Demonstration of Parallel Processing Computing: A Scalable Linux Personal Computer Cluster Approach
Rine, Jay;Virginia Franke Kleist;McConahey, Brian

Journal of Information Systems Education; Summer 2005; 16, 2; Research Library

pg. 231

Journal of Information Systems Education, Vol. 16(2)

Demonstration of Parallel Processing Computing:
A Scalable Linux Personal Computer Cluster Approach

Jay Rine
Virginia Franke Kleist
Brian McConahey
Department of Management
West Virginia University
Morgantown, WV 26506
jayrine@msn.com virginia.kleist@mail.wvu.edu b_mcconah@hotmail.com

ABSTRACT

In this paper, we describe an innovative approach to teaching parallel computing concepts in a lab setting using a master and
slave cluster of Pentium PCs strapped together using Scyld Corporation’s Beowulf software, applying a straightforward,
custom written prime number test analytical program. This classroom based parallel processing application serves to illustrate
three useful topics for the advanced decision sciences student: 1) the Linux operating system and programming concepts, 2)
Beowulf cluster computing, and 3) the importance of Linux based parallel processing using low level PCs to solve complex
computing applications. It is likely that the results described here can be replicated at low cost in most academic computing
environments, yielding enhanced student understanding and ownership of previously less accessible information systems
programming concepts. Further, learning the described cluster computing technology tool may build improved problem
solving skills for students faced with large, non-trivial computational requirements. Finally, we believe that the demonstrated

approach is inherently scalable, thus, deploying this method in larger and larger clusters would be additionally instructive.
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1. INTRODUCTION

The processing power of personal computers has grown
exponentially over the years, yet the personal computer can
still complete only one instruction at a time. If given a
sufficiently large number of tasks to complete, such as
frequently encountered during financial simulation
processing, a considerable amount of computing power and
time are required to finish the assigned work. In a parallel
processing environment, such tasks can be delegated to
various processors and worked on simultaneously, greatly
improving overall run time to completion. Historically,
parallel processing has been the realm of mainframe
computers, an expensive and often financially out-of-reach
solution that requires specialized personnel and custom
written software. Few students have access to these
facilitics, and fewer still obtain any hands on experience in
the parallel processing computing domain.  This paper
investigates and demonstrates results from an innovative, lab
based approach used for teaching the concept of clustering in
simulation problems, in which everyday personal computers
are networked together using a Linux platform, and used like
a single parallel processing machine for solving massive
computer processing tasks. We suggest that such a hands-on
approach to teaching parallel processing computing will
yield effective graduate student learning in an area that is

rapidly changing, prohibitively expensive, yet of critical
technological importance in the near future.

Since the introduction of the IBM PC in 1981 (Bellis, 1999),
personal computers (PCs) have become increasingly
powerful and well-networked with each other. Many of
these machines, however, are utilized for mostly narrow
scope computing tasks such as e-mail, spreadsheet and word
processing applications (Taschek, 2003). While many
organizations have a need for harnessing large amounts of
computing power, they have historically elected to utilize
mainframe computers or in more recent times implemented
banks of the latest equipped PCs. However, both of these
solutions are quite expensive and prohibitive for many
organizational computing tasks.

When confronted with a requirement for large computing
processing power in 1994, a contractor for NASA
established a “Beowulf project” with the goal of harnessing
the computational power of a group of personal computers
(Taschek, 2003). As a result of this project, the first
Beowulf cluster was created, in which sixteen computers
running under the Linux operating system were networked
together (Gropp et al., 2003). This cluster was constructed
such that its collective processing power could be hamessed
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as one computer and utilized by programs able to take
advantage of such parallel processing.

2. GRID COMPUTING

Conceptually similar to Beowulf clusters, grid computing
has emerged as a more commercially viable method of
utilizing the vast amounts of idle computing power that
resides within many corporations. Although both methods
are based upon an underlying Linux operating system, grid
computing is mostly implemented by commercial vendors
such as IBM (Middlemiss, 2004), while Beowulf clusters
tend to be more of a build—it-yourself experience that is
advocated mainly by computer hobbyists and academic
institutions.

Unlike Beowulf clusters, which tend to be intentionally
isolated from outside networks, grid computing uses external
contact to its advantage; its component computers need not
be in the same physical location (Lonsdale). The “SETI at
Home™ project is an example of grid computing (Taschek,
2003) which is currently tapping the idle computing power
of hundreds of thousands of computers throughout world
(SETI@home). A more economically oriented, albeit
smaller scale, use of grid computing was implemented at
Charles  Schwab. This firm wused the aggregated
computational power of several machines strapped together
in a successful effort to reduce the run time of certain
financial scenarios by an order of magnitude (Middlemiss,
2004).

2.1 Selecting Beowulf Software

A Beowulf cluster can be constructed using one of any
number of software options, although all are based upon an
underlying Linux distribution. For this case, the “Basic
Edition” of Scyld Corporation’s Beowulf software was
purchased through the Linux Central e-commerce web site
for $7.80 (Linux Central). Its selection was driven by the
low price of the software, the simplicity of how the cluster
was to be constructed and the positive comments found on
the Internet attesting to both its ease of installation and use.
In fact, the subsequent installation required approximately
thirty minutes and consumed slightly less than 700
megabytes of hard drive space on the master node, while the
slave node(s) need not have a hard drive. It should be noted
here that the “Basic Edition” contains neither documentation
nor user support. In addition, the version available through
Linux Central is the outdated Release 27BZ-8 with a
copyright of 2001, the Scyld Corporation has subsequently
issued Releases 28 and 29 of its Beowulf software.

2.2 Building a Beowulf Cluster

For this deployment of parallel processing using a Linux
platform, a total of seven computers were employed in the
construction of the cluster with one designated as master and
six as slaves. Table 1 summarizes the base specifications of
each computer.

As can be seen in the above table, the cluster is not made up
of homogenous computers, and the machines used for this
project were abandoned and relegated to storage. The lack
of consistent computing power across the cluster lead to

some interesting performance characteristics during the
benchmarking phase of the project and will be addressed
later in this paper.

Table 1: Base Specifications of Computers

Node Processor RAM
Master Intel Pentium II 450 MHz 192 MB
Slave Intel Pentium III 450 MHz 256 MB
Slave Intel Pentium III 450 MHz 256 MB
Slave Intel Pentium III 450 MHz 256 MB
Slave Intel Pentium III 450 MHz 256 MB
Slave Intel Pentium III 733 MHz 256 MB
Slave Intel Pentium 200 MHz 64 MB

During the construction of the cluster, a concern became
evident. In this lab application, there were several computers
operating in a confined space, and the room temperature
began to rise quickly and noticeably. A larger cluster
composed of dozens of computers would generate a
considerable amount of heat and would likely need to be
housed in a location with sufficient air conditioning to
prevent overheating, which is discussed in greater detail by
Brown (pp. 15-16). Since the master node is likely to have
access to other parts of the network, it is also suggested that
this location be secured from unauthorized personnel.

3. WRITING A PROGRAM TO RUN IN PARALLEL

Once construction of the master slave cluster was complete,
it was necessary to design and code a parallel program that
could be used to test the computational speed of the cluster.
Since a Message Passing Interface (MPI) had been designed
to parallelize programs within the C programming language,
C was selected. While any computationally intensive
program would suffice for testing purposes, prime numbers
had been listed as a prospective target for parallel processing

(Blaise, 2001).

A simplistic method for determining if a test value is prime
involves an iterative test using modular arithmetic. A list of
prospective factors is generated, using each whole number
greater than or equal to two but less than the square root of
the test value. Each of these prospective factors is divided
into the test value. If the remainder is zero, then a factor has
been found and the test value cannot be prime. If the
remainder is non—zero for all prospective factors, then the
test value must be prime. The designed algorithm was
purposely inelegant, requiring brute force to determine if a
number is prime. For example, since all even numbers are
divisible by two, the only even prime number is two; as a
result, there is no need to test any even number greater than
two. However, it was not the purpose of this program to
efficiently calculate prime numbers. The objective of the
program was to provide a facility with which the cluster
could be measured for computational speed, and to
demonstrate to the student the functionality of cluster
computing in a lab setting.

3.1 Sourcecode and Subroutines
Although the program can be run across multiple nodes, the
program need only exist on the master node. The program
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was directly modeled after a sample program in Gropp (pp.

215-218) and contains the following three subroutines:

1.  Main — initializes the MPI structure and directs the
master and slave nodes to execute their respective
subroutines, based upon their MPI-defined node rank.

2. Master — choreographs the data being sent to the various
slave nodes, as well as collates the subsequent
responses; determines when all prospective prime
numbers have been evaluated, at which point
termination signals are sent to the slave nodes and it.

3. Slave — based upon data received from the main
subroutine and master node, calculates if a series of
values are prime or non—prime; subsequently reports its
results back to the master node. (NOTE: The source
code is available upon request from the authors).

The program was also written to require that two command
line arguments be provided at run time. The first argument
defines the upper limit that will be tested as a prospective
prime number. The second argument determines how many
values will be assigned to each slave node for testing during
each iteration. By manipulating these two arguments, a range
of run times can be generated. These data can then be
analyzed with respect to computation and communication
time over more than one slave node, if the instructor so
chooses.

To assist in the analysis of computation and communication
time, the MPI timer functionality was incorporated into the
“Main” subroutine of the program. In particular, the time is
noted immediately before the “Master” subroutine is called,
as well as immediately after the “Master” subroutine is
completed.  Locating the timing elements around the
“Master” subroutine is most appropriate for this purpose, as
the “Master” subroutine is responsible for initiating the
calculation processes on the slave nodes and does not
terminate until all prospective prime numbers have been
evaluated. However, it should be noted that there is some
MPI housekeeping that is required prior to the “Master”

subroutine and after the “Master” subroutine’s completion;
this time is not captured.

It should be noted that in a standalone (non—cluster)
computing environment, debugging a program may be
difficult and time consuming, but is a relatively
straightforward exercise. However, a program being written
in a parallel processing environment presents a much more
difficult debugging task. In particular, it becomes
significantly more difficult to isolate the nature and source of
the underlying errors, as the algorithm is no longer the sole
source of potential problems; instead, the problem may be a
result of inappropriately programmed message handling by
either the master node or the slave nodes, or even an inability
of the various nodes to physically communicate with each
other due to network difficulties.

3.2 Program Efficiency

As stated previously, the program was not written with
efficiency as its primary goal. This is confirmed through an
analysis of program run times using a single slave, in which
the communication aspect was minimized by setting the two
aforementioned command line arguments equal; this forced
the single slave node to evaluate all prospective prime
numbers using just one communication cycle. As shown in
Figure 1, the run times are exponential with respect to the
quantity of values being evaluated, when run in the single
slave arrangement.

In particular, a mere 1.3 seconds were needed to evaluate the
prime numbers up to and including 100,000. Increasing the
threshold to 1,000,000 required a total of 25 seconds, which
demonstrates that the program has already begun to exhibit
exponential scaling characteristics; ten times as many
numbers were evaluated, but nearly twenty times as much
run time was needed. Finally, 588 seconds were required to
evaluate all prospective prime numbers through 10,000,000,
once again, ten times as many numbers were evaluated, but
over twenty times as much run time was needed.

Efficiency of Program Running with One Slave
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Figure T: Efficiency of Program Running with One Slave
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3.3 Impact Of Communication On Run Time

We test the impact of intra—cluster communications on
program run time in the single node arrangement. During
each communication cycle of the prime number program, the
master node sends one integer to the slave nodes,
representing the starting value for the next iteration of prime
number calculations. Upon completing its calculations, the
slave nodes reply to the master node with seven integers,
representing the number of discovered prime numbers less
than or equal to 10; less than or equal to 100; less than or
equal to 1,000; less than or equal to 10,000; less than or
equal to 100,000, less than or equal to 1,000,000; and less
than or equal to 10,000,000. The master node collates the
summarized data from these replies until all requested
numbers, as defined by the first argument in the command
line, have been evaluated.

To confirm that the program had calculated the prime
numbers correctly, the results of the program were compared
with known primes, as obtained from the University of
Tennessee at Martin web site (Caldwell), as found in Table
2.

It should be noted that it is possible for the program to
incorrectly label one or more particular numbers (i.e.
determining that a prime number is not prime or the reverse),
while still generating summarized values that are consistent
with the above table. However, the odds of this occurring
were deemed to be insignificant due to the simplicity of the
underlying algorithm, as well as unimportant to the overall
purpose of the program.

Table 2: Known Primes (Caldwell)

Upper Limit Prime Numbers Less
Than or Equal To Upper
Limit

10 4

100 25

1,000 168

10,000 1,229

100,000 9,592

1,000,000 78,498

10,000,000 664,579

The total run time of the program is equal to the sum of the
total calculation time and the total communication time.
Since the initial cluster contained only one slave node, the
total calculation time is effectively constant. By adjusting
the value of the second command line argument, while
holding the first command line argument constant, the
program could be evaluated over a range of communication
cycles. As expected, the shortest total run time of 588
seconds was obtained when only one communication cycle
was required, and total run time did increase as additional
communication cycles were incurred, but was fairly stable
over a range of communication cycles.

Through 10,000 communication cycles, only 11 additional
seconds of run time were needed with a single slave. At this
point, however, additional communication cycles begin to
materially impact the run time of the program. At the level
of 100,000 and 1,000,000 communication cycles, the total
program run time spikes to 682 and 1,443 seconds,
respectively. These represent 16% and 145% increases over
the minimum run time of 588 seconds. Thus, we were able
to demonstrate a strictly increasing relationship between run
time and communication cycles in our single node
deployment. The following section of the paper explores the
differences that the student will be expected to see in
processing time and efficiencies as compared to the single
slave design, when deploying the prime number program in a
muiti-node Beowulf cluster.

3.4 Analysis of Run Times for Six Slave Cluster

In a multi-slave node cluster systems design, should the
instructor  wish to further demonstrate the potential
scalability efficiencies from parallel processing, it was
expected that the run time of the program would improve as
the utilization of the computing power of the entire cluster
increases. As shown in Figure 2, the number of
communication cycles greatly impact the total run time of
the six slave cluster when calculating prime numbers up to
six million. At fewer communication cycles, the cluster’s
efficiency is impeded by large amounts of idle time. For
example, in Jooking at Figure 2, it is apparent when only one
communication cycle is permitted, then one slave node
calculates furiously, while the other five slave nodes remain
idle.

If six communication cycles are used, then all six slave
nodes will be utilized. However, since some scenarios may
require more calculation time than other scenarios, it is likely
that some slave nodes will finish relatively quickly and
remain idle until the last slave node has finished. For
example, the time required to calculate the primes between 1
and 1,000,000 is significantly less than the time required to
calculate the primes between 5,000,001 and 6,000,000. As
additional communication cycles are permitted, the job
becomes more evenly distributed amongst the slave nodes,
decreasing the quantity of slave node idle time, as well as
total program run time. This is evidenced by the flattening
of the above run time curve.

An interesting event occurred at the sixth communication
cycle — the run time spiked up to a level nearly equal to the
one communication cycle run. This is a result of the
heterogeneous nature of the machines in the larger cluster.
As the communication cycles increase from one to six,
additional slave nodes are sequentially put into use. The
cluster was structured in such a way that the most powerful

of the idle slave nodes is added to the cluster; as such, the
least powerful slave node is added last. The sixth slave node
is not only the least powerful of the slave nodes, but
significantly inferior. As such, adding the slower slave node
to the cluster will actually impair the cluster’s performance

234

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Journal of Information Systems Education, Vol. 16(2)

Run Times for Primes up to 6,000,000
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Figure 2: Run Times for Primes up to 6 Million with One Cycle

until sufficient communication cycles are available to more
evenly distribute the job. In short, the first five slaves were
finishing their assigned tasks rather quickly (i.e. in less than
twenty seconds), but then needed to wait an additional forty
seconds for the sixth, less efficient, slave to finish its task.

It should also be noted that there is a demonstrable trade off
between slave node idle time and communication time. At
some point along the domain of communication cycles, the
reduction in slave node idle time will no longer offset the
incurred increase in communication time, at which point the
total program run time will begin to increase. For primes up
to six million, this increase was first noticeable around ten
thousand communication cycles and became exponentially
more severe as the communication cycles exceeded one
hundred thousand.

Had the six slave nodes been relatively homogenous, then it
is theoretically possible for the program to be completed in
as little as one—sixth of the one communication cycle run
time (Brown, 2003). However, the heterogeneous slave
nodes make it more difficult to cstimatc the theoretical lower
bound of program run time. In reality, the theoretical
minimum run time is unlikely to be achieved due to the
additional communication time incurred, as well as the
differing calculation times required to process different
scenarios.

3.5 Run Times for Different Cluster Configurations
By removing one or more of the slower slave nodes from the

cluster, a “new” cluster could be formed and its performance
benchmarked for comparison against the six slave cluster.
Figure 3 illustrates the impact of cluster size on run time.

It is notable that the five slave cluster run time was not
appreciably slower than the six slave cluster run time. Once
again, this is a result of the heterogeneous nature of the
cluster and in particular, the significant performance
inferiority of the sixth slave node. It is also notable that the
removal of the slowest slave node also resulted in generally
smoother run time curves, since the remaining nodes were
relatively more homogenous. In addition, the total
calculation for the one slave cluster is effectively constant.
As such, additional communication cycles merely impede
the progress of the one slave cluster, resulting in a strictly
increasing run time curve.

It is notable that the five slave cluster run time was not
appreciably slower than the six slave cluster run time. Once
again, this is a result of the heterogeneous nature of the
cluster and in particular, the significant performance
inferiority of the sixth slave node. It is also notable that the
removal of the slowest slave node also resulted in generally
smoother run time curves, since the remaining nodes were
relatively more homogenous. In addition, the total
calculation for the one slave cluster is effectively constant.
As such, additional communication cycles merely impede
the progress of the one slave cluster, resulting in a strictly
increasing run time curve.

235

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Journal of Information Systems Education, Vol. 16(2)

Run Times for Primes up to 6,000,000
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Figure 3: Run Times for Primes up to 6 Million with Six Cycles
numbers up to 100,000; 1,000,000; 10,000,000; and

In general, all of the clusters experience their minimal (or
near minimal) run times over a large range of
communication  cycles. Furthermore, despite the
heterogeneous nature of the underlying slave nodes,
increasing the size of the cluster always resulted in
improvements to the minimum run time.

Prime numbers up to sixty million were also evaluated for
two to six slaves, to determine if this would have a material
impact on the shape or relative dispersion of the various run

time curves. As shown in Figure 4, the relative dispersion of

the run time curves seems to be consistent with the behavior
experienced during the previous (six million prime) runs.
However, it appears that the deleterious impact of excessive
communication cycles is delayed; noticeable impact to the
run time does not occur until the communication cycles
exceed one hundred thousand. Even at one million
communication cycles, the impact of the additional
communication time has not yet become critical.

3.6 Impact Of Cluster Overhead On Run Time

Calculating all of the prime numbers up to six million and
sixty million is an inherently arduous task. It is unsurprising
that increases to the cluster size were able to generate
considerable savings in run time. However, not every job is
a mammoth calculation. To better understand the time lost
during the initiation of the cluster’s message passing logic,
the prime number program was modified to work within a
standalone (i.e. non—cluster) environment. Four different
runs were initiated, requiring the calculation of prime

100,000,000. The standalone version of the prime number
program was run on two different computers: a Pentium 4 at
2.4GHz with 192 MB of RAM and a Pentium II at 450 MHz
with 192 MB of RAM. The total run time for these tasks
was compared with the corresponding run times for various
cluster configurations utilizing 500 communication cycles;
the results are summarized in Figures 5 and 6.

For smaller tasks, the standalone computing jobs dominate
the cluster—based run times. The greater run times for the
clusters are a result of the overhead required to initialize the
message passing within the cluster at the beginning of the
prime number program’s execution. Due to the relatively
small amount of calculation involved, the cluster’s greater
computational power cannot offset the time lost during the
initialization process. In fact, some of the smaller clusters
dominated the larger clusters, as less time is required to
initialize a smaller cluster.

However, once the tasks become sufficiently intensive from
a computational standpoint, the greater power of the clusters
begin to dominate the standalone jobs by an increasingly
significant margin, as demonstrated in the Figures 7 and 8.

In short, the five to fifteen seconds of cluster initialization is
a considerable impediment for a job requiring a minimal
calculation time. However, for jobs requiring calculation
time of hundreds or thousands of seconds, this overhead is
inconsequential.
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Figure 6: Run Time for Primes up to 1,000,000

4. CONCLUSION

Clustering is an interesting, new approach in which the
collective computing power of multiple personal computers
is harnessed and applied as one. The viability of deploying
this technology in a lab setting was demonstrated with the
creation of a two node cluster consisting of a master and
slave node, as well as with a seven node cluster with one
master and six slaves. A relatively simple prime number
program was developed and confirmed to be executable
within the parallel processing environment of the cluster.
The use of the program for teaching purposes illustrated the
importance of the underlying algorithm’s efficiency and
scalability, as well as the potential for intra—cluster
communications to materially impact the execution time of
the program. We suggest that this innovative approach will
be useful for adding to student understanding of the concepts
of the Linux platform, parallel processing applications, and
issues related to multiple node scalability, all while presented
in the traditionally resource limited classroom information
sciences environment.
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APPENDICES

The programming for the Beowulf Computer Cluster is
available at http://www.be.wvu.edu/divmim/memt’kleist/
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