
Journal of Information Systems Education, Vol. 14(4)

An Empirical Investigation of the Relationship Between
Success in Mathematics and Visual Programming Courses

Garry White
Marcos Sivitanides

Department of Computer Information Systems
College of Business Administration
Southwest Texas State University

601 University Drive
San Marcos, TX 78666

GW06@business.swt.edu ms06@business.swt.edu

ABSTRACT

Many universities do not have prerequisites for the introductory computer visual programming course. Therefore, faculty
and students do not have any means of predicting the student’s performance in this course. This research addresses this
issue. Past research and accepted theory are presented to show the cognitive requirements for success in a first procedural
programming course to be similar to those required for success in a mathematics course. Such research is lacking for visual
programming. This research shows similar correlations between math courses and visual programming courses. Significant
positive correlations were found between grades from Freshmen mathematics courses, ACT math scores, SAT math scores
and grades from a Sophomore introductory visual programming course. This indicates that students who perform well in
Freshman level Math courses, possess the cognitive characteristics required to perform equally well in Sophomore level
visual programming classes. We can predict that students who perform well in math courses will perform equally well in a
visual programming course.

Keywords: cognitive development, prerequisites, programming languages, procedural programming, visual languages,
mathematics, business mathematics.

1. INTRODUCTION

There is a need to have prerequisites for programming
courses to ensure that those who enroll have the necessary
cognitive skills to be successful. A strong mathematics
background predicts success in procedural programming
(Alspaugh, 1970; Ricardo, 1983; Ignatuk, 1986). Studies
have shown that math scores on the Scholastic Aptitude
Test (SAT-M) and the American College Testing program
(ACT) correlate with procedural programming course
grades (Renk,1987; Ott, 1989). Several other studies have
shown a relationship between mathematics proficiency and
success in procedural programming (Taylor and
Mounfield, 1991). These studies support the practice of
mathematics prerequisites for computer courses (Ralston,
1984; Saiedian, 1992).

However, there is no research to show whether this is true
or not with visual programming. The purpose of this study
is to investigate whether, like with procedural
programming, there is a relationship between mathematics
proficiency and success in visual programming. The Null

hypothesis used in this research is: “there is no relationship
(predictability) between success in Math courses and
success in a Visual Programming course.”

1.2 Definitions of Procedural and Visual

Programming
A procedural programming language is characterized by
three properties: the sequential execution of instructions,
the use of variables representing memory locations, and the
use of assignment to change the values of variables
(Louden, 1993). An example of such a language is
COBOL. The instructions consist of three structure types:
sequential, decision, and iteration. The instructions are
placed in modules or subroutines with the data declarations
kept separately from the procedure code.

Visual programming, such as Visual Basic, consists of
visual objects that contain procedural code. An object can
be loosely described as a collection of memory locations
together with all the operations that can change the values
of these memory locations (Louden, 1993). Data
declarations, data definitions and program instructions are

 409

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301387109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:GW06@business.swt.edu
mailto:ms06@business.swt.edu

Journal of Information Systems Education, Vol. 14(4)

all under one identifier, which is known as an object. The
language characteristic of Visual programming is the
manipulation of visual objects on a computer screen.

Visual Basic evolved from and is an enhancement of
regular procedural BASIC (Pietromonaco, 2002; Shelly &
Cashman & Quasney, 2003). Visual Basic has the code for
the procedural structures of sequence, iteration, and
selection with the added features of visual object-oriented
components. The visual components, such as a button, are
known as objects. They have properties and event
procedures (Nelson, 1993). Visual Basic “public” and
“private” procedures are like OOP public and private
methods. Visual objects encapsulate properties and event-
procedures (Schneider, 1999). Such characteristics are
lacking in procedural languages, therefore making visual
programming different from procedural programming..

The literature supports the idea that Visual Basic is a type
of Visual Programming language, different from
procedural. (Buchner, 1999; Grehan, 1996a, 1996b;
Llewellyn & Stanton & Roberts, 2002; Oz, 2002; Potter,
2003; Spain, 1996; Stair and Reynolds, 2001). One
academic text book describes Visual Basic as an OOP
language, rather than a third generation procedural
language like BASIC, C, COBOL, Pascal (O’Brien, 2004).
Visual Basic supports a syntax that looks a little object-
oriented (Holtzman, 1996; Bradley & Millspaugh, 2003).
A report describes the extent to which object-oriented
(OO) programming can be performed in Visual Basic (Kai
& McKim, 1998).

There is a distinction between procedural languages and
Visual Basic. “In procedure-oriented languages, the
emphasis of a program is on how to accomplish a task. The
programmer must instruct the computer every step of the
way. The programmer determines and controls the order in
which the computer should process the instructions.
Object-oriented/event-driven programming languages
emphasis is on the objects included in the user interface
(such as buttons) and the events (such as clicking) that
occur when those objects are used. Visual Basic is an
object-oriented/event-driven programming language.”
(Zak, 1999).

“To stress that Visual Basic is fundamentally different
from traditional programming languages, Microsoft uses
the term project, rather than program, to refer to the
combination of programming instructions and user
interface that makes a Visual Basic application possible”
(Schneider, 1999). With its object-oriented methods and
procedures, visual basic and other "visual" programs
require a different mindset from the common in-line
programming languages (Shirer, 2000).

2. LITERATURE REVIEW

Procedural programming, math skills and several cognitive
abilities such as general reasoning and analytic processing
have a positive correlation (Fletcher, 1984). Three studies

have shown relationships between success in procedural
programming, mathematics proficiency, and Piaget's
cognitive development (Cafolla, 1987; Azzedine, 1987;
and Werth, 1985). These relationships may be due to the
usage of the same area of the brain. Studies have shown
both procedural programming performance and math
ability correlating to the left hemisphere of the brain (Losh,
1984; Ott, 1989; Rotejnberg and Arshavsky, 1997).

2.1 Piaget’s Cognitive Development Theory
Piaget’s cognitive theory consists of three development
levels (Piaget, 1972; Epstein, 1990): pre-operational,
concrete, and formal operations. The first cognitive level,
pre-operational, is a very low level of thinking. Such a
person can use symbols from visual and body sensation to
represent objects but has problems with reversing actions
mentally (Biehler and Snowman, 1986, p. 62). For
example, that person fails to failure to recognize that the
amount of water remains the same when poured from a tall
thin glass to a short wide glass. At the next level, concrete,
a person can understand conservation of matter and
classification/generalization; i.e. conclude that all dogs are
animals and not all animals are dogs. However, such a
person is unable to comprehend mathematical ratios
(Barker and Unger, 1983). The final and highest cognitive
development level defined by Piaget is formal operation.
The ability to deal with abstractions, form hypotheses,
solve problems systematically, and engage in mental
manipulations characterizes this cognitive level (Biehler
and Snowman, 1986, p. 63). Biconditional reasoning, such
as “if and only if” logic, is a precondition to formal
operational reasoning (Lawson, 1983). Procedural
programming logic uses biconditional reasoning.

Piaget's theory indicates that formal operational thinking
abilities develop around age 12 (Chiapetta, 1976). It is at
this age that some students begin to move from concrete
thinking to logic/abstract thinking. Several studies have
shown that formal operations, such as abstractions and
logical thinking, develop at different ages or not at all in
people (Griffiths, 1973; Schwebel, 1975; Pallrand, 1979;
Bastian et al., 1973; Epstein, 1980). Many high school and
college students fail to attain full formal operational
thinking (Griffiths, 1973; Renner and Lawson, 1973;
Renner et al, 1978; Schwebel, 1972, 1975). This also
applies to adults. Research has shown that a majority of
adults fail at many formal operational tasks (Petrushka,
1984; Sund, 1976).

2.2 Cognitive characteristics of Computer

Programming
Research suggests that procedural programming deals with
high cognitive abilities such as problem solving and
Piaget's cognitive formal operations (Dalbey and Linn,
1985; Hudak and Anderson, 1990). Many other studies
have shown that formal operational reasoning ability is
necessary for success in procedural computer
programming/logic (Cafolla, 1987; Fletcher, 1984; Little,
1984; Ricardo 1983; Azzedine, 1987; Barker and Unger,
1983; Barker, 1985).

 410

Journal of Information Systems Education, Vol. 14(4)

Since procedural programming skills are related to logical
reasoning (Cafolla, 1987; Flok, 1973; Foreman, 1988,
1990), low cognitive development thinkers are unable to
do programming in light of Piaget's theory of cognitive
development. This is consistent with Little’s (1984) study.
That study showed students who tested high in formal
operations, scoring higher on programming and logical
thinking measures than students who were concrete
thinkers (a Piaget's lower level of cognition).

Cafolla (1987) found, "... some people of college age have
difficulty learning procedural programming. This suggests
that the cognitive skills needed to learn procedural
programming develop later or perhaps never, in some.”
There are those who lack or have limited cognitive skills to
learn procedural programming (Becker, 1982).

Cognitive development is a factor in determining one's
ability to learn procedural programming (Folk, 1973).
Those who reach Piaget's formal operational stage, have
the mental tools needed to understand programming. They
have an abstract learning style that helps them learn
programming (Hudak and Anderson, 1990).

Two resent studies have shown that object-oriented
programming also requires formal operational reasoning
ability (White, 2001; 2002). Is this also true for visual
programming? Does visual programming success require
formal operational cognitive development just like
procedural and object-oriented programming do?

2.3 Math as an Indicator
The learning of complex, abstract concepts found in
mathematics appears to require Piaget’s formal operation
cognitive level (Pallrand, 1979; Parrino, 1981; Niaz, 1989;
Nasser, 1993; Wolfe, 1999). Therefore, math is a good
indicator of having the required cognitive development
level to learn procedural programming. However, math
grades from high school or college courses may be less
accurate due to different instructors, different books,
different tests, and different grading standards (White,
2003). The grades may not be comparable.

3. METHOD

To do research that will verify a math course to be
beneficial, is difficult. It is infeasible to ”randomly” assign
students to different semester programming and math
courses. Students have a set curriculum of courses to
follow. The best way to research a math course
prerequisite that indicates the required cognitive skills, is
to correlate math course grades with programming course
grades (White, 2003).

This study was done independent of instructors or math
course locations. The intervening variables of different
instructors and locations were not controlled or held
constant. The math courses were taken with different

instructors at various state universities and community
colleges.

3.1 Data
A request to a state university Registrar’s Office was made
for all students who took the first Computer Information
Systems (CIS1) programming course for the past 3 years.
Each record contained the CIS1 grade, three Freshmen
Mathematics, and ACT/SAT math scores. The study did
not consider Math equivalent courses taken. For example:
it is possible that students who took College Calculus did
not have this math grade considered in the evaluation. The
sample size was 837 records.

Grades were given the values of 4 for an “A,” 3 for a “B,”
2 for a “C,” 1 for a “D,” and 0 for an “F.” Grades of “W”
were treated as missing when performing correlations and
step-wise regression. “W” grades were considered when
evaluating grade distributions with math courses serving as
a filter. If a course was repeated, the first grade was used.
Using the second grade would have induced inflated
grades due to familiarity of course content. However,
many grades were either missing or were “Withdraw”.
These grades were dealt with as exclude cases pair wise in
the statistical analysis.

The sequence in taking the courses was ignored. Research
has shown that Math and Programming courses do not
improve/change cognitive development nor ability
(Kurland et al., 1986; Flores, 1985; Platt, 1990; Shaw,
1984; Ignatuk, 1986; Mains, 1997; Kim, 1995; Priebe,
1997)

3.2 Variables
The dependent variable was a Sophomore level CIS
Introductory Programming course (CIS1) using Visual
Basic.

The five independent variables were:

(1) a Freshmen College Algebra course (Math1). This

course covered linear equations, inequalities, word
problems, functions, and logarithms.

(2) a Freshmen Mathematics for Business and Economics
I course (Math2). This course covered college algebra
and finite mathematics. College Algebra (Math1) was
a prerequisite.

(3) a Freshmen Mathematics for Business and
Economics II course (Math3). This course covered
college finite mathematics and elementary differential
calculus. College Algebra (Math1) was a prerequisite.

(4) the SAT math score
(5) the ACT math score

3. 3 Statistics
Descriptive statistics and a correlation matrix of all
variables were obtained. The independent variables were
the three math courses and ACT/SAT scores. The math
course grades (independent variable) of a grade of “2” (a
grade of “C”) or better, was used as a filter. This showed

 411

Journal of Information Systems Education, Vol. 14(4)

the changes in grade distribution of the visual
programming course (dependent variable) when the math
course was set as the criteria. Class GPA’s were calculated
before and after filtering.

4. RESULTS

Over the last three years the percentage of D’s and F’s
assigned in the CIS1 course, was 23%. When “W’s” were
considered, the percentage of D’s, F’s, and W’s jumped to
34%. Table 1 shows that as the level of the prerequisite
math course increased, so did the CIS1 class GPA, while
poor grades of D’s, F’s, and W’s decreased. However, the
number of students decreased since many had not yet taken
the math courses. That is, out of the entire population of
students enrolled in the programming course, 34% of them
made a D, F or W in the programming class. Out of the
students enrolled in the programming course who had
already passed the Math3 course with grade C or better,
only 25.3% of them made a D, F or W in the programming
class. As shown in the literature for procedural
programming (Taylor and Moundifled, 1991; Ott, 1988;
Renk, 1987), this visual programming course had
significant correlations with math course grades and
ACT/SAT scores as shown in Table 2. The highest
correlations were with Math2 and Math3. With only one
exception (SAT_Math and Math1), all variables correlated
at the .05 confidence level.

It is interesting to note that the ACT/SAT scores also
correlated at the confidence level of .05, yet the
correlations were small when compared to the math
courses. This may be due to a difference between students’
ability, as indicated by the ACT/SAT scores, and a
willingness to perform, as indicated by math course grades.

5. DISCUSSION

The statistical relationships shown in the data analysis are
sufficient to allow us to draw several conclusions and
inferences. First, it is reasonable to conclude that the
Freshman Math course, while insufficient to improve a
student’s analytical and logical thinking skills, it is quite
efficient and effective in assessing those skills. Second,

from this and prior research it is clear that analytical and
logical thinking skills are necessary to perform
successfully in Math as well as in procedural, object-
oriented, and visual programming courses. Third, it is
clear that successes in the Freshman Math courses are a
fairly good predictor of potential success in a Sophomore
visual programming class.

The significance and practical usefulness of this research
lies in the fact that we can predict the potential for success
in a visual programming class from the student’s
performance in the Freshman Math class. This can be an
invaluable tool in advising students as to whether they
should pursue a visual programming class or not. We will
be serving our students tremendously if we can advise
them whether it will be fruitful for them to pursue
computer programming courses or not, since their potential
for success in computer programming can be predicted
from their performance in their Freshman Math class. Most
universities teach computer programming during the
Sophomore year after the student has had a Freshman Math
course. The performance in the Freshman Math course can
be used as an advising tool. Students who failed or
performed poorly in the Math class can be advised that
based on the results of this study, they would be unlikely to
perform well in a visual programming course. Therefore a
fixed Math prerequisite to the programming class, will do
the students a service by not allowing them to enroll in a
Programming course that statistically they would be
expected to perform very poorly in. A coursework that
does not involve computer programming can be arranged
for a student who performs badly in the Freshman Math
class. The effect on the students will be that we can advise
them better as to what courses they are expected to
perform well in, therefore guiding them towards a degree
plan that they are cognitively capable of. The effect on
faculty and university administration will be that students
who are enrolled in computer programming classes will be
expected to perform well and the success rates in those
classes will increase. This ability to predict the student’s
success will be a win-win situation for both the student and
the academic institution.

Table 1. CIS1 Grades
 Math Prerequisite of grade “C” or better

No Prereq Math1 Math2 Math3

Class GPA 2.29 2.25 2.38 2.50

Grades % D’s & F’s 23% 23% 21% 16%
(no W’s considered)

 % of D’s, F’s, & W’s 34% 33% 28.6% 25.3%

Total N of students 837 283 321 389

 412

Journal of Information Systems Education, Vol. 14(4)

Table 2. Correlations

1.000 .199** .370** .333** .142 * .135*
. .000 .000 .000 .045 .011

722 360 348 469 199 350
.199** 1.000 .318** .209** .317 ** .133
.000 . .000 .000 .001 .059
360 420 146 283 102 203
.370** .318** 1.000 .435** .299 ** .340**
.000 .000 . .000 .001 .000
348 146 397 287 125 217
.333** .209** .435** 1.000 .304 ** .264**
.000 .000 .000 . .000 .000
469 283 287 534 161 279
.142* .317** .299** .304** 1.000 .730**
.045 .001 .001 .000 . .000
199 102 125 161 220 173
.135* .133 .340** .264** .730 ** 1.000
.011 .059 .000 .000 .000 .
350 203 217 279 173 399

Pearson
CSig. (2-tailed)
N

CIS1 MATH1 MATH2 MATH3 ACT_MAT SAT_MAT
CIS1

Pearson
CSig. (2-tailed)
N

MATH1

Pearson
Sig. (2-tailed)
N

MATH2

Pearson
Sig. (2-tailed)
N

MATH3

Pearson
CSig. (2-tailed)
N

ACT_MAT

Pearson
CSig. (2-tailed)

SAT_MAT

N
Correlation is significant at the 0.01 level (2-tailed).**.

Correlation is significant at the 0.05 level (2-tailed).*.

6. REFERENCES

Alspaugh, C. A. (1970). “A Study of the Relationships

between Student Characteristics and Proficiency in
Symbolic and Algebraic Computer Programming.”
Dissertation Abstracts International, 31(4627B).

Azzedine, A. (1987). “The relationship of cognitive
development, cognitive style and experience to
performance on selected computer programming
tasks: An exploration.” Dissertation Abstracts,
B48(6), 1799.

Barker, R. J. and Unger, E. A. (1983). “A Predictor for
Success in an Introductory Programming Class based
upon Abstract Reasoning Development.” Proceedings
of the 14th SIGCSE Technical Symposium on
Computer Science Education of the ACM, Orlando,
Florida.

Barker, P. M. (1985). “Cognitive Correlates of
Performance in Computer Programming by Children
and Adolescents.” Dissertation Abstracts, 46(7),
1872.

Bastian, S., Frees, J., Gruber, L., Johnson, J., Landes, B.,
Morton, L., Rozgony, S., and Stewart, J. (1973). “Are
I.S.U. Freshman Students Operating at a Formal level
of thought Processes?” Contemporary Education, 44,
358-362.

Becker, H. J. (1982). “Microcomputers in the Classroom --
Dreams or realities?” ERIC (ED217872).

Biehler, R. F. and Snowman, J. (1986). Psychology
Applied to Teaching. Houghton Mifflin Company,
Boston.

Bradley, J. and Millspaugh, A. (2003). Programming in
Visual Basic.Net. McGraw-Hill, Boston, Mass.

Buchner, M. (1999). “Visual tools: Pros and cons.”
Midrange Systems, 12(6), 18.

Cafolla, R. (1987). “The Relationship of Piagetian formal
Operations and other cognitive factors to computer
programming ability (Development).” Dissertations
Abstracts, A47(7), 2506.

Chiapetta, E. (1976). “A review of Piagetian studies
relevant to science instruction at the secondary and
college level.” Science Education, 60, 253-261.

Dalbey, J., and Linn, M. C. (1985). “The Demands and
Requirements of Computer Programming: A
Literature Review.” Journal of Educational
Computing Research, 1(3), 253-74.

Epstein, H (1980). “Some biological bases of cognitive
development.” Bulletin of the Orton Society, 30, 46-
52.

Epstein, H. (1990). “Stages in human mental growth.”
Journal of Educational Psychology, 82, 876-80

Fletcher, S. H. (1984). “Cognitive Abilities and Computer
Programming.” EDRS (ED259700).

Flores, A (1985). “Effects of Computer Programming on
the Learning of Calculus Concepts.” Dissertation
Abstracts International, 46, 12A, p3640.

Folk, M. J. (1973). “Influences of Developmental Level on
a Child's Ability to Learn Concepts of Computer

 413

Journal of Information Systems Education, Vol. 14(4)

Programming.” Dissertation Abstracts International,
34(3), 1125a.

Foreman, K. H. (1988). “Cognitive Style, Cognitive
Ability, and the Acquisition of Inital Computer
Programming Competence.” EDRS (ED295638).

Foreman, K. H. (1990).”Cognitive Characteristics and
Initial Acquisition of Computer Programming
Competence.” School of Education Review, 2, 55-61.

Grehan, R. (1996a). “A Complete Trilogy of Visual Basic
tools: Code Complete from MicroHelp.” Byte, 21, 32.

Grehan, R. (1996b). “Visual programming for Science:
Visual Science from acroScience.” Byte, 21, 208.

Griffiths, D. H. (1973). “The Study of the Cognitive
Development of Science Students in Introductory
Level Courses.” ERIC (ED096108).

Holtzman, J. (1996). “Delphi and Visual Basic.”
Electronics Now, 67(10), 66-68.

Hudak, M. A. and Anderson, D. E. (1990). “Formal
Operations and Learning Style Predict Success in
Statistics and Computer Science Courses.” Teaching
of Psychology. 17(4) 231-234.

Ignatuk, N. (1986). “An Analysis of the Effects of
Computer Programming on Analytical and
Mathematical skills of high school students.”
Dissertation Abstracts, A47(3), 854.

Kai, J. and McKim, J. (1998). “Object-oriented capabilities
of Visual Basic.” Journal of Object-Oriented
Programming 11(6), 46-57.

Kim, Y. (1995). “The Reasoning Ability and Achievement
of College Level Students enrolled in a Logic Class in
Computer Science.” Unpublished Dissertation,
University of Texas, Austin.

Kurland, D. M.; Pea, R. D.; Clement, C. A.; Mawby, R.
(1986). “A study of the development of programming
ability and thinking skills in high school students.”
Journal of Educational Computing Research, 2(4),
429-458.

Little, L. F. (1984). “The Influence of Structured
Programming, Gender, Cognitive Development and
Engagement on the Computer Programming
Achievement and Logical Thinking Skills of
Secondary Students.” Dissertation Abstracts, A45(6),
1708.

Lawson, A. E. (1983). “The Acquisition of Formal
Operational Schemata during Adolescence: The Role
of the Biconditional.” Journal of Research in Science
Teaching, 20(4), 347-56.

Llewellyn, E. and Stanton, M. and Roberts, G. (2002).
“Nine-step approach to designing successful visual
programming applications.” Computing & Control
Engineering Journal, 13(2), 82-86.

Losh, C. L. (1984). “The relationship of student
hemisphericity to performance in computer
programming courses.” Dissertation Abstracts
A44(7), 2127.

Louden, K. C. (1993). Programming Languages, Principles
and Practice. PWS Publishing Company, Boston.

Mains, M. G. (1997). “The Effects of Learning a
Programming Language on Logical Thinking
Skills.”Unpublished Thesis, University of Nevada,
Las Vegas, Nevada.

Nasser, R. and Carifio, J. (1993). “The Effects of
Cognitive Style and Piagetian Logical Reasoning on
solving Propositional Relation Algebra Word
Problems.” ERIC (ED364430).

Nelson, R. (1993). Running Visual Basic for Windows.
Microsoft Press, Redmond, WA.

Niaz, M. (1989). “Translation of Algebraic Equations and
its Relation to Formal Operational Reasoning”.
Journal of Research in Science Teaching. 26(9) 785-
93

O’Brian, J. (2004). Management Information Systems:
Managing Information Technology in the Business
Enterprise, 6th Ed. McGraw Hill, Boston.

Ott, C. F. P. (1989). “Predicting achievement in computer
science through selected academic, cognitive and
demographic variables.” Dissertation Abstracts,
A49(10), 2988.

Oz, E. (2002). Management Information Systems, 3rd Ed.
Course Technology, Boston, MA.

Pallrand, G.J. (1979). “The transition to formal thought.”
Journal of Research in Science Teaching, 16, 445-
451.

Pietromonaco, P. (2002). “The Versatile Visual Basic.”
Poptronics, 3(7), 16-18.

Platt, D. (1990). “The Effect of a Second-Semester
Computer Programming Course on Mathematical
Problem-Solving Performance and the Relationship
between selected Cognitive Factors and Mathematical
Problem-Solving Performance.” Dissertation
Abstracts, 51(10A), 3354.

Parrino, L. W. (1981). “The use of Cognitive Development
Tasks as Predictors of Success in Developmental
Mathematics Courses.” Dissertation Abstracts
Internatinoal 42, no. 04A, p. 1522.

Petrushka, D. (1984). “A Study of the effect of content on
the ability to do syllogistic reasoning: An
investigation of transferability and the effect of
practice.” Unpublished doctoral dissertation, Rutgers
University, NJ.

Piaget, J. (1972). "Intellectual evolution from adolescence
to adult." Human Development, 15, 1-12.

Potter, T. (2003). Introduction to Information Technology,
2nd Ed. John Wiley & Sons, Inc., Hoboken, NJ.

Priebe, Roger L. (1997). "The Effects of Cooperative
Learning on Content Comprehension and Logical
Reasoning in a Second-Semester University
Computer Science Course." Unpublished Doctoral
Dissertation, University of Texas, Austin, Texas.

Ralston, A. (1984). "The first course in Computer Science
needs a mathematics co requisite." Communications
of the ACM, 27(10), 1002-1005.

Renk, S. C. (1987). "Factors Affecting Academic Success
in Introductory Computer Programming." Dissertation
Abstracts International, A48(3), 579.

 414

Journal of Information Systems Education, Vol. 14(4)

Renner, J. W., and Lawson, A. E. (1973). "Promoting
Intellectual Development through Science Teaching."
Physics Teacher, 11(5), 273-276.

Renner, J., Grand, R., and Sutherland, J. (1978). "Content
and concrete thought." Science Education, 62, 215-
221.

Ricardo, C. M. (1983). "Identifying student entering
characteristics desirable for a first course in computer
programming." Dissertation Abstracts, A44(1), 96.

Rotenberg, V. S., and Arshavsky, V. V. (1997). "Right and
left brain hemispheres activation in the
representatives of two different cultures."
Homeostasis in Health and Disease, 38(2), 49-57.

 Saiedian. (1992). "Math of Computing." Computer
Science Education, 3(3), 203-221.

Schneider, D. (1999). An Introduction to Programming
using Visual Basic 6.0, 4th Ed. Prentice Hall, Upper
Saddle River, NJ.

Schwebel, M. (1972). "Logical Thinking in College
Freshman: Final Report." ERIC (ED 110896).

Schwebel, M. (1975). "Formal operations in first year
college students." Journal of Psychology, 91, 133-
141.

Shaw, D. G. (1984). "The Effects of Learning to Program a
Computer in Basic or Logo on the Problem Solving
Abilities of Fifth Grade Students." Dissertation
Abstracts, A45(7), p1985.

Shelly, G. and Cashman, T. and Quasney, J. (2003).
Microsoft Visual Basic.NET Complete Concepts and
Techniques. Thomson Course Technology, Boston,
Mass.

Shirer, D. (2000). "Basic: The Little Language that
wouldn’t Die." Computing in Science & Engineering,
2(2), 6-10.

Spain, W. (1996). "Visual Basic." Computerworld, 30(44),
102.

Stair, R. and Ryunolds, G. (2001). Fundamentals of
Information Systems. Course Technology: Thomson
Learning Publishers, Boston, MA.

Sund, R. B. (1976). Piaget for educators: a multimedia
program (In Brooks, R (1978) The relationship
between Piagetian Cognitive development and
cerebral cognitive asymmetry. ERIC (ED160224,
Trans.). Columbus: Charles E. Merrill.

Taylor, H. G. and Monnfield, L. (1991). "An Analysis of
Success Factors in College Computer Science: High
School Methodology is a Key Element." Journal of
Research on Computing Education, 24(2), 240-245.

Werth, L. (1985). "Predicting Student Performance in a
Beginning Computer Science Class (Piaget,
Personality, Cognitive Style)." Dissertation Abstracts
International 46, no. 09A, p 2489.

White, G. L. (2001). "Cognitive Characteristics for
Learning Java, an Object Oriented Programming
Language." Unpublished Dissertation, University of
Texas at Austin, Texas.

White, G. L. (2002). “Cognitive Characteristics for
Learning C++.” Journal of Computer Information
Systems, 42(3), 51-55.

White, G. L. (2003). “Standardized Mathematics Scores as
a Prerequisite for a First Programming Course.”
Journal of Mathematics and Computer Education,
37(1), 96-104.

Wolfe, F. E. (1999). “Levels of Piagetian Development
among adult Mathematics Students.” Dissertation
Abstracts International 60, no. 09A, p. 3239.

Zak, D. (1999). Programming with Microsoft Visual Basic
6.0. Course Technology, Boston, MA.

AUTHOR BIOGRAPHIES

Garry L. White is a faculty member in the Computer
Information Systems department at
Southwest Texas State University
(SWT) in San Marcos Texas. He
holds a MS in Computer Sciences
from Texas A & M University –
Corpus Christi and a PhD in
Science Education, emphasis in
Information Systems, from The
University of Texas at Austin.
Professional Certifications from the

Institute of Certified Computer Professionals (ICCP)
include C.D.P, C.C.P., and C.S.P. He has been on the
SWT faculty since 1997. His teaching interests are in the
areas of Computer Programming, Data Communications,
Systems Analysis, and Computer Networks. His research
interests and work are in the areas of Computer Education
and the Internet. He has published papers and abstracts in
journals such as the Journal of Computer Information
Systems. Proceeding publications have been with the
Decision Sciences Institute and the Information Systems
Educational Conference.

 Marcos P. Sivitanides is a tenured Associate Professor

of Computer Information Systems
at Southwest Texas State
University (SWT) in San Marcos
Texas. He holds a BA (Honors)
in Computer Sciences, an MBA
and a PhD in Management
Information Systems, all from
The University of Texas at
Austin. He has been on the SWT
faculty since 1989. His teaching

interests are in the areas of Computer Programming,
Systems Analysis and Design, Database Design and
Management, and Computer Networks. His research
interests and work are in the areas of Decision Theory,
Computer Education, and Curriculum Development and
Design. He has published papers and abstracts in journals
such as Decision Sciences and the Journal of Information
Systems Education and conferences such as the Decision

 415

Journal of Information Systems Education, Vol. 14(4)

Sciences Institute, and the Information Systems
Educational Conference.

 416

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2003 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

