TheMemory Grid: A Glass Box View of Data Representation

T Grandon Gill

Journal of Information Systems Education; Summer 2006; 17, 2; Research Library
pg. 119

The Memory Grid: A Glass Box View of Data

Journal of Information Systems Education, Vol. 17(2)
Representation

T. Grandon Gill
IS & DS Department, CIS1040
University of South Florida
Tampa, FL 33620, USA
geill@coba.usf.edu

ABSTRACT

Educational research has found that learning is often enhanced when the concrete is mixed with the abstract. One method of
achieving this, in the context of teaching computer programming, is to provide students with a model of the activities that
occur within the computer when programs are loaded and program steps are executed. Such a model is sometimes referred to
as a glass box—differentiating it from a black box approach, where program activities are treated as being purely abstract in
nature. The paper describes a glass box exercise developed by the author that requires students to match abstract data
declarations to their concrete representation in primary storage. The exercise is used to help programming students better
understand the nature of variables, arrays, and structures. Upon completing the exercise, which has proven to be popular with
students in an introductory programming course, the instructor has found students are better able to apply the elegant (but
initially mystifying) notations used for pointer, array and structure operations in C/C++. The paper also describes GridGen, a
C++ based tool for creating such exercises and for generating online tests that can be delivered in course management
environments such as Blackboard. The paper concludes with a discussion of the methodology and results that were used to

evaluate the effectiveness of memory grid exercises.

Keywords: Introductory programming, CS1, Glass box models, C/C++, Data representation, Memory

1. INTRODUCTION

One of the key differences between an expert programmer
and a novice is a deep understanding of how the code that he
or she writes translates to underlying activities on a
computer. In a computer science curriculum, separate
courses on logical architecture and compiler design help to
teach such concepts. In a typical MIS program offered within
a business school, however, such topics receive little or no
attention. Furthermore, the time allocated to programming
courses tend to be very limited in such programs (Reichgelt,
et al, 2004), even though some programming is nearly
universally offered (Gill and Hu, 1998). As a consequence,
to assist those students wanting to develop programming
expertise, teaching techniques are needed that provide
students with a mental model of computing sufficiently
sophisticated for the purposes of programming that do not
require too much instructional time.

A class of techniques that have long been used to foster
deeper understanding of computing is referred to as "glass
box" modeling, although other terms such as "white box"
and "clear box" are also sometimes used. Glass box models,
in the context of teaching computer programming, are
intended to provide students with a realistic understanding of
the activities that occur within the computer when programs

are loaded and program steps are executed. Such models
may present a complete view of the various subsystems of
the computer (e.g., processor, primary and secondary
storage, 1/0, etc.) or may focus on a particular system. The
present paper reviews some examples of these models. It
then presents an exercise, called the memory grid, developed
for an introductory programming course in an MIS program.
Both the details of the technique and a tool—GridGen, used
both to create grids and automate the process of creating
online grid exercises and examinations—are described.
Some empirical results of using the grid for two years in an
introductory programming course are then presented. The
paper concludes with some general "lessons learned” based
upon the author's experiences using the grid and assessing its
effectiveness.

2. GLASS BOX MODELS

Considerable difference of opinion exists regarding whether
or not it makes pedagogical sense to teach computer
architecture in parallel with programming. The debate is
sometimes framed as the choice between a "black box"-
whereby a computer is treated solely in terms of inputs and
outputs - and a "glass box" - where students are presented
with a model of what is occurring within the computer while
they are learning to program. The arguments for taking a

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(2)

black box approach generally center around the time it takes
to introduce computer concepts while students are
concurrently studying programming and the relative lack of
hard empirical evidence supporting the value of doing so
(Yehezkel et al., 2001). Psychological research, on the other
hand, has long argued that the early use of a glass box
approach may encourage learning processes that move the
student more rapidly from novice to expert and enhance their
ability to evolve into creative problem-solvers (Mayer,
1981). The glass box approach is also consistent with the
intuition of many instructors regarding how best to teach
programming (Yehezkel e al., 2001). As a consequence, a
number of glass box techniques have been developed over
the past decades.

Glass box techniques generally fall into two categories:
simulators and pencil-and-paper exercises. Simulators
involve creating a program using a simplified computer that
is operated either mechanically or as a virtual machine
running on an actual computer. The earliest reported use of
the technique is around 1965, with Madnick and Donovan's
"Little Man Computer", which involved simulating a
computer as a postroom, with each mailbox representing a
memory location whose contents were written on a piece of
paper (Osborne, 2001). More recently, the trend has been to
use virtual machines, running on PCs or other hardware, as
the basis for the simulation. Dozens of these simulators have
been developed (Wolffe, et al., 2002). In some cases, the
tools simulate an actual computer architecture, such as the
IBM 360/370 series (Donovan, 1976), AT&T's 3B2
computer, and the IBM PC (EasyCPU, Yehezkel, er al,
2001; PCAS, Gill, 2005b). Other simulators are designed to
run simplified computer architectures that were never
commercial products, such as variations of the Little Man
Computer (Yehezkel, et al, 2001; Osborne, 2001),
Computer-1 (Miller, 1983) and RTLSim (Yehezkel, et al,
2001).

A number of educational benefits have been reported from
the use of glass box simulators in teaching programming.
The visualization of the computer that they offer provides
students with insights into computer structures (Yehezkel, et
al,, 2001). They help students to learn the details of
computer organization at multiple levels of abstraction
(Wolffe, et al., 2002). They also may improve student
motivation (Yehezkel, et al.,, 2001). In addition, simulators
allow instructors to decouple the technologies they present to
students from the ever-changing capabilities of computers as
they evolve (Wolffe, et al., 2002).

While simulators continue to be widely used in the computer
science field, advances in computer technology have
rendered them less attractive for technical MIS programs. As
recently as the early 1990s, the prevailing operating system
(DOS) and commonly used instructional development tools
(e.g., Turbo C, Turbo PASCAL, MS QuickC) were
sufficiently simple so that the lower level operation of a PC
had a practical relevance to programmers. Comprehending
the different programming memory models, for example,
required a clear understanding of how registers in the Intel
8086 processor family were organized into segments and

offsets. Similarly, multi-language programming nearly
always required knowledge of assembly language and how
arguments were stored on the stack. By the early 1990s,
however, complex operating systems such as MS Windows
3.x and integrated development tools such as MS Visual
BASIC, MS Visual C++ and, finally, MS Visual Studio,
limited the practical relevance of machine-level PC operation
for anyone not intending to develop operating systems,
development tools or device drivers. With the introduction of
Java and the .NET family of languages, the use of software
emulators (e.g., the Java virtual machine) and intermediate
languages (e.g., the MSIL used for .NET) further increased
the distance between the actual PC processor and the
languages being used to write programs. Thus—given the
shortage of hours available for technical content in typical
MIS programs and the decline in the direct benefits of
learning lower level programming concepts—it makes sense
that, during the 1990s, MIS programs experienced a dramatic
decline in coverage of lower level systems concepts, such as
assembly language, hardware and operating systems (Gill
and Hu, 1998). The utility of full-fledged simulators declined
accordingly.

Given the potential psychological value of glass box
techniques in the early stages of learning to program (Mayer,
1981), one alternative to a full fledged simulation is to
simulate only a portion of the computer. One computer
subsystem particularly appropriate for such a simulation is
primary storage (i.e., RAM). Such a simulation can be used
to introduce students to important issues such as the
underlying representation of different data types, the
organization of primitive data elements into objects, the
mechanics of linking objects together (e.g., pointers) and the
fundamental differences between algebraic expressions (e.g.,
X=3Y+4) and equivalent assignment statements.

A number of different approaches to presenting a glass box
view of primary storage have been developed. Some
approaches present a very abstracted view of memory (e.g.,
Holliday and Luginbuhl, 2004; Salvage, 2001), making
extensive use of arrows and boxes. Other approaches (e.g.,
Hair and Mahalakshmi, 2004; Gill, 2005b) focus more
closely on actual memory contents, making use of tables to
represent byte values. Although most of the support for the
pedagogical value of these techniques appears to be
anecdotal, some empirical evidence has been presented that
demonstrates a high correlation between level of memory
diagram understanding and overall understanding of
programming concepts (Holliday and Luginbuhl, 2004). The
memory grid, the subject of the current paper, is an example
of a pencil-and-paper exercise that uses a glass box view of
memory contents.

3. THE COURSE

The memory grid was developed as part of a course that
introduces programming to undergraduate MIS majors at a
large state university using the structured portion of the C++
programming language (to be referred to as C/C++). Over
the period described in the paper, the course—required for
all majors—had initial enroliments of 70-90 during spring

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(2)

and fall semesters, and 30-40 over the summers. By the end
of each semester, roughly 20% of students had withdrawn
from the class. Course surveys found that about 50% of the
enrolled students had never taken a programming course
before, 25% had taken a single prior course and 25% had
taken more than one prior course.

To accommodate the large diversity in student backgrounds,
the course was taught in a self-paced format. Under this
format, a student's entire grade was based on assignment
performance (Gill, 2005a). Various validation techniques,
including online examinations, oral examinations (mirroring
code walkthroughs) and recreation of assignments in a lab
environment, were used to ensure the rigor of grading. Using
this unique format, nearly all variation in student grades
tended to result from percentage of course assignments
completed, as scores on individual assignments normally
clustered in the 80-100% range.

The choice of C/C++ as an introductory language for the
course was motivated primarily by the non-trivial fraction of
majors who would ultimately end up working in a
programming capacity (end-of-semester surveys suggested
that 15-20% thought it moderately likely or very likely that
they would be employed as programmers within 10 years of
graduation). Since the undergraduate MIS major did not
provide for any courses in computer architecture or operating
systems, the introductory programming course served as the
principal opportunity for acquainting students with the inner
workings of a computer. C/C++'s origins as a low-level
language for the construction of operating systems were a
good fit in this respect. Indeed, students attempting to make
sense of various C/C++ language topics, such as arrays,
structures, pointers, memory management and file input-
output, must, out of necessity, develop a sound conceptual
model of how a computer functions.

In using C/C++ as an introductory language, three
conceptual areas seemed to be particularly difficult for
students to grasp: 1) pointers and dereferencing, 2) the
relationship between pointers and arrays, and 3) the syntax
of structures (especially when used in conjunction with
pointers and when declared as arrays). What these areas have
in common is that a mental model of a computer more
sophisticated than that of a simple "variable holds value in
some undetermined way" is required if students are to apply
them effectively. They also represent the aspects of the
language that most directly relate to the logical organization
of a computer. As a consequence, if students are going to
master the pointer/array syntax of C/C++, they need to
develop both a realistic model of how data is organized in a
computer and they need to be able to apply that model in the
context of C/C++ syntax. To address this pedagogical
challenge of helping students acquire these higher order
thinking skills, the memory grid was developed.

4. THE MEMORY GRID

Memory grids help students to internalize the nature of
pointers and structures—and how to use them to access
data—by requiring them to map their program representation
(i.e., how they are declared within a program) into the way

they will be placed in memory. Contrasted with other glass
box pencil and paper models (e.g., Holliday and Luginbuhl,
2004; Salvage, 2001; Hair and Mahalakshmi, 2004), memory
grids provide a uniquely direct mapping between raw
memory and what it represents, forcing students to
understand fully the conceptual relationship between
declarations and their underlying representation in primary
storage.

The format of the grid is similar to that used in a binary file
viewer (with bytes presented in hexadecimal, and their
ASCII equivalents—if displayable—placed on the right).
Beneath the grid is C/C++ code that defines any structures
used, followed by a hypothetical layout of memory elements
such as variables, arrays and structure objects. An example
of such a grid is presented in Figure 1, which is part of an
actual assignment that was used in fall semester 2003.

Having been provided with a memory grid setup, students
are then given expressions to evaluate. For example, ¢l
evaluates to 0x77 in the example, hdrV1.modified.nday
evaluates to OxOF, pvars[l] evaluates to the address
0x000010B0 and fld+2 evaluates to the address 0x00001090.
Using the tool in this way, students learn to distinguish
between:

e Expressions that return addresses vs. expressions
that return values

e Alternative notations for accessing the same value
(e.g., -> and. for structures, * and [] for addresses).

e Legal and illegal expressions

Practicing with a grid over a week or two can simulate
notational complexities that would take years to emerge in
actual program settings. In addition, working with the grid
also develops expertise that can be used in interpreting and
debugging information in binary files. Further details on the
use of memory grids can be found in the course textbook
(Gill, 2005b).

5. TEACHING USING THE MEMORY GRID

In the introductory programming course where the memory
grid was used, the grid assighment was paired with a
debugging assignment that required students to examine
variables in the Visual Studio .NET debugger. The paired
assignment immediately followed the first major
programming assignment in the course. Students working on
the assignment were concurrently introduced to pointers and
structures through the course's textbook and lectures. Upon
completing the exercises—done individually or in groups—
students were required to take (individually) proctored
validation exams. These exams were delivered using the
Blackboard course management system and, to have their
grades counted, students had to achieve a score consistent
with their assignment grade.

A number of practical challenges had to be addressed in
order to use memory grids for teaching. First, they could be
hard to set up. The original approach had been to take a
screen shot from a binary file viewer and then overlay an
imaginary collection of data elements (e.g., structures,

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(2)

Address 0 1 2 3 4 5 6 7 8 9 A B C D E F ASCII

1000 03 65 06 OF 21 00 00 OO 22 02 BF 05 4E 6F 74 20 e deaM L NOt
1010 55 73 65 64 00 CE A5 64 6E DE C8 4B 2B BF 1B AC Used...jn..K+...
1020 70 10 00 OO BO 10 OO OO 50 10 OO OO 90 10 0O OO P Piveosnn
1030 §7 6F 72 6B 73 20 66 6F 72 20 6D 65 00 45 BS5 9C Works for me.E..
1040 77 A7 7F A9 DO 10 OO0 00 BA FF 69 04 OB 65 0OC 02 Wawsomwonan LaeBua
1050 4C 4FE 41 4D 45 00 7D DD i6 FF 89 43 1E 00 01 0O LNAME.}....C....
1060 17 19 83 A3 1A 5C 12 31 04 29 44 E6 06 FD 84 3C o L) (SR
1070 46 4E 41 4D 45 00 09 25 Bl 1E 98 43 14 00 1F 00 FNAME..%...C....
1080 1C 29 E4 FA 14 25 85 9E D3 26 08 BD CO C4 3C 34 . T I
1090 41 44 44 52 45 53 53 00 3E AB AS 43 28 00 33 00 ADDRESS.>..C(.3.
10a0 CD 38 E4 C6 60 FD 56 6D B9 4F 8C 8B 54 B6 BS 1C .8..".Vm.0..2...
10b0 50 41 59 00 AS 1B F8 57 44 91 D9 4E 0OA 02 5B 00 PAY....UD..N..[.
10cO 25 C8 76 1A D8 90 BB B2 1A ED 80 13 23 83 E4 Bl $eVecieannan #...
1040 44 4F 43 00 30 F3 1B BE 30 B7 C1 44 08 00 65 0O DOH.0...0..D..e.
10e0 38 CO 4D 6D 26 59 97 84 1F C8 82 62 OB DF E6 7C S.MmeY..... Bleivs]

The declarations that follow map to the start of the above grid. You may assume that you are currently
stopped in a position in your program where they have been nitialized.

struct field {
char szname[11]:
char ctype:
unsigned char flen;
unsigned char fprec:
short fpos:
unsigned char reserved[16];
}:
struct date {
unsigned char nyear;
unsigned char nmonth;
unsigned char nday:;
}:
struct header {
unsigned char cver;
struct date modified;
int nrec:
short reclen;
short nstart;
unsigned char junk[20]:;

struct header hdrVi:
struct field *pvars[4]:
char buf[16];

unsigned char cl:

char arc[3]:

char *c2;

short vi;

struct date di[2]:
struct field £1d[5]:

Figure 1: Memory Grid Presentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(2)

variables and arrays) over the bytes. Using this
approach,however, contents of memory were often
inconsistent with the nature of the imaginary data overlay
(e.g., a date structure might end up with a month value of
0x45, string pointers might accidentally point to blocks of
memory consisting entirely of non-printing characters).
Furthermore, using imaginary overlays it was easy - even for
experienced instructors - to make careless mistakes in
designing and grading them. For example, the author once
accidentally defined a 30-byte structure where a 32 byte
structure (two even rows) had been intended. The resulting
examination proved to be excruciating in its difficulty
because of the tedious challenge of figuring out the starting
and ending locations of structure elements.

Another problem associated with the use of memory grids as
a pedagogical device was that of providing students with a
sufficient number of problems to achieve the depth of
understanding desired. Because C/C++ allows memory to be
accessed in so many different notations, it is no trivial task to
come up with a set of questions that systematically presents
students with all the different ways in which data in memory
can be accessed. The same problem, of course, manifested
itself in developing appropriate tests. As a result of these
problems, when the grid was first introduced as an exercise,
students often chose to ignore the assignment—handing it in
as part of a group but never completing grid-related
questions on the course's final examination. The assignment
was also unpopular, typically ranking 6th or 7th (out of 7
assignments) in perceived value in end of semester surveys.

Counterbalancing the lackluster overall reception to the grid
pedagogy was an extremely strong positive attitude towards
the assignment among some students—particularly within
that group of students most likely to go into programming.
For example, whenever the instructor polled the course
teaching assistants (all of whom had formerly taken the

course) about abandoning the assignment, the universal
response was that the assignment should be retained. In fact,
several informed the instructor that the assignment had been
the most valuable in the course. As a consequence, the
instructor decided the only suitable alternative to discarding
the assignment was to develop resources that would make
the pedagogy more accessible to the typical student, since
the conceptual value of the assignment was recognized only
by those who had mastered it. The resources developed
included:

e Online multimedia lectures that walk students
through sample grid exercises, available on the
course web site.

e A grid-specific exam that students would have to
complete individually if they were to get credit for
the assignhment, thereby controlling for "passive"
group participants.

e A bank of practice questions, accessible on
Blackboard at any time, to allow students to assess
their individual performance in solving grid
problems.

Developing the first of these was relatively straightforward,
and took only a few hours. The nature of the grid
assignment, however, made the remaining tasks considerably
more daunting. The instructor anticipated that it would take
dozens of hours of mind-numbing work to create a
comprehensive bank of questions and answers that could be
used for practice and testing purposes. Furthermore, he
anticipated that either: 1) a huge bank of questions would
need to be created, or 2) a new grid would have to be
generated each semester to avoid problems of answers to test
questions being passed on from semester to semester. To
address these challenges, the instructor developed the
GridGen tool.

GridGen

Blackboard
Assessment
Engine

Respondus

Grid layout
(HTML)

PC in Lab
(or at home)

Figure 2: GridGen Operation

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(2)

6. THE GRIDGEN TOOL

The GridGen tool was developed in spring 2003. It provided
the instructor with a number of useful capabilities, including
the ability to generate:

1. A customized memory grid, in HTML format, that
could be used for assignment purposes

2. C/C++ definitions and declarations precisely matched
to the grid contents.

3. A virtually limitless number of questions and answers
relating to the specified grid, in a format suitable for
upload to most widely used course delivery systems.

Taken together, these capabilities alleviated many of the
practical difficulties associated with employing the memory

grid pedagogy.

The operation of the GridGen is illustrated in Figure 2. The
instructor starts with a grid definition file, which includes
various parameters (e.g., how many questions to generate),
HTML code for question wording and setup, and grid layout.
This file becomes the input to the GridGen program, which
then produces two outputs: an HTML file describing the
layout (e.g., the file used to create Figure 1) and a text file
containing a specified number of fill-in-the-blank questions
and answers. The text file can, in turn, be input into a test
generation program (Respondus) that can be used to generate
paper and online tests.

The heart of the GridGen tool is the data layout definition—
identifying structure definitions (with initialization
instructions), data layouts (with initializations) and a large
number of parameters (e.g., what byte value should be used
to initialize memory not used, if a given character arrays will
be used to hold strings, if a given structure element is
included for alignment purposes and is not to be displayed).
These definitions allow for the creation of realistic data
patterns. For example, the layout of the "date" structure
(used in the Figure 1 example) is as follows:

DEFINE MSTRUCTURE date 12

unsigned char nyear R 100:105

unsigned char nmonth = 1,2,3,4,5,6,7,8,9,10,11,12

unsigned char nday R 1:31,1:28,1:31,1:30,
1:31,1:30,1:31,1:31,1:30,1:31,1:30,1:31

END MSTRUCTURE

The first line states that 12 possible patterns for any date
object are possible (logically, these correspond to months).
The second line states that “nyear” values should be
randomly chosen from between 100 and 105. The next line
states that nmonth is fixed to a value depending upon which
pattern is chosen. The final line specifies the range of nday
values to be used for random selection for each month.
Because nmonth and nday values are always taken from the
same pattern number, consistent month and day values are
always produced.

GridGen test generation works by using the test specification
to create an image of memory, keeping track of the

expression name for each byte (e.g., "arc[2]"). It generates
fill-in-the-blank questions using a variety of techniques. To
come up with a typical byte value question, for example, the
program might randomly select a byte from memory and
looks up its name. Based on the nature of the name, it then—
probabilistically—may choose to transform it. For example,
the expression fld[1].szname[3] might be rewritten as
*((fld+1)->szname+3) or *(fld[1].szname+3) once it has
been transformed.

Using GridGen reduces the incremental cost associated with
creating memory grid exercises to nearly zero (especially
when an old test specification file is available and can be
modified). This allows exercises to be posted on Blackboard
for practice purposes (see Figure 3), as well as for
examinations.

Azsigrment 48 - Memory Grid Practice Quiz

Hame:

Instructions: A these guestions using the HTRL grid
: thatl is presented in the Assignments arsa,

- Multiple Attempts: This test allows multiple attempts.

 Force Completion: This test may he savad and resumed later.

Question 1 Fill in the Blank
Evaluste the following expression. Your value should be
prasanted in hex, precads 0x {2.g.. 044} Hthe
expyassion is illegal, write three asterisks {} ffthe
rasult is an address, it should he wiitten as a 4-byte (8-
digity integer preceded by 0x {e.g.. 0x00001014) &fid
{3} szname{8]

G points

Question 2 Fill in the Blank 0 points
Evaluate the following expression. Your valuz should be
presented in hex, preceded by Ox {e.g.. (dA)} K the
expression 1= illegal. wiite three asterisks (™) if the
result is an address, it should be wiitten as a 4-byte (3-
digit} integer preceded by Ox {e.g.. Dx0D00101AY prars

Figure 3: Portion of Blackboard Practice Test

7. METHODOLOGY

The effectiveness of the memory grid exercise was assessed
principally through the use of a comprehensive survey
implemented to track all aspects of the course. The survey
instrument, developed by the instructor and administered at
the end of each semester since spring 2003, consisted of
nearly 300 questions. Students completing the voluntary
survey, made available in the form of a downloadable
spreadsheet that was returned to the instructor's department
as an email attachment, received a + added to their course
letter grade (e.g., C became C+, B became B+, A became
A+). As a consequence of this incentive, response rates of
roughly 70% of active students were normally achieved. The
survey was nhot anonymous but completed surveys were
directed to an administrative mailbox that the instructor

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(2)

your leaming in the class

Assignment 1 {Hello World}
Agsignment 2 (Numbering systems)
Assignment 3 (Flowcharting}
Assignment 4 {Debugging)
Assignment 5 (Memory grid}
Assignment § {C functions}
Assignment 7 {CGI program}

Please rank the assighments in terms of how they helped

gaaan

3rd Best o
. Middie

Assignment 1 {Hello World}
Assignment 2 (Numbering systems)
Assignment 3 {Flowcharting}
Assignment 4 {Debugging}
Assignment & {Memary grid}
Assignment & (C functions}
Assignment 7 (CGI program}

Please estimate the number of hours that you spend on
each assignment (0 if you did not do the assignment}):

, Third worst
, Second worst
Worst

Q. Didn't do

O e G

Lol o I [an I o B f o T W om Y

Figure 4: Extracts From Course Assignment Survey

could not access. Immediately prior to submission of course
grades, the departmental secretary provided the instructor
with a list of students who had responded, so grades could be
adjusted. Copies of the completed surveys, on a CD, were
made available to the instructor only after course grades had
been submitted to the registrar. The same procedure was
used for the 7 question university course evaluations, since
the course's self-paced format and flexible schedule meant
that traditional end-of-semester class meetings (used
primarily for filling out course evaluations) did not take
place.

The instrument was designed to elicit information on student
background (e.g., programming experience, work
experience, career aspirations), reaction to individual
assignments, satisfaction with course design and perceived
learning gains. It was developed as a composite of three
NSF-recommended evaluation instruments, the Student
Opinion Survey, the Computer Programming Survey and the
Student Assessment of Learning Gains, with additional
questions added to assess student background and
experience. (Links to source surveys are provided in
"Instrument References" section at the end of the article).
Selected portions of the survey relating to assignments are
presented in Figure 4.

8. RESULTS

Prior to the introduction of online testing and practice exams,
the relatively low weight of memory grid exercises in the
entire course (~5% of total points) and the challenge
presented by learning the material led most students to
ignore the assignment. While many students handed it in,
typically as part of a group, very few actually completed
final examination questions relating to the grid—suggesting
they had not fully understood what they were handing in.
This conclusion of the instructor seemed to be confirmed by
the very low popularity of the assignment, with most
students ranking it at or near the bottom in end of semester
surveys. Even the introduction of online practice tests, in
spring 2003, did little to change this.

In fall 2003, course requirements were changed so that
online testing (using a GridGen created test bank) was
required in order to get assignment credit. Paradoxically, one
impact of this new requirement was to lead to significant
increases in assignment completion rate—to nearly 90% of
those students who completed the course in fall 2003. Even
more noteworthy, however, was a change in how student
perceived the value of the assignment when compared with
other assignments. As shown in Table 1, the implementation

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(2)

RitiA

65 73

Number of students surveyed

Mean ranking (s.d.) of assignment, out of 7 assignments 5.1(1.8) 2.7(1.4)
Rank score compared to other assignments Last (worst) Top (best)
Percent ranking assignment as the top (best) assignment 3% 25%
Percent ranking assignment in the top 3 (of 7) assignments 18% 69%
Percent ranking assignment in the bottom 3 (of 7) assighments 58% 3%

Table 1: Outcomes of GridGen Implementation

of validation testing was accompanied by a dramatic
reshuffling of perceptions regarding the assignment. Once
students were required to individually validate the
assignment—making passive participation in a group
impossible—their perception of the value of the assignment
changed. The mean ranking (2.7) made the assignment the
most highly ranked of the course's 7 assignments in fall
2003/spring 2004, as compared with being the lowest
ranking assignment (5.1) in spring/summer 2003, prior to the
initiation of GridGen-enabled online validation. With respect
to the distribution of perceptions, in fall 2003/spring 2004
25% of students ranked it the best assignment and more than
69% ranked it in the top 3—as compared with 3% and 18%
in spring/summer 2003.

Further confirmation of these findings could be found from
questions derived from the Student Assessment of Learning
Gains (SALG) section of the survey. In this section, students
were asked to rate how various aspects of the course
impacted their learning on a No Help (1) to Very Much Help

(5) scale. As shown in Figure 5, one section of the SALG
portion of the survey specifically addressed individual
assignments.

Both before and after the GridGen implementation, the mean
score for all completed assignments was approximately 3.3
(3.27 pre-adoption and post-adoption 3.36). Pre-adoption,
the assignment's value of 3.32 was indistinguishable from the
mean of all assignments. For the two semesters following
adoption, however, the assighment's rating of 3.66 was
significantly different from the all-assignment mean of 3.36,
as illustrated in Table 2, and comparable to that of the two
most popular programming assignments (Assignments 3 and

5).

Correlation analysis of SALG data over the entire period of
measurement (7 semesters, N=216) also suggested the
particular area where the memory grid/debugging
assignment made its greatest contribution. In another area of
the SALG survey section, students were asked to rate the

]

How did each of the following graded activities and
assignments help your leaming?

The number and size of assignments
The oral exams

Assignment 1; Hello Waorld
Assignment 2: Numbering systems
Assignment 3: Flowcharting
Assignment 4: Debugging
Assignment 5 Memory grid
Assignment & Functions
Assignment T: CGl project|

The feedback we received

The grading systemused,

1. Mo help

2. Alittle help

3. Moderate help
4 Much help

5. Very much help
4. A

—

Figure 5: Assignment Questions From SALG Portion of Survey

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(2)

1. Hello World 64 2.92 -3.02 .00**

2. Numbering Systems 63 3.11 -2.00 .05*

3. Flowcharting 64 3.56 1.24 22

4. Memory Grid and Debugging 62 3.66 2.2 01**

5. C/C++ Functions 45 3.67 1.68 .10

6. CGI Application 30 3.33 -.11 .92
Comparison of individual assignment means with weighted average mean of 3.36 (Significances: * p<0.05, ** p<0.01)

Table 2: SALG Results for Memory Grid Assignment

degree to which the course as a whole was helpful in
developing understanding in three areas: 1) flowcharting, 2)
how computers are organized, and 3) the nature of computer
programming. Although correlations existed between the
perception that the grid portion of the assignment was
helpful and all three skills (0.253, p<0.001 with
flowcharting; 0.290, p<0.001 with computer organization,
0.182, p<0.01 with programming) that relationship was
strongest for understanding computer organization—the
design goal of the exercise.

9. DISCUSSION

In considering the results presented, there are two issues that
warrant further discussion. The first relates to the degree to
which observed improvements in memory grid ranking can
be directly attributed to better understanding of the grid,
versus other effects. The second relates to the potential
applicability of the grid to languages outside of C/C++.

9.1 Process vs. Understanding Changes

One reasonable concern in interpreting these results is
separating the impact of process changes (i.e., creating
practice tests and requiring online validations) from that of
improved understanding of assignment content (i.e., the
memory grid itself) when explaining the change in rankings.
In addressing this issue, a reasonable case can be made that
the improved rankings of the grid exercise were much more
directly related to student understanding of actual content
than to delivery method. The basis for this conclusion relates
to the fact that while the memory grid changes were being
instituted, similar protocol changes were being put in place
for another pencil and paper assignment dealing with
numbering systems (e.g., base conversions, hexadecimal,
twos complement). Specifically, the program NumGen (Gill
2005b) was also created in spring 2003 to generate
numbering system exercise validation exams, with practice
exams being made available in spring 2003 and required
validation being instituted in fall 2004. Thus, to the extent
that protocol changes were purely responsible for changes in
rankings, similar effects should have been observed for both
assignments,

As shown in Table 3, the ranking changes that accompanied
the two concurrent course protocol changes were far more

pronounced for the memory grid assignment than they were
for the numbering system assignment. While a reasonable
case can be made that some positive impact was observed for
the numbering system assignment—its overall rank
improved slightly despite the fact that the memory grid
moved in front of it and its SALG rating improved from 2.96
to 3.09—neither change was anywhere near as dramatic as
the corresponding change for the memory grid. The
instructor's interpretation of these findings, heavily
influenced by his experience grading numbering system and
grid questions on final exams in previous semesters, was as
follows:

e Prior to the GridGen/NumGen adoption, most
students had mastered numbering systems by the
end of the course, but only a few had really
understood memory grids.

e While the new protocol made learning numbering
systems a bit easier (leading to a slight ranking
improvement), it had not led to any dramatic
change in ultimate understanding.

e For the memory grid, however, ranking changes
were primarily the result of a change in
appreciation of the value of the assignment that
accompanied greater levels of understanding.

While it is certainly possible that other factors impacted the
change in rankings (e.g., summer 2003 was an accelerated 10
week semester, as opposed to a 15 week semester), the fact
remains that the memory grid became the only non-coding
assignment to achieve rankings comparable to that of
programming exercises.

9.2 Generalizability

With respect to generalizability of the grid pedagogy beyond
C/C++ language courses, there are obvious limitations.
Others (e.g., Hair and Mahalakshmi, 2004) have noted that
memory exercises seem to have special practical relevance to
lower level languages such as C and C++. While such
languages have recently been offered in most MIS programs
(e.g., 77% of U.S. undergraduate programs surveyed in
1997; Gill and Hu, 1998), they also appear to have declined
significantly in relative importance in recent years, replaced
by Java or through the elimination of programming
requirements altogether. Two responses can be made to these

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(2)

Assignment (1.6) .77 (1.6) 4.02 (1.7)
(Numbering Systems)

Assignment 4/5 5.14 (1.6) 491 (2.2) 2.29 (1.4) 3.08 (1.4)
(Memory Grid)

Table 3: Grid vs. Numbering System Assignment Rankings (s.d.) Before and After Validation

concerns. First, while the potential relevance of the grid
exercise in the U.S. may be decreasing, there is still strong
demand for low level language instruction internationally,
particularly in Asia (e.g., Hair and Mahalakshmi, 2004).
Furthermore, even in the U.S., industry leaders (e.g., Gates
and Klawe, 2005) have voiced concerns relating to learning
to program exclusively in garbage-collected languages,
which hide the underlying process by which chunks of
memory are acquired from the operating system and returned
to it once the chunks are no longer being used. Relying
solely on these languages (e.g., Java and Visual Basic), it is
feared, can lead to students who lack an understanding of
underlying issues—such as memory management—that
prove to be critical as program size and complexity reach
"real world" scale. Such complaints, coming from industry,
could motivate greater emphasis on computer architecture in
U.S. curricula, perhaps leading a resurgence of interest in
C/C++ (at least as an elective option).

A second possibility for generalizability would be to adapt
GridGen to generate memory exercises in other languages, or
in a language-neutral form. Such modifications would be
relatively straightforward. Towards this end, the source code
for the GridGen application has been made available to
instructors (provided, for example, in the instructor's manual
CD for Gill, 2005b). For some widely used languages, such
as COBOL, FORTRAN, PL/1 and PASCAL, many aspects
of the memory grid remain relevant since a fairly
straightforward correspondence between memory and
variable location exists for these languages.

A more substantial modification—whereby GridGen's
objectives could be refocused towards abstract memory
diagrams (e.g., box and arrow) more suitable for teaching
languages such as C# or Java (e.g., Holliday and Luginbuhl,
2004)—can also be envisioned. In this scenario, the program
would generate diagrams (as opposed to hexadecimal grids)
corresponding to the layouts specified by the instructor, and
students would be required to relate expressions to their
locations in the diagrams. The feasibility and potential
benefits of such a graphical approach have already, to a
certain extent, been demonstrated by the eatlier development
and successful implementation of flowcharting software
(Gill, 2004) in the same introductory course where the
memory grid was developed.

10. CONCLUSIONS

Beyond the mechanics of its implementation, the example of
the memory grid is intended convey three important lessons

to readers. The first involves the potential learning benefits
that can be realized from mixing concrete and abstract
exercises when teaching programming. Unless MIS
departments want to abandon programming altogether as a
viable career option, we need to come up with tools—such as
the memory grid—that teach our students the fundamental
computer concepts they need to know in order to compete
effectively with their computer science counterparts, both at
home and abroad.

The second lesson relates to how the GridGen application
enhanced the use of the assignment in two ways. First, it
increased instructor productivity through reducing the time
required for assignment creation and grading. Second, it
enhanced instructional effectiveness by making it possible to
provide huge banks of practice questions to students.
Instructors, particulatly those with a modicum of
programming skill, should not be afraid to apply their craft
creatively to develop exercises and testing materials. The
combined development time (in spring 2003) of GridGen
and NumGen was about 4 days. That setup cost now seems
trivial when balanced against the time savings and
educational benefits that accrued in the two years that
followed. Even instructors for whom the memory grid does
not seem to be directly relevant might benefit from
examining the GridGen architecture and assessing its
applicability to their own teaching challenges.

The final lesson is the potential value to us, as instructors, of
continuously assessing the consequences of each innovation
we introduce into a course. As noted previously, many of the
studies of glass box assignments conducted in the past
provided mainly anecdotal evidence of effectiveness. Such
lack of more rigorous direct evidence is understandable since
standardized university teaching evaluations are normally
not specific enough to measure the consequences of changes
to individual course components, particularly those lasting
only a week or so in a semester-long course. Indeed, had
these been the only source of information available for the
present study, it would have been impossible to identify
whether or not the memory grid exercise had been effective.
Furthermore, we cannot usually make such assessments
retroactively. It is therefore incumbent upon each instructor
(who wants introduce innovations into the classroom) to
establish baseline measurements that can be used as a basis
for comparison as new techniques are implemented. Not only
do such measures aid the instructor in judging effectiveness,
they can prove to be indispensable in the process of
communicating these innovations to others.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(2)

11. REFERENCES

Donovan, J.H. (1976) "Tools and Philosophy for Software
Education". Communications of the ACM. Vol. 19, No. 8.
August. pp. 430-436.

Gates, W. and Klawe, M. (2005) "Remarks by Bill Gates,
Chairman and Chief Software Architect, Microsoft
Corporation and Maria Klawe, Dean of Engineering and
Applied Science, Princeton University, Microsoft
Research Faculty Summit 2005". Accessed 8/7/2005 at:
http://www.microsoft.com/billgates/speeches/2005/07-
18FacultySummit.asp

Gill, T.G. (2004) "Teaching Flowcharting Using FlowC".
Journal of IS Education. Vol. 15, No. 1. pp. 65-78.

Gill, T.G. (2005a) "Assignment-Centric Design: Testing the
Assignments, Not the Lectures". Decision Sciences
Journal of Innovative Education. Vol. 3, No. 2. pp. 339-
346.

Gill, T.G. (2005b) Introduction to Programming Using
Visual C++.NET. Hoboken, NJ: Wiley.

Gill, T. and Q. Hu. (1998) "Information Systems Education
in the USA," Education and Information Technologies.
Vol 3. pp. 119-136.

Holliday, M.A. and D. Luginbuhl. (2004) "CS1 Assessment
Using Memory Diagrams"._SIGCSE’04, March 3-7,
Norfolk, Virginia, USA. pp. 200-204.

Mayer, R.E. (1981) "The Psychology of How Novices Learn
Computer Programming". Computing Surveys. Vol. 18,
No. 1. pp. 121-141.

Miller, D.S. (1983) "COMPUTER-l -- A Modem Simple
Computer to Introduce Computer Organization and
Assembler Language Programming". ACM SIGCSE
Bulletin, _Proceedings of the Fourteenth SIGCSE
Technical Symposium On Computer Science Education.
Vol 15, No. 1. February. pp. 271-277.

Osborne, H. (2001) "The Postroom Computer". Journal of
Educational Resources in _Computing. Vol. 1, No. 4,
December, pp. 81-110.

Reichgelt, H., B. Lunt, T. Ashford, A. Phelps, E. Slazinski,
and C. Willis. (2004) “A Comparison of Baccalaureate
Programs in Information Technology with Baccalaureate
Programs in Computer Science and Information Systems,”
Journal of IT Education. Vol. 3.

Salvage, J. (2001) C++ Coach: Essentials for Introductory
Programming. Boston, MA: Addison Wesley.

Wolffe, G.S., W. Yurcik, H. Osborne and M.A. Holliday
(2002) "Teaching computer organization/architecture with
limited resources using simulators". ACM SIGCSE
Bulletin, Proceedings of the 33rd SIGCSE Technical
Symposium on Computer Science Education. Vol. 34, No.
1. February. pp. 176-180.

Yehezkel, C., W. Yurcik, M. Pearson and D. Armstrong
(2001) "Three Simulator Tools for Teaching Computer
Architecture: EasyCPU, Little Man Computer, and
RTLSim". ACM Journal of Educational Resources in
Computing. Vol. 1, No. 4. December. pp. 60-80.

12. INSTRUMENTS REFERENCED

"Student Opinion Survey"

http://oerl.sri.com/instruments/cd/studcourse/instr16.html
accessed on 4/14/2003

"Computer Programming Survey"

http://oerl.sri.com/instruments/cd/studcourse/instrl 1 .html
accessed on 4/14/2003

"Student Assessment of Learning Gains (SALG)"

http://www.wcer.wisc.edu/salgains/instructor/
accessed on 4/14/2003

Note: Instructors may acquire copies of the survey
instrument used for the course from the author, as well as
GridGen and operating instructions from the author. The
latter are also included with the instructor’s manual of Gill
(20050).

AUTHOR BIOGRAPHY

T. Grandon Gill is an Associate professor in Information
Systems and Decision Sciences
at the University of South
Florida. He received his A.B.,
cum laude, from Harvard
College, and both his MBA (high
distinction) and DBA from
Harvard Business School. He
currently teaches courses at the
undergraduate, masters and
doctoral levels, as well as leading
faculty seminars at USF's Center for 21" Century Teaching
Excellence. His teaching focus includes courses in
programming, databases, instructional technologies and case
method techniques. His current research involves the impact
of instructional information technologies on IS education,
where he has published extensively in IS education-related
journals, such as the Journal of IS Education, the Decision
Sciences Journal of Innovative Education, and Education
and Information Technologies. He has also published a
textbook on C++ programming with Wiley, developed a
complete line of laminated study guides for Barcharts, Inc.
and has authored numerous published case studies.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISCCp Eosic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2006 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

