View metadata, citation and similar papers at core.ac.uk

L

brought to you by .{ CORE

provided by AIS Electronic Library (AlSeL)

Journal of Information Systems Education, Vol. 17(1)

Integrating ERD and UML Concepts When Teaching Data
Modeling

Traci A. Carte
Michael F. Price College of Business
University of Oklahoma
Norman, OK 73019, USA

tcarte@ou.edu

'Jon (Sean) Jasperson
Mays School of Business
Texas A&M University
College Station, TX 77843, USA

jon.jasperson@tamu.edu

Mark E. Cornelius
IT Services, Anadarko Petroleum Corporation
The Woodlands, TX 77380, USA
mark cornelius@msn.com

ABSTRACT

In this paper, we describe a teaching approach that evolved from our experience teaching in both the traditional database and

- systems analysis classes as well as a number of semesters spent team-teaching an object-oriented systems development course.

Fundamentally, we argue that existing knowledge of structured systems development can and should inform our teaching
processes when teaching object-oriented systems development techniques. We draw from an anecdotal industry example
provided by one of our former students to illustrate the value of this approach given our perception that there is a need in
practice today to easily shift from structured to object-oriented thinking,

Keywords: Unified Modeling Language, Data Modeling, Database Course -

1. INTRODUCTION

There seems to be growing interest in adopting the Unified
Modeling Language (UML) within information systems (IS)
curricula, and some authors of database texts have expressed
interest in changing their widely adopted books to include
the UML notation when representing data models. One
might argue that notation is only syntax; therefore, a change
in notation should not require a change in the content or
approach used in teaching data modeling techniques.
However, the interest in UML suggests consideration of a
more fundamental question: Should we rethink the processes
taught in our database courses to more closely align the way
we think about data with the way applications are
developed?

Currently, most database courses use entity-relationship

55

diagram (ERD) techniques for data modeling. The traditional
ERD has a rich theoretical basis and is specifically intended
for modeling relational database structures (Chen 1976,
1977; Date 1986; Martin 1982). Clear guidance exists in
many academic and practitioner books about how to use this
method to develop conceptual models and transition them to
logical forms (including normalization practices) and
physical forms that are focused on tuning for performance
(Chen 1977; Hoffer, Prescott, and McFadden 2005; Martin
1982). Further, some empirical studies suggest ERDs are
often more correct and easier to develop than corresponding
object-oriented (OO) schemas (Shoval and Shiran 1997).

Advocates of the UML suggest that the class diagram should
replace the ERD notation and approach to data modeling.
Class diagrams provide the same opportunity to document
data and their relationship as ERDs do. In addition, class

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

https://core.ac.uk/display/301386863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Information Systems Education, Vol. 17(1)

diagrams provide for the capture of operations. This allows
for the modeling of relational data but also provides rich
support for object-oriented implementations in the form of
OO program languages (i.e., JAVA) as well as a more
component-based approach (i.e., J2EE). Moreover, the UML
includes mechanisms for modeling behavior, and the
acceptance of the UML as an Object Management Group
(OMG) standard provides wide support in industry for using
the UML, especially for the design of object-oriented
software (Halpin and Bloesch 1999). While some might
advocate ERD versus UML as contrasting methodological
perspectives, we see advantages of teaching both methods to
information systems students in an integrated fashion.

Understanding the implications of the adoption of UML
notation in the database class cannot be undertaken without
consideration of the other courses in the IS curriculum as
well as indications of the future of practice. In a recent panel
discussion focused on database course content (Vician et al.
2004), the interrelationships among courses in the IS

curriculum was discussed. Specifically, the panelists advised -

that when the core systems analysis course uses an object-
oriented analysis and design approach, using a more
traditional approach in the database class may lead to
inconsistencies that hinder student learning.

A review of the trade literature suggests that transitions to
object-oriented databases may be on the horizon; with Oracle
and IBM indicating willingness to “go beyond classical
relational dogma” (Monash 2005; p 26). Some organizations
have adopted object-oriented databases for storing important
corporate data (Lai 2005). Further, as more applications are
developed in OO languages such as Java or C++ while
utilizing data stored in a relational database, IT professionals
are left to write custom code to access the data or rely on
object-relational mapping (Walsh 2005). Growing interest
among firms such as Oracle as well as the ubiquity of
relational databases suggests that mapping OO applications
to relational data storage is the likely immediate experience
current MIS students can expect in practice (Krill 2005).

Should we rethink the processes taught in our database
courses to more closely align the way we think about data
with the way applications are developed? This is our
fundamental question. In this paper, we draw from our
experience in the classroom and in practice to ‘make
recommendations ‘for how the UML notation can be
integrated with ERD when teaching data modeling.

2. BACKGROUND

In Fall 2000, the two academic authors began team-teaching
an object-oriented systems development (OOSD) course. At

diagrams, we asked our students to read the technical
specifications regarding class diagrams directly from the
UML specifications (at that time, UML version 1.2 was the
standard accepted by the OMG). In class, we spent time
discussing and defining classes, objects, state, behavior,
associations, association classes, multiplicity, and etc. as
recommended by Fowler and Scott (2000, chapter 4). We
worked a simple example class diagram in the classroom and
assigned the students to develop their own class diagrams for
a more complex case.

All students in the class had previously completed a
traditional, database course (where they learned the ERD
approach to data modeling) and a structured systems
development course (where they were exposed to extensive
ERD and data flow diagramming exercises). Thus, we
expected the students to complete class diagrams for the
assignment with relative ease.

We were surprised to find that the students struggled to
complete this assignment. The assignments submitted for
grading by the students contained much variation across
students. Most students struggled with identifying classes to
include in the diagram. Some students included user
interface classes, while others did not. Many students
experienced difficulty in capturing the basic data needs for
the case (i.e., applying the data modeling skills learned in
previous classes).

. As we discussed the performance on this assignment with the

that time, we had a number of years experience teaching in .

the traditional database and structured systems analysis and
design courses.

As we began designing and teaching this OOSD course we
wanted to allow the students to form their own opinions
regarding the efficacy of the OO approach to systems
development and using the UML. Therefore, in our first
semester teaching the course, when discussing class

56

students enrolled in the course, we realized that in our
attempt to faithfully apply the UML to a modeling situation
and to avoid introducing the biases from our structured
development backgrounds into the course, we failed to help
the students understand how to leverage the skills and
knowledge they already possessed. The students observed
that they had not understood that a class diagram was related
to data modeling. Another difficulty experienced by the
students was identifying the behavior that should be included
in the class diagram as operations. The students indicated
they were unsure about which operations to include in the
diagram and even if they were sure an operation should be
included, they were unsure which class should have the
operation assigned to it.

After this initial attempt at teaching and applying the UML,
we reevaluated our position and approach. We concluded
that many, if not most, systems developed in a business
setting would need to have some interaction with and use of
data (likely stored in relational databases). Thus, when
students use the UML to model business systems, they
should realize that the class diagram should represent the
data model for the new system. Furthermore, we observed
that asking the students to focus on both the state and
behavior properties of classes at the same time added
complexity, which resulted in confusion among the students.
Therefore, we redesigned the course content and our
teaching approach to enable us to emphasize the following
ideas when using the UML for systems development
projects: 1) logical class diagrams need to be created that
represent the data model for the business system to- be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(1)

developed and 2) the state and behavior properties of classes
can be considered separately when creating initial logical
class diagrams for a business system.

In the next section, we present a short teaching case, our
recommended development process, and the resulting UML
diagrams which show the result of our learning.

3. CLASSROOM EXAMPLE

To illustrate our recommended approach, we use the case
scenario presented in Figure 1. In developing a system to
support Jason’s Video, we recommend the following
development sequence to model this problem using UML
diagrams:

1. Create Use Case Diagram to set system scope

2. Create Class Diagram that is identical to an ERD

3. Create Sequence Diagram for each use case

4. Use the messages from the Sequence Diagrams to

add operations to classes in Class Diagram

Jason’s Video

Jason’s Video is a small neighborhood video rental store.
The only products available at Jason’s Video are movies
to rent. Jason requires all customers to pay cash for movie
rentals. When a customer rents a movie from the store for
the first time, Jason issues the customer a.membership
card. For future rentals, the customer presents his/her
membership card with the movies to rent.

Jason keeps track of basic contact information for each
customer. In addition, he tracks each movie by title,
MPAA rating, media type (VHS or DVD), genre, and
acquisition date. Jason would like to create a simple
system to track movie rentals. Movies that Jason has
owned for more than 6 weeks can be rented for 1 week.
All other movies are considered “recent arrivals” and can
only be rented for 2 days
Figure 1. Example Case Scenario

For simplicity, we only discuss two major use cases of the
new system for Jason’s Video: 1) a customer rents a movie
and 2) a customer returns a movie. Figure 2 contains a use
case diagram for these two scenarios. The development of
the use case details is beyond the scope of this paper; as such
we will not elaborate on this process.

After a student develops the use case diagram, we encourage
him/her to create a class diagram that contains state
information only. A class diagram with state information
only is very similar to a logical data model or entity-
relationship diagram. At this point in modeling the new
system, for the class diagram, we focus on the data that will
be physically stored and its interrelationships. Thus, classes
that would represent aspects of the user interface are not
represented. Further, we discourage students from adding
behaviors to the classes at this point in time. Instead, we
encourage the student to concentrate on modeling the data
for the case. Given these guidelines, we are essentially
encouraging students to draw an ERD using the UML
notation.

Customer Rental Clerk

Figure 2. Jason's Video -- Use Case Diagram

For the Jason’s Video case, we would model three classes,
(e.g., movie, rental, and customer) and two associations (see
Figure 3). As can be seen in this model, implementation in a
relational environment would not be a problem. Further, the
student could easily apply the process knowledge he/she has
about constructing ERDs to developing a class diagram that
well represents the data and relationships.

Movie Customer
-title -name
-movie rating -address
. |-movie ID -city
-rental rate -state
-date acquired -Zip
-media type -phone
-genre -email
-member ID
1.2
RentalLine 1.1
-rate g
-due date
-return date 0.*
Rental
-rental date
-rental # 0.*

Figure 3. Jason's Video — Class Diagram (state only)

As mentioned previously, we did a non-scientific experiment
in the classroom with adopting a new paradigm. In our first
semester, we made no conceptual link between data models
and class diagrams, and we encouraged the students to think
of this as a paradigm shift. In later semesters, we explicitly
linked the thought process of data modeling with the
construction of class diagrams. We believe learning was
facilitated by the linkage. Similar observations have been
made when project teams in practice work to make the
transition to OO analysis and design (Shaft and Jasperson
2003).

The next step in the development sequence is to create a
sequence diagram for a generic scenario for each use case in
the use case diagram. As with the class diagram, when
creating the sequence diagrams, we recommend ignoring the
user interface classes. These classes and messages passed
among them can be added when the system gets closer to
implementation. ’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(1)

One approach we found useful in helping - students
understand sequence diagrams is the use of a CRC card
exercise (Beck and Cunningham 1989; Bellin and Simone
1997). In this exercise, index cards are created -- one for
each class in the class diagram. State information is listed.
Students are then asked to role play, pretending to be one of
the classes and/or a single object. This exercise is
particularly useful in helping the students understand which
class can/should be responsible for various behaviors based
on state information and associations. After role playing the
use case in the classroom, we draw from the in-class role
play to create the sequence diagram. Figure 4 contains the
sequence diagram for the rent movie use case. Figure 5
contains the sequence diagram for the return movie use case.
After completing the sequence diagrams, we use the
messages from the diagram to update the class diagram to
reflect behavior (i.e., add the operations). To add operations
to the class diagram, we consider each class represented in
the sequence diagram and examine the messages that point to
that class (i.e., messages that are received by that class). To
receive a message, the class must have an operation that
corresponds with the message it receives.

0

Cuspmer Renla|Clerk

[new customer): create customer()

|

By default, all classes have create, read, update, and delete
(CRUD) operations. Therefore, in creating the sequence
diagram, we require that CRUD messages be included in the
sequence diagram using these keywords as names for the
messages. For example, sece the “[new customer]: create
customer()” message in Figure 4. Because all classes are able
to perform all CRUD operations, we do not add CRUD
operations to the class diagram.

For other messages passed to a class in the sequence
diagram, the class diagram must be updated to reflect an
operation that enables the class to perform the requested
behavior. For example, consider the “add rental()” message
to the customer class in Figure 4. For the rental clerk agent to
send a message to the customer class entitled “add rental()”
the customer class must have an operation “add rental().”
Thus, we add the “add rental()” operation to the Rental class
in the class diagram. To complete this iteration of the class
diagram, all non-CRUD messages in each sequence diagram
must be added as operations to the appropriate classes in the
class diagram. Figure 6 contains the updated class diagram.

___{._

* indicates messages that iterate
[1 contain conditions that must be true for message to be activated

= data items to the left of the = represent items returned by the message

]
|
r M r
member card or i : exists): ID)
|
: display customer record :
| H
|) create rentall
H add rentali) !
i by
! (| 1
! | |
1] .
| | |
*: movies : *: add movie(movialu? J
1 T A
: ! movie info =: display () !
| . " . .
: E { ; create rentalLine(movielD, rate] Rental Line I l Movie |
| |
|] | Iy T
| | I | |
| 1 i |
| 1
| I
1 1
| I
1 1
: : ! [or ¢ eate]: calc due date()
|) 1
: \ 1] date acqyired, rate =: read(]
| |]) WMRREY, NS Y
| '
| |
1 |
1 1 —
: [no more movies]: calc l? al()
| T m
: : rate =: read ()
! !
1
: rental info =: display (1
T 1
: [customer pays]: print re éeipl() }
| + >t
1 1 | 1
| 1 | |
| 1 | |
| 1 1 1]
1 I ! 1 |
L L L L |
1 1 1 1]
1 | | 1 1
1 1 | 1 1

() data items contained in the message () represent items that are passed as inputs with the message

separates output parameters and conditions from message name
display () message used to suggest future user interface classes

Figure 4. Jason's video -- Sequence Diagram for Rent Movie Use Case

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(1)

This approach was successfully used and refined over the
course of four subsequent semesters. In these semesters, the
students had fewer issues and problems developing “proper”
class diagrams for assignments and in testing situations. The
students were able to apply their previously learned data
modeling skills. Furthermore, they responded well to treating
state and behavior separately during the logical design of a
business system. Lastly, the students were better able to
understand the behavior property of classes and were more
confident in their ability to assign operations to classes in a
class diagram.

4. DISCUSSION

Should we rethink the processes taught in our database
courses to more closely align the way we think about data
with the way applications are developed? Our answer to this
question is yes. As will always be the case in our discipline,
the process and techniques we teach are always shifting to
keep up with changes in practice. Where we may disagree

with others is in the nature of the change. We articulate a
teaching process that incorporates the UML syntax as well as
the encapsulation of state and behavior, but we suggest this
can be done without a revolution.

While we recognize that our experience is non-scientific, we

~ believe our approach has merit and is supported by prior

research and current industry practice. In this section, we
review existing research and provide an anecdotal example
from industry that lends credence to our recommendations.

4.1 Previous Research

A review of the literature suggests the use of OO design and
development practices are moving to the main stream. For
instance, one can find claims such as:

the UML is becoming widely used for software
and database modeling (Halpin and Bloesch 1999),
and

Object-Oriented (OO) systems development is a
"hot topic" among computing professionals and
academics (Johnson and Hardgrave 1999).

|

|

|
L

|

|

L

|

|

|

|

|

|

|

|

|

|

|
L

Moive Rental Line
Renta] Clerk | i
| | |
[} | |
| | |
il ik 1
*. returned movie : return movie(movielD) : update(returndate) :
N N N
q 1 4
] | |
| | |
| | |
| | [}
]
:	
= L L	
1 1	
1	1
1 1	
] | |
1 | |

Leagend

* indicates messages that iterate

(]

contain conditions that must be true for message to be activated
data items to the left of the = represent items returned by the message

() dataitems contained in the message () represent items that are passed as inputs with the message
separates output parameters and conditions from message name
display () message used to suggest future user interface classes

Figure 5. Jason's Video -- Sequence Diagram for Return Movie Use Case

59

Journal of Information Systems Education, Vol. 17(1)

However, the shift to OO techniques receives a more mixed
review. While advocates of OO design proclaim advantages
such as conceptual clarity and better alignment with the
conceptual space (Pancake 1995; Rosson and Alpert 1990),
critics claim it is conceptually complex, difficult to use, and
difficult to learn (Sheetz et al. 1997). Further, shifts to OO
analysis and design (OOAD) are likely more difficult than
shifts to OO programming (OOP) (Sircar, Nerur, and
Mahapatra 2001). Empirical studies indicate that ERDs are
often more correct and easier to develop than corresponding
OO0 diagrams (Shoval and Shiran 1997).

Movie Customer
-titie -name
-movie rating -address
-movie 1D -city
-rental rate -state
-date acquired -zip
-media type -phone
-genre -email
+return movie(in movielD) -member ID
+read() +read(in member ID)
+add rental()
+create customer()
RentalLine 1.0
-rate
1.1
-duedate ~ [-———-"
-return date
+calc due date() 0.*
Rental
-rental date
-rental #
+create rental()
+add movie(in movie ID) 0.*
+calc total()
+print receipt()

Figure 6. Jason's Video -- Class Diagram (with behavior)

While considerable work has been done to understand the
transition from traditional methods (i.e., ERD diagrams) to
00 thinking, previous researchers often overlook or give
little attention to the question of whether the two approaches
are mutually exclusive. This is an especially relevant
question when attempts to utilize OO concepts in a data
management context are considered.

There is some debate regarding wheéther a shift to OO
methods requires evolutionary or revolutionary change in the
cognitive processes of developers (Morris, Speier, and
Hoffer 1999; Sircar et al. 2001). Those who argue that OO
methods require revolutionary change (or paradigm shifts)
suggest a need to abandon previous process knowledge due
to a cognitive mismatch between the OO concepts and
structured design concepts that interferes with the production
of a high-quality product (Nelson, Armstrong, and Ghods
2002).

In one of few studies we found that decomposed the
development lifecycle and considered the level of change
taking place in different stages, the authors suggest that the
level of change during the analysis and design phase is
architectural (somewhere between incremental and radical)

60

(Sircar et al. 2001). These authors conclude based on a co-
citation analysis that a developer’s knowledge about data and
processes -- based on training or experience using a
structured approach -- does not need to change in order to
adopt an OO approach. However, the developer’s knowledge
about the relationship among these components must change
because data and process are encapsulated. : '

Advocates of evolution suggest that knowledge of a
structured development process can (and potentially should)
transfer into the OO development environment (Morris et al.
1999; Shaft, Albert, and Jasperson 2004). Morris, et al,
(1999) asked novice and experienced developers to develop
two systems -- one using a structured approach the other an
OO approach. They found developers experienced in using
structured methods produced higher quality solutions than
novice developers regardless of method employed
suggesting that “...some prior systems analysis. problem-
solving knowledge transferred when moving from process to
object modeling (p. 124).”

We argue for the latter approach. The advantages of this
approach are fundamental: the reduction of uncertainty for
the student and easier learning of OO concepts. Based on our
experience in the classroom, our approach attempts to
encourage students to transfer their existing knowledge about
data modeling into their attempts to develop a class diagram.
We believe this approach reduces uncertainty for the student
making him/her more confident in his/her skills and more
capable of evaluating his/her own solutions prior to
submitting assignments.

We also believe our approach improves the efficacy of our
coverage of modeling behaviors. The modeling of behavior
has proven a difficult concept for students to learn. One
recent study offered the following: “Placing the right
operations in the appropriate objects...is a consistent
problem for students (Sim and Wright 2001/2002: p 99).”
Our approach facilitates the coverage of behaviors by not
asking the students to engage in a joint modeling of state and
behavior. While these elements are encapsulated within
objects in an OO system, we find no evidence (either in the
literature or our own experiences) that considering them
serially results in lower quality solutions.

In contrast, our experience using CRC cards suggests that the
difficulty in modeling behaviors is related to a difficulty in
understanding the relationship between state and behavior
that may be made more clear by considering them separately.
In effect, we argue that by considering the state and behavior
characteristics of a class separately we reduce the complexity
of understanding the concept of a class. This in turn leads to
an enhanced ability to move from the traditional, relational
development environment to the more modern, OO
development environment.

We are not the first to suggest that OO and traditional
modeling processes might be combined. Others suggest a
similar combined approach and recommend that OO schema
be based on an ERD (Shoval 1988; Shoval and Kabeli 2001).
Our method is not conceptually different from theirs. We do,
however, provide a more detailed process for classroom

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(1)

instruction using this approach. Further, we have attempted
to articulate why this approach should be undertaken. In a
related fashion, Halpin and Bloesch (1999) recommend
using UML purely for analysis, thus the UML class diagram
would provide an extended Entity-Relationship Diagram
(ERD)-notation.

It is our premise that the norm our students can expect in
practice will very likely include both a traditional (i.e.,
relational) database environment and an object-oriented
application environment. As such, the data modeling
elements of many projects experienced in today’s IT
environment require those in practice to straddle both
paradigms.

4.2 A Perspective from Practice

We asked an IT professional (our former student and third
author) to comment on this premise. The following section
contains his response. (We have made a few minor edits to
the following for style and flow; however, for the most part
the response is un-edited.)

In the systems development projects I have

completed the use of entity relationship diagrams

and object model diagrams have both been critical to

solving the business problem presented. In some

cases, both models have driven the overall

development effort. I find that several factors have

led to the choice of which model was used. Those

factors are as follows:

1. New system versus
enhancements

2. Tightness of coupling to other existing systems

3. Transactional nature of the system being
designed

4, The level and amount of reporting needed for
business users

existing system

Factor one requires little explanation. In
enhancement projects, we rely heavily upon the
initial system design, and therefore, whatever drove
this process to begin with would typically continue
to do so for each enhancement effort.

When a system is very tightly coupled to other
systems, it becomes important to consider the
designs of those systems in the design of the system
we wish to build. For one project, the new system
was tightly coupled to two existing systems, even
sharing the same Oracle database. In this situation,
although the application was a Java based
application, and did have a detailed object model, it

was the design of the database, and the entity
relationship models that drove the overall design of
the system.

When a system is highly transaction based, the
design of the database also tends to be a more critical
factor in the overall success of the system. A system
that processes large volumes of transactions will
typically require the data model to be optimized for

61

that purpose, whereas a system that is not transaction
based doesn’t have as strong a dependency.

On another project, the system was not transaction
based. It simply integrated information from two
other transaction-based systems, which were built
around a data model. Because the new system was
designed with summation in mind and didn’t share a
data store with either of the two existing systems, the
object model drove the design of the system.

In a current project, I am developing a document
classification rules management application. This
system will be used to manage the classification
rules, attributes, and information (metadata) for our
enterprise document repository. The system
integration is done by the use of Enterprise Java
Beans. In this particular situation, the coupling of the
systems is not very tight, and more importantly,
neither system is at all transaction based. In fact,
design patterns such as Session Facades, Business
and Value Objects, and Business Delegates were
implemented for the sole purpose of decoupling the
logic of the two systems, and encapsulating the logic
of the rules management system to make change
management easier. This was clearly a case where
the object model drove the design of the overall
system. We began with hashing out an object model
to facilitate our system and then built a database
structure which could support that model.

The last factor I have found to play a key role in the
decision of which model drives the design is the
need for reporting. In another project 1 was assigned,
called Well Process Management (WPM), the
system was designed to be the integration point

_ between all other systems in the scope of the Well

Life Cycle. Although it was to be coupled with
several transaction based systems, the coupling was
to be very loose, and the business logic of the WPM
system was to be completely encapsulated from the
other systems it touched. This was a situation where
the object model played a much greater role in
system design. However, the purpose of the system
was to provide management with a very high level
view of the well life cycle across the entire company.
That need for real time reporting made the design of
the database an equally important consideration. In
this particular situation, one could argue that both
models played an equal role in leading the design
process.

Assuming these experiences are not uncommon, current IT
practitioners often shift from ERDs to object models and
back again. Further, they need to understand the mapping
from one to the other. Finally, as the new systems often must
be integrated with existing systems, this need to straddle
relational and OO thinking is unlikely to go away any time
soon.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(1)

If in practice shifting from one modeling technique to the
other is the norm, perhaps the focus of our teaching should
be less about which model to teach (i.e., ERD or class
diagram), but instead on how to conceptually integrate them
in such a way as to facilitate easy transition from one to the
other and arm our students with the ability to use either
depending on the best fit with the project characteristics.

We believe these examples from prior research and current
practice support our recommended approach. Furthermore,
we believe the student gains ability to leverage the robust
traditional processes while simultaneously tapping into the
rich and standardized notation available in the UML class
diagram.

5. CONCLUSION

The purpose of this special issue was to address a growing
question in our community about whether we should be
teaching ERDs versus modeling using the UML notation.
Ours is a view from the fence. We believe both a relational
data modeling view as well as a class diagram view of data is
necessary. The method chosen depends on where the core
database course appears in the MIS curriculum. If it precedes
systems analysis, then we would encourage instructors to
cover data modeling using traditional ERD notation —
keeping data and process logic separate. After which, the
instructor in the systems analysis course can introduce
process logic. Now the combining of process and data can be
more fully understood, and UML notation can be useful. If
database comes later in the curriculum, after systems
analysis, then UML notation should be used in the database
course. This presupposes that data and process have been
decoupled in the systems analysis course and students are
now ready to absorb the complexities of the more integrated
OO approach.

The use of OO for new application development is fairly
well-established as fact—especially the use of OO
programming languages. Paradoxically, relational databases
are characterized in the trade press as ubiquitous (Walsh,
2004). As such, IT professionals charged with developing
processes that capture, process, or report data will continue
to need relational database skills as well as developing an
understanding of classes and objects.

Based on this premise, we articulate a process to facilitate
teaching data modeling and object thinking in an integrated
(albeit serial) fashion. While we have used our approach for
a number of semesters, we recognize that the conclusions we
draw are non-scientific and encourage rigorous research to
determine the efficacy of our advocated approach. ‘

6. REFERENCES

Beck, K. and Cunningham, W. “A Laboratory for Teaching
Object-Oriented Thinking,” SIGPLAN Notices (24:10),
October 1989, pp 1-6.

Bellin, D. and Simone, S. S. The CRC Card Book, Addison-
Wesley, Boston, MA, 1997.

Chen, P. “The Entity Relationship Model - Towards a
Unified View of Data,” ACM Transactions on Database
Systems (1:1), March 1976, pp 9-36.

62

Chen, P. The Entity-Relationship Approach to Logical
Database Design, QUE.D. Information Sciences,
Wellesley, MA, 1977.

Date, C. J. An Introduction to Database Systems, (4th ed.)
Addison-Wesley, Reading, MA, 1986.

Fowler, M. and Scott, K. UML Distilled: A Brief Guide to
the Standard Object Modeling Language, Addison-
Wesley, Reading, MA, 2000.

Halpin, T. and Bloesch, A. “Data Modeling in UML and
ORM: A Comparison,” Journal of Database
Management (14:4), Oct-Dec 1999, pp 4-14.

Hoffer, J. A., Prescott, M. B., and McFadden, F. R. Modern
Database Management, (7th ed.) Addison-Wesley,
Reading, MA, 2005.

Johnson, R. and Hardgrave, B. C. “Object-Oriented Systems
Development: Current Practices and Attitudes in
Industry,” Journal of Systems & Software (48:1) 1999, pp
5-12.

Krill, P. “Two Database Projects Afoot in Eclipse,”
InfoWorld (27:17), April 25, 2005, p 23.

Lai, E. “Starwood Checks in with Object Database for
Reservations,” Computerworld (40:3), January 16, 2006,
p. 19.

Martin, J. Computer Database Organization, Prentice-Hall,
Englewood Cliffs, NJ, 1982.

Monash, C. A. “Looking Beyond the Big Three”
Computerworld (39:19), May 9, 2003, p 26.

Morris, M. G., Speier, C., and Hoffer, J. A. “An Examination
of Procedural and Object-Oriented Systems Analysis
Methods: Does Prior Experience Help or Hinder
Performance,” Decision Sciences (30:1), Winter 1999, pp
108-136.

Nelson, H. J., Armstrong, D. J., and Ghods, M. “Old Dogs
and New Tricks,” Communications of the ACM (45:10),
October 2002, pp 132-137.

Pancake, C. M. “The Promise and the Cost of Object
Technology: A Five-Year Forecast,” Communications of
the ACM (38:10), October 1995, pp 33-49.

Rosson, M. B. and Alpert, S. R. “The Cognitive
Consequences of Object-Oriented Design,” Human-
Computer Interaction (5:4) 1990, pp 345-379.

Shaft, T. M., Albert, L. J., and Jasperson, J. “A Longitudinal
Study of Information Systems Developers’
Understanding of Software Development Concepts
During a Transition from Structured to Object-Oriented
Development,” presented at Americas Conference on
Information Systems, C. Bullen and E. Stohr (eds.), New
York, NY, 2004, pp. 1620-1630.

Shaft, T. M. and Jasperson, J. “Transition to an Object-
Oriented Development Environment: A Summary of
Learning from CITGO,” presented at University of
Oklahoma Center for MIS Studies Spring Meeting,
Norman, OK, April 2003.

Sheetz, S. D., Irwin, G., Tegarden, D. P., Nelson, H. J., and
Monarchi, D. E. “Exploring the Difficulties of Learning
Object-Oriented Technology,” Journal of Management
Information Systems (14:2), Fall 1997, pp 103-131.

Shoval, P. “ADISSA: Architectural Design of Information
Systems Based on Structured Analysis,” Information
Systems (13:2) 1988, pp 193-210.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Svstems Education, 1ol 17(1)

Shoval, P. and Kabeli, J. “FOOM: Functional- and Object-
Oriented Analysis & Design of Information Systems: An
Integrated Methodology,” Jowrnal —of Database
Management (12:1), Jan-Mar 2001, pp 15-25.

Shoval, P. and Shiran, S. “Entity-Relationships and Object-
Oriented Data Modeling -- An Experimental Comparison
of Design Quality,” Data & Knowledge Engineering (21)
1997, pp 297-315.

Sim, E. R. and Wright, G. “The Difficulties of Learning
Object-Oriented Analysis and Design: An Exploratory
Study,” Journal of Computer Information Systems (42:2),
Winter 2001/2002, pp 95-100.

Sircar, S., Nerur, S. P., and Mahapatra, R. “Revolution or
Evolution? A Comparison of Object-Oriented and
Structured Systems Development Methods,” MIS
Quarterly (25:4), December 2001, pp 457-471.

Vician, C., Garfield, M., Hoffer, J. A., Prescott, M. B,
Rollier, B., Strong, D. M., and Elder, K. L. “The AMCIS
2003 Panels of IS Education-II: The Chicken and the Egg
Debate: Positioning Database Content in the Information
Systems Curriculum,” Communications of the AIS (14:7)
2004, pp 147-231.

Walsh, G. “The Art of Object-Relational Mapping,”
Software Development Times (113) 2003, p 25.

63

AUTHORS BIOGRAPHIES

Traci A. Carte is an Associate Professor of MIS in the
Michael F. Price College of Business at
the University of Oklahoma. She
received her Ph.D. in MIS from the
University of Georgia. Currently, her
research interests include IT support for
diverse teams, politics and IT, and
research methods. Her research has
been published in such journals as M/S
Quarterly, Information Svstems
Research, Decision Support Systems,
and Journal of the AIS. She serves on the editorial board of
MIS Quarterly.

'Jon (Sean) Jasperson is a Clinical Assistant Professor for

» the Information and Operatlons
Management Department in the
Mays Business School at Texas
A&M University. His research
interests include the adoption, use,
management, and implementation of
information technology in
organizational settings. He received
his Ph.D. from Florida State
University.

Mark E. Cornelius is a senior ITS Developer in IT Services
for Anadarko Petroleum Corporation.
He received his MBA from the
Michael F. Price College of Business
at The University of Oklahoma. His
professional interests currently focus

on J2EE development, systems
integration, and messaging
technologies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISCCp Eosic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2006 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

