiro et al.: Efficient Model Points Selection in Insurance by Parallel Global Optimization…, Bus Inf Syst Eng 62(1):5–20 (2020)

123

A. M. Ferreiro-Ferreiro et al.: Efficient Model Points Selection in Insurance by Parallel Global Optimization…, Bus Inf Syst Eng 62(1):5–20 (2020) 9

3 HPC Numerical Implementation

The optimization of this cost function is a hard problem

mainly for two reasons :

– On one hand, we have to evaluate a a very expensive

cost function, because it relies on the discretization of

the risk functional using a Monte Carlo method, which

is known to have a high computational cost. Each

Monte Carlo path involves the simulation of the interest

rate values, and additionally a computationally inten-

sive loop in the policies, corresponding to the original

portfolio.

– On the other hand, the resulting optimization problem

is a global one, and requires performing a large number

of evaluations of this costly cost function. Thus, we can

not use fast local optimizers, because they get stuck

into local minima.

Thus, each evaluation has to be performed as fast as the

available software and hardware computational tools can

allow for. Also the numerical global optimization algo-

rithms must be efficient.

As we are using a stochastic global optimizer to mini-

mize the cost function, which in turn is evaluated by Monte

Carlo methods, a double level of parallelization can be

applied. Actually, we face the problem of the parallel

implementation of two nested Monte Carlo type algorithms:

one for the stochastic optimizer paths, and one for the cost

function evaluation Monte Carlo paths. Hybrid hardware

architectures with accelerators, such as FPGAs or GPUs are

well suited for handling this double level of parallelism.

Thus, we can carry out the search threads/paths of the global

searcher using multiple CPU threads, while the calls to the

cost function at each of those threads is offloaded to one

accelerator (GPUs in our case) per CPU thread, that is

responsible for carrying out the Monte Carlo discretization

for the evaluation of the cost function. In this setting we take

advantage of all the available resources of the machine,

using as many CPU threads as available accelerators.

Therefore, in this section we describe the two main tasks

to achieve an HPC implementation of the optimization

numerical methods. In Sect. 3.1, we show the GPU parallel

implementation of Monte Carlo method for computing the

cost function (1). In Sect. 3.2, we discuss the proposed

numerical methods for the global optimization problem (2),

which require very efficient and fast evaluations of the

functional discretization, and we also describe the parallel

multi CPU implementation of the optimizers.

3.1 Cost Function GPU Implementation

As the cost function is computed via Monte Carlo, it

involves a large computational cost. However, it also offers

the opportunity of using massively parallel computing

techniques for the evaluation of the cost function. In par-

ticular, many core architectures like GPUs are well suited

for performing these Monte Carlo simulations (see, for

example, Fernández et al. 2018; Ferreiro et al. 2014;

Corsaro et al. 2010; Lee et al. 2012 or Leitao and Oosterlee

2017).

Thus, we have carried out the parallel implementation of

the cost function by using GPUs and the CUDA API.

Moreover, a parallel random number generator algorithm

for GPU architectures has been used for parallelizing Monte

Carlo simulation. More precisely, in this case we use the

CURAND library. In this GPU setting, the cost function is

mapped to a GPU kernel, so that each Monte Carlo path is

computed by a different computing thread in the GPU. We

have paid special attention to handle all the memory

accesses in a coalesced way, which is the best suited

memory access pattern for this problem, in order to take

advantage of the wide memory access bus in the GPUs.

We would like to emphasize that the whole code has

been implemented from scratch in C??, including the

LIBOR rates simulator and the Monte Carlo technique for

computing the risk functional. In Appendix 3, a skeleton of

the code for computing the cost function can be seen in

Listings 1, 2 and 3. Listing 2 shows the cost function with

the calls to the GPU kernels. In Listing 2 we present a

summary with the code of the kernel for computing the

evolution of the LIBOR interest rate model (see Appendix

1). In Listing 3 a sketch of the kernel for computing the

cost function (1) (discretized in (5)) is shown.

3.2 Multi-CPU and Multi-GPU Parallel Global

Optimization Algorithms

Obtaining the model points portfolio turns out to be a very

difficult problem, as it involves solving a global opti-

mization problem of a high dimension. More precisely, the

dimension of the searching space is given by the number of

policies in the model points portfolio.

In this section we discuss the efficient parallel numerical

implementation of the global optimization algorithms we

propose for solving this problem. As they are highly

computationally demanding, we also propose to take

advantage of parallel computing techniques, which are

specially well-suited for the kind of numerical algorithms

we are handling.

For solving global optimization problems, stochastic

algorithms are usually required. They have the advantage

that they can deal with complex problems, discarding local

optima and avoiding getting stuck in these local solutions.

However, their main disadvantage is associated with their

slow convergence, due to their stochastic nature. One

example of this kind of algorithm is Simulated Annealing

123

10 A. M. Ferreiro-Ferreiro et al.: Efficient Model Points Selection in Insurance by Parallel Global Optimization…, Bus Inf Syst Eng 62(1):5–20 (2020)

(SA) (see Ferreiro et al. 2013 and references therein for

details). On the other hand, deterministic local optimization

algorithms are faster, their disadvantage being that they

cannot be guaranteed to escape from local minima. Some

examples of these local algorithms are Pattern Search,

Nelder Mead or gradient based methods like NCG, BFGS,

L-BFGS Liu and Nocedal (1989) and L-BFGS-B (Byrd

et al. 1995).

In order to deal with the high computational cost of

global optimization algorithms, variants of those algo-

rithms tailored to its HPC implementation either in multi

CPU or GPU have been studied (for example, see Casella

et al. 2018; Zhu 2011; Tasoulis et al. 2004; McCarty and

McGuire 2018; Ferreiro et al. 2013 or Ferreiro et al.

2019a). In the present work we propose the efficient use of

parallel implementations of two currently well-known

global optimization algorithms:

– A parallel implementation of a Differential Evolution

(DE) gradient free algorithm.

– A parallel implementation of a multi-path variant of the

Basin Hopping (BH) algorithm, using a L-BFGS-B as

local optimizer.

DE is a metaheuristic genetic algorithm for global opti-

mization, originally presented in Storn and Price (1997). It

creates np solution candidates or ‘‘population individuals’’

and makes them evolve by mixing random movements and

the information provided by the rest of the candidates.

There are several variations of the DE algorithm

depending on the interaction between the individuals, or, as

it is usually called, the ‘‘mutation’’. In this article we

implemented the DE/best/1/bin mutation, as this is the one

that acts by default in the SciPy library (library 2019). The

DE/best/1/bin variation is as follows:

xm ¼ xb þ Fðxr1 � xr2Þ; ð6Þ

xm being the trial or mutated vector, xb the candidate with

the lowest cost function so far, F the mutation factor, and

xr1 , xr2 two randomly selected different individuals. In this

way, each individual will be mainly influenced by the best

solution so far (if F is small), with some stochastic beha-

viour related to the variance of the population. That is, the

closer all the individuals are to the global minimum (or a

local minimum if the method got stuck there), the easier to

achieve convergence, even for a large value of F.

Again, following the SciPy implementation, we use the

Latin Hypercube Sampling (LHS) algorithm to generate

the starting points, which avoids the possibility of creating

two candidates too close to each other.

Moreover, since the evaluations of the cost function for

each population can be performed independently one from

each other, this algorithm can also be parallelized both with

multi-CPU or GPU. Since the cost function is a GPU kernel

then we use OpenMP in the DE method, so that each

OpenMP thread uses a different GPU, thus allowing a two-

level parallelization. In Algorithm 2 we show the pseu-

docode for the parallel DE method. First, we generate the

initial configuration with the LHS algorithm. Next, for each

individual of the population, we generate a new trial

member according to the chosen mutation and ensure its

components stay in the range [0,1]. Then, we scale the

mutated individual to the desired range and evaluate the

cost function. If the value of the cost function for the new

member is lower than the already recorded, we save this

new configuration; otherwise we maintain the previous

one. We repeat this process until the stop criterion is

satisfied.

Another possible technique to obtain global optimiza-

tion algorithms comes from mixing both kinds of algo-

rithms (stochastic global with local ones), thus obtaining

the so called hybrid algorithms. Hybrid algorithms can

benefit from the global convergence properties of the

stochastic ones and from the speed of convergence of the

local optimization algorithms (see Fig. 1, for a sketch of

the behavior of hybrid algorithms). One example of hybrid

algorithms is the Basin Hopping (BH) algorithm (see

Wales and Doye 1997; Ferreiro et al. 2019b as well as

references therein). In a BH algorithm, first a SA is used for

sampling the searching space by randomly generating

neighbors. Next, local gradient algorithms are applied to

123

A. M. Ferreiro-Ferreiro et al.: Efficient Model Points Selection in Insurance by Parallel Global Optimization…, Bus Inf Syst Eng 62(1):5–20 (2020) 11

capture the minima starting from the generated points by

the stochastic sampler. These algorithms can be seen as the

minimization of the simplified piecewise constant function

L, where LðxÞ corresponds to the value of the function

f evaluated at the local minimum returned by the local

optimizer operator, starting from the point x, LSðxÞ (see

Fig. 1).

In this article we use a multi path version of BH, that

was presented in Ferreiro et al. (2019a). We will refer to

this algorithm as BHM. In this version of BH, a number

M of search paths are computed at each step of the algo-

rithm, computing several gradient searches at this step.

Before advancing to the next step, the best minimum is

gathered from all the paths, and it is used as starting point

for all the search paths in the next step of the algorithm.

This BHM version has several advantages: it improves the

convergence speed and the success rate of the classical BH,

and furthermore it has the advantage that all these search

paths can be computed at the same time using different

computing threads (CPU or GPU threads), so that the

algorithm is highly parallelizable. We refer to Ferreiro

et al. (2019a) for more details. The pseudocode of the BHM

algorithm is shown in Algorithm 3.

The whole parallel optimization routines, DE and par-

allel BHM, have been implemented from scratch in C??,

in the case of BHM following the previous works (Ferreiro

et al. 2013, 2019a).

Note that we are using a GPU implementation of the

cost function. So, when we mix the multi CPU imple-

mentation of the optimization algorithm with the GPU

implementation of the risk function, we end up in a multi

GPU setting for the whole HPC implementation for solving

the problem. Thus, the multi CPU threads correspond to the

search paths or families of the global search algorithms; the

GPU threads are used for the computation of the Monte

Carlo scenarios for the valuation of the cost function; and

the number of the CPU threads that can be used is equal to

the number of the available accelerators (GPUs). In our

case, we have implemented the OpenMP multi CPU ver-

sion in one single machine with 4 GPUs (see Fig. 2).

4 Numerical Tests

In this section we show some examples to asses the per-

formance and the accuracy of the proposed methodology.

In Sect. 4.1 we present a test to asses the parallel per-

formance of the GPU implementation. We also compare

this performance with the performance of a multi CPU

prototype that we developed prior to the final GPU

implementation.

In Sect. 4.2 we show an example to validate the pro-

posed model points selection technique: this experiment is

a synthetic test with known solution, so that the correct

operation of the technique can be assessed comparing with

the exact solution. Furthermore, we also use this example

to show a comparison between the global DE method and

the hybrid multi path BH, BHM, with L-BFGS-B as local

optimizer, as proposed alternatives to solve the problem.

More precisely, we will present some graphs with the

evolution of the cost function’s value with respect to the

Fig. 1 Sketch of Basin Hopping algorithm

123

12 A. M. Ferreiro-Ferreiro et al.: Efficient Model Points Selection in Insurance by Parallel Global Optimization…, Bus Inf Syst Eng 62(1):5–20 (2020)

number of evaluations. Note that the number of evaluations

is closely related to the computational cost.

Finally, in Sect. 4.3 we show in Example 2 an appli-

cation to a real world scenario, with unknown solution.

The parameters of the LIBOR model are the same for all

tests, and can be checked in Appendix 1.

Concerning the hardware configuration, all tests have

been performed in a hybrid architecture server with 16 GB

of RAM, 12 CPU cores (two Intel Xeon E5-2620 v2 at

2.10 GHz) and 4 Nvidia GeForce GTX TITAN Black

GPUs (Kepler architecture).

4.1 Performance of the Parallel Implementation

of the Risk Functional Evaluation

As we mentioned before, the computational cost of the

proposed optimization algorithms is closely related to the

cost of the risk functional’s evaluation, which is performed

a large number of times during the optimization procedure.

Therefore, as a prior step to the presentation of numerical

examples, we show the performance of the multi CPU and

GPU implementations for the risk functional calculation.

For this purpose, we consider 10,000 policies in the

original portfolio and 10 policies in the model points

portfolio. For building the 10,000 policies of the original

portfolio, we consider the 10 policies in Table 1, and we

repeat each one 1000 times. In this way, we end up with an

original portfolio containing 10,000 policies (although only

of the 10 different types in Table 1).

Recall that the cost function is stochastic and its com-

putation requires a Monte Carlo simulation technique.

Therefore, the test in this section has been performed by

using a different number of paths for the Monte Carlo

simulation in the computation of the cost function. Thus,

we illustrate the effect in the speed-up for different num-

bers of paths.

Table 2 and Figs. 3, 4 show the obtained speed-up for

the parallel implementation of the risk functional when

different numbers of Monte Carlo paths and different

number of CPU cores or GPU are being used. As illustrated

in Figs. 3 and 4, the speed-up increases when the number

of Monte Carlo paths increases. Therefore, parallelization

becomes more interesting and efficient for a large number

of Monte Carlo paths, which is the usual situation.

Fig. 2 Sketch of the parallel global optimization BHM algorithm, using multi CPU and multi GPU with 4 CPUs. yik represents the neighbour of

xbestk in thread i at step k

Table 1 Original portfolio for

Example 1
Age Maturity Nominals

20.0 50.0 50,000

25.0 45.0 100,000.0

30.0 40.0 150,000.0

35.0 35.0 200,000.0

40.0 30.0 250,000.0

45.0 25.0 300,000.0

50.0 20.0 350,000.0

55.0 15.0 400,000.0

60.0 10.0 450,000.0

65.0 5.0 500,000.0

123

A. M. Ferreiro-Ferreiro et al.: Efficient Model Points Selection in Insurance by Parallel Global Optimization…, Bus Inf Syst Eng 62(1):5–20 (2020) 13

4.2 Example 1: Analytical Test: Repeated Policies

Classification

In this example we validate the proposed technique for a

problem with known solution. Thus, we compute the model

points portfolio by using the two previously discussed

global optimization algorithms: the pure global DE algo-

rithm and the hybrid BHM algorithm, so that we can

compare the performance of both algorithms for the major

problem we pose.

In this example we will use the same starting portfolio

as in Sect. 4.1. We built that portfolio by repeating the

policies in Table 1 1000 times. Although they are repeated

(actually, there are only 10 types of policies), each policy is

understood as a different individual one, from the com-

putational point of view. Concerning the model points

portfolio, we try to represent the previously described

original portfolio with a 10 model points portfolio with the

same structure (ages and maturities) as the one in Table 1,

so that the problem consists of finding the nominals in the

model points for that model points portfolio that better

represents the original portfolio with respect to the risk

functional. The solution to the resulting optimization

problem is known, because clearly the analytical solution

consists of multiplying the nominals in Table 1 by 1000.

Moreover, when choosing the model points portfolio in this

way the corresponding value of the cost function is equal to

zero.

As we can see in Fig. 5, DE reaches the value 7:2554�
10�15 of the cost function, while the BHM method with the

L-BFGS-B gradient local optimizer reaches the value

1:2061� 10�16, the exact solution being equal to zero.

Moreover, in Table 3 the obtained values for the number of

contracts in the model points portfolio are shown. We note

that these values are rounded to the eighth decimal digit,

thus matching those corresponding to the exact solution.

These roundings explain the small difference between the

computed solution and the exact solution zero in the cost

function. On the other hand, the computational time was

around 3900 seconds both for DE and BHM, as they were

stopped when reaching a maximum number of cost func-

tion evaluations, which is the larger part of the computa-

tional cost in the computation.

By using this example with an analytical solution, we

have checked whether the proposed technique is able to

Table 2 Computation times in seconds and speedups with different

numbers of CPUs and using the GPU

Paths Hardware Time (s) Speedup

256 1 CPU 309.57 1.00

2 CPUs 156.68 1.98

4 CPUs 81.81 3.78

8 CPUs 41.00 7.55

12 CPUs 29.12 10.63

1 GPU 7.08 43.72

1024 1 CPU 1218.84 1.00

2 CPUs 631.52 1.93

4 CPUs 327.17 3.73

8 CPUs 164.21 7.42

12 CPUs 115.04 10.59

1 GPU 7.09 171.91

4096 1 CPU 5008.62 1.00

2 CPUs 2616.86 1.91

4 CPUs 1349.40 3.71

8 CPUs 675.19 7.42

12 CPUs 455.30 11.00

1 GPU 9.91 505.41

Fig. 3 Speedups of multi CPU parallel implementation for different

number of Monte Carlo paths

Fig. 4 Speedups of multi CPU and GPU parallel implementation for

different number of Monte Carlo paths

123

14 A. M. Ferreiro-Ferreiro et al.: Efficient Model Points Selection in Insurance by Parallel Global Optimization…, Bus Inf Syst Eng 62(1):5–20 (2020)

classify repeated policies in their corresponding buckets,

which is a desirable property of the risk function.

We would like to emphasize that in the optimization

algorithms we have imposed very strict stopping criteria in

the involved numerical methods to guarantee a very small

error with respect to the analytical solution (high accu-

racy). This leads to long computational times, even though

we use some parallel computing tools. Also, looking at the

convergence graph in Fig. 5 we note that DE results are

more efficient than BHM , for this problem.

Moreover, in Table 4 we show the speedup in terms of

the number of CPUs for DE and BH, which confirms the

expected linear speedup in both methods, since they allow

massive parallelization with one synchronization step per

iteration, and very similar computational times for a fixed

number of functional evaluations.

4.3 Example 2: Real Scenario

In this example we present a realistic synthetic case. More

precisely, in this test the original portfolio consists of

10,000 different policies, and we want to represent it with 5

different model points portfolios with 10, 20, 30, 40 and 45

model points, respectively. In the supplementary online

information we include an Excel file that contains the data

of the portfolio policies and another file showing the cash

flows.

Each of the model points portfolios is given by a grid of

ages and maturities. For example, the 45 model points

portfolio is given by a grid of 9 ages and 5 maturities, with

ages varying from 30 to 70 with step of 5 years, and

maturities ranging from 5 to 25 with of step 5 years, thus

accounting for that total of 45 model points.

This is a more difficult test than the analytical one in

Example 1. As DE was more efficient than BHM in the

analytical example studied in Sect. 4.1, we decided to

perform Example 2 only with the first optimization

algorithm.

The required computing time by the DE algorithm was

4067.77 seconds for the 20 model points portfolio. The

obtained final value of the model points risk functional is

8:56347� 10�12 (see Fig. 6). Moreover, the computed

nominals are shown in Table 5 and Fig. 7 (left). For the 45

model points portfolio, the computing time was 4897.69

seconds. The obtained final value of the model points risk

functional is 4:39475� 10�12. Moreover, the computed

nominals are shown in Table 6 and Fig. 7 (right).

The global component of the hybrid algorithm is of

great importance for this example, which prevents from

getting stuck at a local minimum, as it may happen with a

local optimization method.

5 Conclusions

We have developed a computationally efficient methodol-

ogy for building an equivalent model points portfolio

starting from the bulk life insurance policies’ portfolio. For

Fig. 5 Convergence of the DE and BH algorithms for Example 1.

The box contains a zoom of the values for the last 100,000

evaluations

Table 3 Obtained solution in

Example 1 with DE or BHM

(results are rounded to the sixth

decimal place)

Age Maturity Nominals

20.0 50.0 50,000,000

25.0 45.0 100,000,000

30.0 40.0 150,000,000

35.0 35.0 200,000,000

40.0 30.0 250,000,000

45.0 25.0 300,000,000

50.0 20.0 350,000,000

55.0 15.0 400,000,000

60.0 10.0 450,000,000

65.0 5.0 500,000,000

Table 4 Speedup for the DE and BH algorithms with respect to

CPUs in Example 1

DE BH

CPUs Time (s) Speedup Time (s) Speedup

1 15,624.2 1.00 15,840.7 1.00

2 7812.5 2.00 7992.3 1.98

4 3924.3 3.98 4032.1 3.93

123

A. M. Ferreiro-Ferreiro et al.: Efficient Model Points Selection in Insurance by Parallel Global Optimization…, Bus Inf Syst Eng 62(1):5–20 (2020) 15

this purpose, the problem can be formulated as a global

optimization problem with a very high computational cost,

due to the size of the original portfolio. Furthermore, the

optimization problem is of a high dimension and the risk

functional to be minimized has to be evaluated a large

number of times by means of Monte Carlo simulation

techniques. Therefore, we propose and build up from

scratch a multi-CPU implementation with a GPU acceler-

ator for the functional evaluation. As illustrated with the

numerical examples, we can obtain a high speed up in

functional evaluations and the model points portfolio can

be obtained in a reasonable computing time for real syn-

thetic originally large policies portfolios. In this way, a

relevant problem arising in the insurance sector can be

solved by the efficient use of available HPC technologies.

Appendix 1: LIBOR Market Model

In this section, following Brigo and Mercurio (2006) we

describe the risk-free dynamics of the discounted bond

price, when considering the LIBOR Market Model gov-

erning the time evolution of the forward rates.

Table 5 Obtained solution with DE in Example 2 with 20 model

points

Maturities

5 10 15 20

Ages

30 0.2636054 0.5426405 0.0331077 0.3297138

35 0.2724662 0.2482779 0.0048624 0.2420600

40 0.0892925 0.0442299 0.0529424 0.0901912

45 0.3736702 0.1934909 0.0575758 0.0979045

50 0.6107136 0.0931458 0.0400420 0.1345385

Nominals are divided by 109

Fig. 7 Solution for Example 2 for 20 model points (left) and 45 model points (right)

Table 6 Obtained solution with DE in Example 2 with 45 model

points

Maturities

5 10 15 20 25

Ages

30 0.0955700 0.3256259 0.0883524 0.0229972 0.0043578

35 0.0592411 0.1198595 0.1226493 0.0509578 0.0158965

40 0.3659527 0.3177687 0.0591830 0.1009888 0.0162018

45 0.1035843 0.1218179 0.0357225 0.0739401 0.0347449

50 0.3763608 0.0764832 0.0586362 0.0175613 0.0299867

55 0.1298100 0.1005898 0.0164415 0.0095639 0.0161440

60 0.2330816 0.0265396 0.0243602 0.0412993 0.0234670

65 0.0052912 0.0352017 0.0493717 0.0072890 0.0022997

70 0.0450234 0.0624398 0.0820887 0.0696481 0.0114133

Nominals are divided by 109Fig. 6 Convergence of the DE algorithm for Example 2. The box

contains a zoom of the values for the last 100,000 evaluations

123

16 A. M. Ferreiro-Ferreiro et al.: Efficient Model Points Selection in Insurance by Parallel Global Optimization…, Bus Inf Syst Eng 62(1):5–20 (2020)

Let N be a positive integer and hence define the finite set

T ¼ fT0; T1; . . .; TNg to be a fixed tenor structure, with

T0 ¼ 1 and T0\T1\ � � �\TN , so that Tn corresponds to a

specific maturity time. For n ¼ 1; . . .;N, let sn ¼ Tn � Tn�1

be the corresponding accruals. Moreover, we set I ¼ ð0; 1Þ
to be the unit interval on the real line, which corresponds to

the period of one year.

We use BnðtÞ to denote the risk-neutral discounted price

at time t 2 I of a (zero-coupon) bond expiring at the tenor

date Tn, for any n ¼ 0; . . .;N. Moreover, we denote by

FnðtÞ the value at time t 2 I of the LIBOR forward rate

associated to the accrual period ðTn�1; Tn	, for

n ¼ 1; . . .;N. Therefore, FnðtÞ satisfies the following

condition:

BnðtÞð1þ FnðtÞsnÞ ¼ Bn�1ðtÞ:

Hence, for any n ¼ 1; . . .;N we can write

BnðtÞ ¼ B0ðtÞ
Yn
k¼1

1

1þ FkðtÞsk
; for any t 2 I :

It is worth to be highlighted that since t\Tn, for any t 2 I
and n ¼ 0; . . .;N, the price BnðtÞ is always well defined.

We will consider the price B0ðtÞ of the bond expiring at

the tenor date T0 ¼ 1, for t 2 I , as the reference numeraire

process. Hence, we denote by Q the forward measure

related to T0, i.e., the martingale measure associated to the

numeraire process B0ðtÞ, for t 2 I .
Next, we fix a N-dimensional Wiener process

WðtÞ ¼ ðW1ðtÞ; . . .;WNðtÞÞ, for t 2 I , defined on the suit-

able complete probability space ðX;F;QÞ, and we write

. ¼ ð.nkÞnk to denote the corresponding (positive defined)

correlation matrix, i.e.,

dWnðtÞdWkðtÞ ¼ .nkdt:

In particular, we shall assume constant correlation coeffi-

cients given by the usual parameterization:

.nk ¼ expð�b j Tn � Tk jÞ;

with b ¼ 0:01 in the numerical examples. Note that these

coefficients will correspond to the correlation between

LIBOR forward rates.

For any given h ¼ ðh1; . . .; hNÞ 2 R, we define the fol-

lowing norm:

khkW ¼
� XN

n;k¼1

.nkhnhk

�1=2

:

For each n ¼ 1; . . .;N, let rnðtÞ, for t 2 I , be a given

deterministic function, representing the volatility of Fn.

According to the LIBOR Market Model, given any fixed

n ¼ 1; . . .;N, the corresponding forward rate Fn is a

martingale with respect the risk-neutral measure induced

by the numeraire Bn. When we consider the same measure

Q (associated to the numeraire B0) to write the dynamics of

all Fn, then Girsanov theorem implies that the risk-neutral

dynamics of the process FnðtÞ, for t 2 I is given by

dFnðtÞ ¼ lnðtÞdt þ rnðtÞFnðtÞdWnðtÞ; ð7Þ

jointly with some given initial condition Fnð0Þ, where, at
any time t 2 I , the drift component lnðtÞ is completely

determined by following identity:

lnðtÞ ¼ rnðtÞFnðtÞ
Xn
k¼1

.nkskrkðtÞFkðtÞ
1þ FkðtÞsk

:

Concerning the modeling of volatilities, in this article we

choose the widely used parameterization:

rnðtÞ ¼ ½aþ bðTn � tÞ	 exp ½ðTn � tÞ	 þ d

Furthermore, in the numerical examples we have chosen

the constant parameters: a ¼ 0:07; b ¼ 0:2; c ¼ 0:6 and

d ¼ 0:075.

For any fixed t 2 I , set lðtÞ ¼ ðl1ðtÞ; . . .; lNðtÞÞ and

thus define RðtÞ to be the matrix whose components are

given by

RnkðtÞ ¼ rnðtÞFnðtÞdnk; for any n; k ¼ 1; . . .;N; ð8Þ

where dnk denotes the Kronecker delta. Moreover, we shall

write RnðtÞ to denote the nth row of the matrix RðtÞ, for any
n ¼ 1; . . .;N. Then, when setting FðtÞ ¼ ðF1ðtÞ; . . .;FNðtÞÞ,
we may regard (7) as a N-dimensional dynamics by means

of the following compact form notation:

dFðtÞ ¼ lðtÞdt þ RðtÞdWðtÞ; ð9Þ

jointly with the initial condition

Fð0Þ ¼ ðF1ð0Þ; . . .;FNð0ÞÞ.
Concerning the tenor structure of the LIBOR model, in

all the article we consider 100 tenors, with maturities

ranging from 1 to 100 and initial rates given by F1ð0Þ ¼
0:01; F2ð0Þ ¼ 0:02; F3ð0Þ ¼ 0:03; F4ð0Þ ¼ 0:04 and

Fnð0Þ ¼ 0:05, for n� 5.

Moreover, for any n ¼ 1; . . .;N we shall write

~BnðtÞ ¼
BnðtÞ
B0ðtÞ

; for any t 2 I ;

to denote the discounted price processes associated to the

bond expiring at the tenor date Tn.

The following result provides the risk-free dynamics for

the discounted price of any bond expiring at some tenor

date in T . For any n ¼ 1; . . .;N, the discounted bond price

process ~BnðtÞ admits the dynamics

d ~BnðtÞ ¼ �enðtÞ~BnðtÞdWðtÞ; ð10Þ

where we set

123

A. M. Ferreiro-Ferreiro et al.: Efficient Model Points Selection in Insurance by Parallel Global Optimization…, Bus Inf Syst Eng 62(1):5–20 (2020) 17

enðtÞ ¼
Xn
k¼1

sk
1þ FkðtÞsk

RkðtÞ: ð11Þ

Appendix 2: Biometric Survival Model

Sðxi; TnÞ is the survival index which is understood as the

proportion of those individuals labelled by xi 2 X that

survive to the age xi þ Tn. The survival index can be

computed using past survival tables or from a model.

In our case we use the model:

Sðxi; TnÞ ¼ exp

�
�
Z Tn

1

lðs; xi þ sÞds
�
;

for any xi 2 X and n ¼ 1; . . .;N;

ð12Þ

which yields the proportion of those individuals with age xi
that survive to the age xi þ Tn, and where lðs; xi þ sÞ
denotes the force of mortality at time s� 0 related to the

class of individuals labelled by xi 2 X . In this respect, we

assume that lðs; xi þ sÞ is a deterministic observable

function, for any xi 2 X and s� 0.

In particular, we consider a Gompertz-type law model-

ing the force of mortality (Gompertz 1825), by setting

lðs; xi þ sÞ ¼ aðsÞ exp fðxi þ sÞbðsÞg;
for any s� 1 and i ¼ 1; . . .; I;

where a(s) and b(s) are deterministic functions for s� 1,

which are considered to be observables. Throughout, we

write ST to denote the derivative of S in its second variable,

which is given by

STðxi; TnÞ ¼ �Sðxi; TnÞlðTn; xi þ TnÞ:

Concerning the force of mortality, we consider the Gom-

pertz type law modeling with constant parameters, i.e.,

lðxÞ ¼ a expðbxÞ, where we will take a ¼ 0:0003 and

b ¼ 0:06.

Appendix 3: Code Listings

In this section, we include the code snippets, illustrating the

GPU parallelization.

123

18 A. M. Ferreiro-Ferreiro et al.: Efficient Model Points Selection in Insurance by Parallel Global Optimization…, Bus Inf Syst Eng 62(1):5–20 (2020)

References

Antonov A, Konikov M, Spector M (2015) The free boundary SABR:

natural extension to negative rates. Social Science Research

Network (SSRN)

Brigo D, Mercurio F (2006) Interest rate models—theory and practice

with smile, inflation and credit. Springer, Berlin

Byrd RH, Lu P, Nocedal J, Zhu C (1995) A limited memory algorithm

for bound constrained optimization. SIAM J Sci Comput

16:1190–1208

Casella A, Falco ID, Della Cioppa A, Scafuri U, Tarantino E (2018)

Exploiting multi-core and GPU hardware to speed up the

registration of range images by means of differential evolution.

J Parallel Distrib Comput

Corlosquet-Habart M, Gehin W, Janssen J, Manca R (2015) Asset

liability management for banks and insurance companies. Wiley,

Hoboken

Corsaro S, Angelis PD, Marino Z, Perla F, Zanetti P (2010) On

parallel asset-liability management in life insurance: a forward

risk-neutral approach. Parallel Comput 36:390–402

Denuit M, Trufin J (2015) Model points and Tail-VaR in life

insurance. Insur Math Econ 64:268–272

Dutra-Lopes S, Vázquez C (2019) Real world scenarios with negative

interest rates based on the LIBOR Market Model. Appl Math

Financ 25:466–482

EIOPA2010 (2010) Quantitative impact studies V: technical speci-

fications. Technical Report, European Comission, Brussels

Fernández JL, Ferreiro AM, Garcı́a-Rodrı́guez JA, Vázquez C (2018)

GPU parallel implementation for asset-liability management in

insurance companies. J Comput Sci 24:232–254

Ferreiro AM, Garcı́a-Rodrı́guez JA, López-Salas J, Vázquez C (2013)

An efficient implementation of parallel simulated annealing

algorithm in GPUs. J Glob Optim 57:863–890

Ferreiro AM, Garcı́a-Rodrı́guez JA, López-Salas JG, Vázquez C

(2014) SABR/LIBOR market models: pricing and calibration for

some interest rate derivatives. Appl Math Comput 242:65–89

Ferreiro AM, Garcı́a-Rodrı́guez J, Souto L, Vázquez C (2019a) Basin

hopping with synched multi L-BFGS local searches. Parallel

implementation in multi-CPU and GPUs. Appl Math Comput

356:282–298

Ferreiro AM, Garcı́a-Rodrı́guez JA, Vázquez C, Costa e Silva E,

Correia A (2019b) GPU parallelization of two-phase optimiza-

tion algorithms. Math Comput Simul 156:67–90

Ferri E (2019) Optimal model points portfolio in life insurance. arXiv:

1808.00866

Gerstner T, Griebel M, Holtz M, Goschnick R, Haep M (2008) A

general asset-liability management model for the efficient

simulation of portfolios of life insurance policies. Insur Math

Econ 42(2):704–716

GGY-Axis (2019). https://www.ggy.com/. Accessed 15 Feb 2019

Goffard LO, Guerrault X (2015) Is it optimal to group policyholders

by age, gender, and seniority for bel computations based on

model points? Eur Actuar J 5:165–180

Gompertz B (1825) On the nature of the function expressive of the

law of human mortality, and on a new mode of determining the

value of life contingencies, in a letter to Francis Baily, Esq. FRS

& c. Philos Trans R Soc Lond 115:513–583

Jalen L, Mamon R (2009) Valuation of contingent claims with

mortality and interest rate risks. Math Comput Model

49:1893–1904

Lee A, Yau C, Giles MB, Doucet A, Holmes CC (2012) On the utility

of graphics cards to perform massively parallel simulation of

advanced monte carlo methods. J Comput Graph Stat

19:769–789

Leitao A, Oosterlee C (2017) Modern Monte Carlo methods and GPU

computing. In: Novel methods in computational finance. Math-

ematics in industry, vol 25, Springer, Heidelberg, pp 627–637

Library S (2019). http://www.scipy.org. Accessed 15 Feb 2019

Liu DC, Nocedal J (1989) On the limited memory method for large

scale optimization. Math Program B 45:503–528

McCarty SL, McGuire ML (2018) Parallel Monotonic Basin Hopping

for low thrust trajectory optimization. In: Conference paper,

AIAA SciTech Forum. https://ntrs.nasa.gov/archive/nasa/casi.

ntrs.nasa.gov/20180004586.pdf. Accessed 15 Feb 2019

MG-ALFA (2019). http://www.milliman.com/mg-ala/. Accessed 15

Feb 2019

123

A. M. Ferreiro-Ferreiro et al.: Efficient Model Points Selection in Insurance by Parallel Global Optimization…, Bus Inf Syst Eng 62(1):5–20 (2020) 19

http://arxiv.org/abs/1808.00866
http://arxiv.org/abs/1808.00866
https://www.ggy.com/
http://www.scipy.org
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180004586.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180004586.pdf
http://www.milliman.com/mg-ala/

Sandström A (2010) Handbook of Solvency for actuaries and risk

managers: theory and practice. Chapman and Hall/CRC, London

Schmeiser H, Wagner J (2014) A proposal on how the regulator

should set minimum interest rate guarantees in participating life

insurance contracts. J Risk Insur 82:659–686

Storn R, Price K (1997) Differential evolution—a simple and efficient

heuristic for global optimization over continuous spaces. J Glob

Optim 11:341–359

Tasoulis D, Pavlidis N, Plagianakos V, Vrahatis M (2004) Parallel

differential evolution. In: IEEE congress on evolutionary

computation, Portland, Oregon, vol 2, pp 2023–2029

Wales DJ, Doye JPK (1997) Global optimization by Basin-Hopping

and the lowest energy structures of Lennard–Jones clusters

containing up to 110 atoms. J Phys Chem A 101:5111–5116

Wuthrich MV, Merz M (2013) Financial modeling, actuarial valua-

tion and solvency in insurance. Springer, Heidelberg

Zhu W (2011) Massively parallel differential evolution-pattern search

optimization with graphics hardware acceleration: an investiga-

tion on bound constrained optimization problems. J Glob Optim

50:417–437

123

20 A. M. Ferreiro-Ferreiro et al.: Efficient Model Points Selection in Insurance by Parallel Global Optimization…, Bus Inf Syst Eng 62(1):5–20 (2020)

	Efficient Model Points Selection in Insurance by Parallel Global Optimization Using Multi CPU and Multi GPU
	Abstract
	Introduction
	Optimization Problem
	Cost Function: Risk Functional
	Monte Carlo Numerical Discretization

	HPC Numerical Implementation
	Cost Function GPU Implementation
	Multi-CPU and Multi-GPU Parallel Global Optimization Algorithms

	Numerical Tests
	Performance of the Parallel Implementation of the Risk Functional Evaluation
	Example 1: Analytical Test: Repeated Policies Classification
	Example 2: Real Scenario

	Conclusions
	Appendix 1: LIBOR Market Model
	Appendix 2: Biometric Survival Model
	Appendix 3: Code Listings
	References

