Teaching Flowcharting with FlowC
T Grandon Gill
Journal of Information Systems Education; Spring 2004; 15, 1; Research Library

pg. 65

Journal of Information Systems Education, Vol. 15(1)

Teaching Flowcharting with FlowC

T. Grandon Gill
IS & DS Department, CIS1040
University of South Florida
Tampa, FL 33620-7800
ggill@coba.usf.edu

ABSTRACT

When detailed logic flowcharting fell out of favor as a commercial design tool starting in the mid-1970s, it was discarded by
many IS educators. In doing so, however, we may have thrown the baby out with the bathwater. Many of the disadvantages
of flowcharting as a commercial tool—such as the immense size of flowcharts of large programs—are not necessarily
serious drawbacks in introductory programming classes. Several researchers have also found benefits from the usc of
flowcharts as a teaching tool. The challenge is to develop approaches whereby learning to program—not learning to
flowchart—is emphasized. FlowC, a Windows-based flowcharting application, is an example of a tool that can be used to
minimize the challenges of teaching flowcharting while retaining its benefits in the formative stages of learning to program.
In addition to guiding the user through the creation of diagrams, FlowC also allows the user to view the code (or
pseudocode) implied by each construct drawn in the flowchart. The user may also generate complete applications that may
then be compiled and run in MS Visual Studio .NET. FlowC has been used for three semesters to teach introductory
programming (in C) to undergraduate MIS majors. The students have found the program easy to use and have reported that
flowcharting has been an important component of their overall learning in the course. In addition, analysis of survey data
gathered from students suggests that learning flowcharting early in the course has benefited their learning in subsequent
programming assignments.

Keywords: Flowchart, Programming, C Programming Language, Undergraduate Education

1. INTRODUCTION technique from a commercial and pedagogical standpoint.
Second, it introduces a tool, called FlowC, that has been
The use of flowcharts to design and document program used to teach C-language programming to MIS majors at a
logic was nearly universal in information systems (IS) and large state university for over a year. This leads to a
IS education through the mid-1970s. Since that time, discussion of how the design of FlowC attempts to address
however, complaints voiced by practitioners (e.g., Brooks, the traditional deficiencies of flowcharts, and a
1975) and concerns regarding the educational value of presentation of preliminary results relating to the tool’s
flowcharts (e.g., Schneiderman, et al., 1977) have led to classroom effectiveness.
their virtual elimination in commercial settings and their
near-elimination from academic curricula. 2. A BRIEF HISTORY OF FLOWCHARTING
Just as the use of flowcharts was disappearing, studies The intellectual origins of flowcharting are generally
started to appear suggesting that flowcharts could be of attributed to John von Neumann, who advocated the use of
considerable value in an educational setting, both in terms flowcharts (or ideograms) in designing program logic
of student preferences (e.g., Scalan, 1989) and in terms of (Chapin 1970). Through the 1960s and up to the early
educational outcomes (e.g., Crews and Butterfield, 2002). 1970s, the need for logic flowcharts in designing programs
There is even some evidence that using flowcharts was largely taken as a matter of faith—with approximatcly
provides selective benefits when teaching programming to a dozen texts devoted entirely to the subject of teaching
women (e.g., Crews, et al, 2002), whose declining flowcharting (Shneiderman, et al. 1977).
representation in the programming field has been a source
of considerable concern (Camp, 1997). By the mid-1970s, a number of serious concerns had been
voiced regarding the value of flowcharts. On the
The present paper intends to accomplish two objectives. practitioner side, questions were raised regarding whether
First, it reviews the e xisting literature on flowcharting in or not the use of flowcharts served any practical purpose.
an effort to clarify the strengths and weaknesses of the A well-written structured program, it was argued, was
65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 15(1)

every bit as clear as a flowchart and was much more space-
efficient—since a detailed flowchart takes 3 to 10 times as
much space as the code it depicts. Moreover, experienced
programmers usually created flowcharts only after they
had written their programs. In part, this was to avoid the
excruciatingly painful process of modifying flowcharts to
accommodate code changes—an activity that was almost
universally ignored (Hosch, 1977). With post-coding
flowcharts being the rule, rather than the exception, it
seemed reasonable to question the flowchart's status as an
"indispensable d esign tool" (Brooks, 1975). Furthermore,
although ANSI standards for flowcharting had long
existed, they were generally ignored in practice (Chapin,
1970). To confound matters further, a radically different
style of flowcharting—sometimes referred to as "structured
flowcharts" (Haskell, et al. 1976; Nassi and Shneiderman,
1973)—was introduced around the same time period.

In parallel with the increasing industry concerns, some
researchers began to question the pedagogical value of
flowcharts. Several studies found that flowcharts were no
more effective than pseudocode (a.k.a. program description
language, or PDL) for a number of algorithmic tasks (e.g.,
Ramsey, et al. 1983; Shneiderman, 1982). One of the
earliest and most influential of these studies (Shneiderman,
et al. 1997) went so far as to systematically examine

different stages of the programming process—
composition, debugging, comprehension, and
modification—and could find no benefit of using

flowcharts compared with a PDL presentation. In addition,
it had long been noted that students frequently failed to
conform to flowcharting standards (Hosch, 1977). Couldn't
the time it would take to teach rigorous flowcharting be
better spent working on learning to program?

The combined onslaught of professional and academic
critiques of flowcharting led to a decline in the practice
during the 1980s. Nonetheless, it did not disappear
completely. To begin with, despite its many apparent
weaknesses, the flow diagram is an extremely convenient
tool for introducing concepts such as branching. Thus, the
use of informal flowcharts—particularly in introductory
programming texts—continued for illustrative purposes
(and continues to the present day). Perhaps more
significantly, research began to emerge with findings that
appeared inconsistent with the earlier research that
questioned the value of flowcharts (e.g., Scalan, 1989;
Zhao and Salvendy, 1996, Crews and Butterfield, 2002).

The new research on flowcharting focused primarily on
educational applications, and called into question a number
of aspects of the design of earlier studies. In particular,
many of the earlier tests had not controlled for the time
taken to complete assigned tasks—nearly all of which were
completed by subjects at high levels of performance (e.g.,
95% scores and above). In doing so, it was argued, they
failed to measure the speed at which the task was
performed. Another complaint was that the earlier studies
failed to adequately control for task types. Both these
design concerns proved to be significant. In one

66

experiment (Zhao and Salvendy, 1996), task completion
times, error rates, and perceived difficulty were reduced
significantly by the use of flowcharts (in comparison with
alphanumeric program code)—but only for tasks involving
significant conditional branching.

Another concern relating to the earlier research was that it
considered flowcharting only in the context of
understanding a particular algorithm. The tool's potential
value in learning to program was ignored. Even earlier
attacks on the technique, however, had allowed for its
potential value in a teaching role (e.g., "The detailed blow-
by-blow flow chart, however, is an obsolete nuisance,
suitable only for initiating beginners into algorithmic
thinking", Brooks, 1975, p. 168). Subsequent research
found that students showed an overall preference for
flowchart vs. verbal presentation of algorithms (Scanlan,
1988). Research also found that the use of flowcharting in
an introductory programming course, presented using a
flowchart interpreter software tool, led to significant
improvement in student performance over the course of a
semester (Crews and Butterfield, 2002). There was even
some indication that the benefits of the tool were more
pronounced for female students than for male students
(Crews, et al., 2002). Such an exploratory finding would
be of considerable interest, given current concerns
regarding the d eclining p ercentage o f female e nrollments
in computer-related programs (Camp, 1997).

In summary, then, flowcharting has been proposed useful
for three main purposes: as a form of program
documentation, as a means of enhancing algorithm
understanding, and as a tool for teaching programming. In
each o fthe three areas, certain strengths and weaknesses
have been proposed in the literature. These are contrasted
in Table 1.

The pattern of strengths and weaknesses apparent in Table
1 illustrates how the attractiveness of flowcharts varies
considerably according to usage. As a tool for
documentation, weaknesses clearly outnumber strengths.
Furthermore, some weaknesses—such as their size and
lack of value to skilled programmers—would seem to be
inherent to the representation: unless we change what we
mean by a flowchart, they will always be much larger than
the code they describe. Their practical value in algorithm
comprehension is also doubtful. Even if they do allow
algorithms to be understood more quickly (e.g., Scanlan,
1989), how often—outside of a classroom—are we faced
with a situation where so many people need to understand
a particular algorithm that a flowchart's incremental
benefits in speeding comprehension justifies the time
required to draw the chart?

The wvalue proposition for flowcharts in teaching
programming is very different from the other two uses. Not
only have researchers found many possible benefits of the
technique, but its weaknesses seem less insurmountable
when used for teaching purposes. Indeed, the main
drawbacks seem to involve the mechanics of flowchart

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 15(1)

Table 1: Flowcharting Strengths and Weaknesses

o High level flowcharts may clarify | e
program organization °

Document

Detailed flowcharts too large and cumbersome to use
Too hard to modify

Little evidence that they benefit a skilled programmer
in designing an application

e May speed understanding of complex | e

algorithms

e May enhance error detection in complex | e
algorithms
May reduce perceived difficulty in | e

understanding complex algorithms

Algorithm
comprehension
®

Do little or nothing to improve comprehension of
simple programs

Benefits are reduced as
structured

Size becomes a barrier to comprehension for large
programs

Are not well suited for representing
programming techniques, such as recursion
Much more difficult to prepare than PDLs

code becomes more

some

o Acknowledged to be a natural way of | e
introducing common constructs, such as | e

20 branches and loops o
oo = : .
£ | e May increase overall performance in
-§ 5 introductory programming classes °
& Eo'n e May provide particular benefits to

= underrepresented groups (e.g., women)

e Relatively language independent
e May be perceived as helpful by students

Somewhat difficult to prepare
Very difficult to modify

Easy to do incorrectly (i.e.,
standards)

Learning time can be substantial—taking away from
other class activities

not according to

creation/modification and the tradeoff of teaching
flowcharting versus going directly into teaching
programming in a specific language. In principal, at least,
both of these weaknesses can be minimized through better
tools and teaching strategies. Towards this end, the FlowC
tool was developed.

3. THE FLOWC APPLICATION

FlowC is a flowcharting application that was developed as
a learning aid for use in an introduction to programming
course, taught to MIS majors at a large state university
using the C programming language. The tool is a medium-
sized standalone Windows application (roughly 20,000
lincs of C++ code) developed by the course instructor, with
the initial version representing approximately 4
programmer-months of effort. Approximately 300 students
have used the tool in the course since it was introduced, in
January 2002.

The FlowC interface is mouse-driven. Construction of a
flowchart begins by adding one or more empty functions to
the top-level. C onstructs are then added by right-
clicking vertical lincs within a function, referred to as code
blocks, opening a menu that identifies constructs that can
be inscrted (e.g., branches, a variety of loop types) within
the code block. As constructs are added, further code
blocks are exposed. In addition, the list of constructs that is
presented in the right-click menu is context sensitive. If a
code block is not in a loop, for example, the “continue”
option is not presented. Text within construct graphics

(e.g., rectangles, ellipses, and diamonds) can be edited by
double-clicking the graphic. Presentation styling (e.g.,
color, font, shadowing) and object sizes can also be
controlled though a variety of menu options. To assist the
user getting started, and for the purposes of documentation,
extensive online help is provided.

FlowC was designed to ameliorate the two main challenges

to using flowcharting as a teaching tool: the difficulty of

creating/modifying flowcharts and the tradeoff between
time spent teaching rigorous flowcharting technique versus
time spent teaching actual programming.

Challenge 1: Overcoming the difficulty of creating and
modifying flowcharts
FlowC addresses the challenge of creating/modifying
flowchart primarily through interface design. The tool
represents a significant departure from the typical graphic
design tool (such as MS Visio or MS PowerPoint), which
simplifies drawing shapes and connectors but does littlc to
help the student conceptualize a program (and leads to
charts that are very difficult to modify). Rather than
focusing on graphical design clements (ec.g., rectangles,
boxes, diamonds, connectors), it focuses on structured

programming constructs, such as 2-way branches (c.g., if

constructs), multi-way branches (e.g., case constructs) and
loops (e.g., while, until and for). When a student creates a

function in FlowC, a single connected entry and exit point

is provided. Subsequent constructs then need to be added

to the code block (always a vertical line) between the entry

and exit points. When a construct has been added,
additional code blocks may become available (e.g., an if-

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 15(1)

Figure 1: FlowC Insertion Process

Insertion points

1. A simple function is added

owC - [F lowehar L of Pry . :
FdFe Edt View Codo Projact Insett Window Hebp "

DEMd (e & T

SarphFone
s oo

- /\/\l

@ -

<,
Reacly

3. An if construct is added to the insertion point of
the while loop

S : 2

2. A while loop is added to the function
insertion point

Construct will have two: the zrue branch and the false
branch). Further constructs may then be inserted into these
blocks. This process is illustrated in Figure 1, where a
flowchart starts with an empty function, into which a
while-loop is placed, followed by an if-construct inserted
within the while-loop.

Constructs are also be deleted (or cut-and-pasted) in the
same manner. Individual graphic elements (e.g., the

68

diamond in an if-construct) cannot be removed
individually. Only an entire construct (and any constructs
nested within it) can be removed. As a consequence of this
interface, any flowchart prepared in FlowC is necessarily
structurally valid. Structural validity is, of course, no
guarantee of logical validity. It does, however, prevent
users from creating charts that are likely to generate more
confusion than learning—such as charts containing if
statements with more than two branches, loops that don't

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 15(1)

Figure 2: Examples of FlowC Constructs

Dty

(breal, return,
continue)
Declarations

Siatement Box Types
L

2-Way Branoh

Multiway (case) branch

Branches Loops

@

Statements

o
H

)
(

|

@ DR——

Initializations

1

Function: main

Arguments
Qint arge - Number of

d line arg 2 program name
0 ehar * argu[] - String array of command line arguments (argv[0] points to program
name)

Returns int

Purposa:

Entry point for program

B,

Description of function:

varieus in FlewC

(can be used to
summarize amy
construct)

e

guarantec of logical validity. It does, however, prevent
users from creating charts that are likely to gencrate more
confusion than learning—such as charts containing if
statements with more than two branches, loops that don't
loop back on themselves and "Roach Motel" statement
boxes (where flow checks in but it doesn't check out).

Another important aspect of FlowC's interface design is
that it provides users absolutely no discretion as to the
topological structure of the flowchart. Each construct is
presented in a specific way and, while users can control
global display properties (¢.g., box sizes, coloring, fonts,
etc.), each construct is displayed in one—and only one—

manner. Examples of the presentation of some of the
constructs are shown in Figure 2. These constructs are, for
the most part, consistent with the ANSI standard
(excepting that flow is not allowed to pass though I/O
objects, such as documents and files and multiple
statements can be placed in statement boxes, to conserve
space). Building ANSI compliance into FlowC was not an

69

important objective, however, since the standard has never
been widely adhered to (Chapin 1970).

As first glance, the total lack of flexibility associated with
FlowC representation and positioning might seem unduly
restrictive. This design decision, however, provides a
number of important benefits. First, it climinates line
crossings and other common practical problems
encountered when drawing flowcharts. Second, it allows a
series of simple rules for interpreting the chart to be
specified. For example, the line coming out of the bottom
of a diamond is always the "true" branch, the line coming
out of the left hand side is always the "false" branch.
Similarly, any time a connector is to the left of the object it
connects, it is traveling up (instead of the usual down) and
the only entry point for any non-node (circle) object is the
top. Such rules dramatically reduce the need for labeling in
the chart and are quickly internalized by the user. Finally,
the complete consistency required leads users to focus on
the constructs themselves, rather than on finding the most
efficient layout. Naturally, onc price the user pays for lack

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 15(1)

-" FlowC - FlowC1 i
Flo Edt Yiew Code Broject _ Jnsort
0ed @& 9
"’@;

B

Window Help

fizo

Figure 3: Generating Code and Pseudocode in FlowC

~iffifor (1=0;8tr[i]1="\D" ;it+4) (
if(striil>="a’sastr{i)<="2") (
str[i]=str(i]-Ta'+'A";

}

//INITIALLZING
i=0

IFOR AS LONG AS TEST I& TRUE: str(i)i='\0"
JREPEAT THE CODE THAT FOLLOWS

i IF strii)>='a’ && strli)<="'2"'

i THEN

’ gstr{i]l=str(i]l-'a'+'a’

. END IF // str{il>="a' &§ str(il<="z2'
/| // CONTINUE STATEMENTS COME HERE

| //FINALIZING

i

L 1+t

SHEND OF REPEATED CODE // stx(i]l='\0’
4/ /BREAK STATEMENTS CUME HERE
{// POR LOOP ENDS FOR TEST str[i]l='\D’

%
#

of layout control is that FlowC charts can grow even larger
than traditional flowcharts, with a ratio of roughly 10:1
compared with the code represented being common.

Challenge 2: Tradeoff between teaching flowcharting
and teaching programming

Given that many researchers have found flowcharting no
more effective than use of other techniques for describing
code such as PDLs (e.g., Ramsey, et al., 1983) and that
flowcharting has become uncommon in commercial
documentation, it is reasonable to question the payback of
teaching flowcharting in an introductory

course. Wouldn't the time be better spent providing more
instruction in the language being taught? FlowC addresses
this challenge in two ways. The most direct impact of the
tool comes from learning time compression. The
structure provided by the FlowC interface leads to major
reductions in the time required for students to learn
rigorous flowcharting techniques (contrasted with

70

traditional lectures on flowcharting technique). Indeed,
over the past year students have been taught the how to use
the tool primarily through about 30 minutes of multimedia
tutorial files prepared by the instructor, combined with
some handouts. There has been no feedback to the effect
that this level of introduction was insufficient. Indeed, as
will be discussed in the "Results" section, the tool was
perceived to be relatively easy to use—particularly for
students having no programming background.

The second mechanism for addressing the tradeoff between
teaching flowcharting and programming is changing the
nature of the tradeoff itself. Rather than teaching
flowcharting and C programming in serial fashion, FlowC
is used to teach flowcharting concurrently with teaching
the C language. This approach is greatly facilitated by
another capability built into FlowC: its ability to generate
C code (and pseudocode).

The code-generation capability of FlowC is easy to access.
Any time a construct is selected, a C code window or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 15(1)

Figure 4: Effects of Break Statement (Lines Crossing)

[
F - (\“)

< stfip=n0r

L <

stfi]>="a’ 88& stfi]<=z"

|stri]=str{i]-"a"+'A"

pseudocode window can be opened. These windows take
the text entered into the diagram by the

user and places it in appropriate program/pseudocode
form. This is illustrated in Figure 3, which shows both C
and pseudocode renderings of a selected (shaded) for loop.

FlowC's code generation capability allows the student (and
the instructor, during lectures), to view the direct
correspondence between a flowchart representation and the
code implied by it. This reduces the problem of translating

71

between flowcharts and code that has been identified by
some instructors (e.g., Brewer, 1976). The ability to
display the code implied by any flowchart also helps
students grasp the brace-delimited block structure used in
C (and many other languages, such as C++, Java, C# and
JavaScript). The block structure of C is further reinforced
by the nature of the FlowC interface itsclf, which requires
the user to think in terms of construct blocks—since these
are the only means of adding and removing flowchart
elements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5: FlowC Code Generation Dialog

€ Code Generation Dialog
Included fibraries (.h ﬂles one pet lmek
e.q., Hinclude

flinclude <stdio.h>
Hinclude <stdlib.h>

4
Function prototypes (one per line):
e.d., int MyFunc(char argl{]int arg2)

4]

Include file [noxmaﬂy an.h fﬂe]
}Demo h

Function file (nomally a .c file]
lDemo.c

Tonurnal nf/nfnrmnfmn Svstems Fducation Vol 15/(1)

Use this box to identify the C libraries that
will be used in your project. These librares
may be either standard libraries [optional
but recommended: put the names of these
between < and 3] or libranes that you
have created elsewhere.

Use this box to identify the retum values and arguments of any
C functions that may be called from within your project. Do
not put semicolons after vour prototypes.

1f you do not include these prototypes, you may still be able to
generate C code, but you will no
project.

If & function included in your fle matches a C prototype, the C
code for the function will not be generated.

{~ Generate code for mcluded ﬂc files (this will create a sell-contained prc:;ectj

Browse

Browse

Cancel l

be able to validate your

The file selections control where the C
code created from your flow chart will be
sent, It is recommended that thiee different
files be used (two, for library projects],

Main file [file containing main{) function, nomally a .c file)
lDemo_main.c

R

, Brﬁwse ’

tis possible to make the function file and
the main file the same, of generate code
into a single ¢ fle. This is not
recommended, however.

i

i

FlowC was also designed to illustrate some of the
subtleties of the C programming language. For example, as
illustrated in Figure 4, the presence of an unused node in a

for loop can be used to discuss the effect of a C continue
statement. In addition, the potential confusion that can
result from using statements that violate structured
programming principles (e.g., break and continue) can be
graphically illustrated—as these statements can be shown
to be the only elements in a FlowC program that can lead
to lines crossing (see Figure 4).

The code-generation capability of FlowC is also used to
enforce certain programming standards. For example,
FlowC intentionally omitted goto statements and case
statement fall through from its available options. It also
establishes standards, at least by example, for code
presentation formats, such as indenting and commenting.

A final capability provided by FlowC is the ability to save
complete C projects in a form that can readily be compiled
by MS Visual Studio .NET, the development tool used in
the course. The default behavior of FlowC is to create three
files from each flowchart: 1) a header (.h) file containing
all prototypes, definitions and global declarations, 2) a
source (.c) main file, containing the definition of the
project’s main function, and 3) a source (.c) file containing

72

all remaining function definitions. If a project is designated
a “library” project, no main function is included——making
it possible to create files for use in multiple projects.
FlowC also allows the user to import functions from other

FlowC projects. The code generation dialog is illustrated in
Figure 5.

The current version of FlowC does not perform any syntax
checking. As a consequence, if users place code in FlowC
boxes that is not legal C, the resulting project created by
FlowC will not compile. Even without syntax checking,
however, an advantage of using FlowC to generate code is
that it limits the types of errors that the user is likely to
encounter. Common errors that lead to particularly
incomprehensible compiler messages—such as missing
semicolons, braces and improperly declared functions—are
not normally encountered in FlowC generated code. Thus,
the user’s initial introduction to compiler errors is normally
limited to improperly formed expressions and errors
resulting from improperly declared variables.

Teaching flowcharting (with FlowC) and C syntax
concurrently climinates most of the incremental time
associated with teaching flowcharting (and takes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 15(1)

substantially less time than teaching flowcharting without
FlowC, based on the instructor’s experience). In fact, the
benefits of having FlowC create frameworks for functions
appears to reduce the total elapsed time from introducing C
to the point at which students are able to create their own,
non-trivial, code. As a result, the “tradeoff” between

Table

ments For Introducto

with the instructor. A list of the assignments, and their
respective weights, is presented in Table 2.

Prior to commencing the flowcharting assignments,
students have been introduced to the flowchart
representation of the major programming constructs, both
in lecture and through the use of multimedia (.avi) filcs.

Programming Cours

e Creating single file project in MS Visual Studio .NET

Creating multifile project in NET
Walking through various debugging features and performing screen

e Transforming integers between different bases

Hexadecimal and twos complement properties, overflow

Bitwise and logical operators

Creating flowcharts for qualitative tasks

Describing an algorithm from its flowchart

Creating flowcharts for simple functions and the generating and

Creating a flowchart from C code

e Designing a complex function using a flowchart, then generating and
testing the resultant C code

e Fixing compiler, linker and logic errors in code, capturing key
debugger screens along the way

e Mapping variables, arrays and structures to a hypothetical location in

e Evaluating various value and address expressions
e Specifications are presented for 11 C functions, ranging from fairly

simple functions to more complex ones

e Project must be tested using a test data file supplied by the instructor
e Development of a CGI program that takes input from a web-based form

"Hello N °
1 (5%) world" © .
captures
2 (5%) Numbering No .
systems "
®
e
% ®
3 (27%) Flowcharting Yes compiling code
®
4 (5%) Debugging No
5 (5%) Memory grid No memory
6 (27%) C Functions ~ Yes
CGI
o,
Ty Applications Xies

containing loan amount, interest rate and term values, then produces a
mortgage amortization table page in response.

e Students are given a standalone tool that simulates a web server

teaching flowcharting and
illusory.

teaching programming is

4. TEACHING WITH FLOWC

The FlowC tool is currently used as the basis of a single
assignment in a se mester long course. S tudents c omplete
the assignment over a 3-wecek period in the early stages of
the course. The course is designed such that nearly all
students (more than 90%) typically meet the course
requirements through completing assignments—-although
students have the option of taking midterm and final
examinations for up to 50% of their grade. For students not
taking exams, 80% of the course grade is determined by
performance on three major assignments. Each major
assignment is validated by an individual oral examination,
administered by the instructor or teaching assistants. In the
even a student does not pass the oral exam on the first try,
all subsequent exams on that assignment must be taken

73

Their introduction to the specific rendering of these
constructs in C occurs during the first week of the
assignment, which is organized into the following parts:

4.1 The Flowcharting Assignment

The flowcharting assignment consists of a series of

questions organized as follows:

1. Students are required to flowchart generic tasks, such
as locating the position of the maximum integer in a
list and diagnosing a printer problem.

2. Students arc given a flow chart of a simple algorithm
(binary search), along with an overview of the
algorithm, and are then asked to answer questions
about the algorithm. Students then recreate flowchart
in FlowC and verify their results by compiling and
running the FlowC generated code.

3. Students are asked to create a serics of simple NUL-
terminated string functions (e.g., strcpy, stremp) using
FlowC, then test them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 15(1)

4. Students are given the C-code for a moderately
complex function (atoi) and are asked to flowchart
and explain it.

5. Students are given a written description of an iterative
algorithm for computing a mortgage payment from
interest rate, loan amount and term, and are then
required to flowchart it, then generate C code for the
algorithm that can be compiled and run.

Students completing Parts 1-5 reasonably well get an A on
the assignment, students completing Parts 1-4 receive a B,
and students completing Parts 1-3 receive a C. Students
may work in groups, but—prior to receiving credit for the
assignment—must pass an individual oral examination on
the work submitted with the instructor or a teaching
assistant. Inability to pass the oral exam is treated as
equivalent to not turning in the assignment.

As the organization of the assignment implies, the
principal role of FlowC is to get students comfortable
moving back and forth between logical (i.e., flowchart) and
code (i.e., C) presentation of problems. This focus presents
an interesting contrast with FLINT, another flowcharting
teaching tool described in the literature (Crews and
Butterfield, 2002). The FLINT tool, which was developed
independently of FlowC, contains a fully functional
interpreter (unlike the current version of FlowC)—
meaning that students can actually run their flowcharts
once they create them. This capability makes the FLINT
tool particularly valuable for teaching elementary
programming logic, applicable to any programming
language. Initial research into the use of FLINT suggests
significant net b enefits in o verall c ourse performance are
achievable from this approach (Crews and Butterfield,
2002). Moreover, those benefits proved to be particularly
pronounced for students coming into the class with weaker
programming backgrounds (Crews, et al., 2002).

One limitation of FLINT is that many data types, statement
types and constructs are not supported. This limitation falls
precisely in FlowC’s greatest area of strength, allowing the
user to represent nearly any construct that would normally
be programmed in C (excepting those c onstructs that are
not implemented as a mater of coding style, such as case
fall through and goto statements). Given the differences in
design between FlowC and FLINT, it is reasonable to
believe that benefits observed from the use of FlowC may
prove to be complementary to, rather than a replication of,
those already observed for FLINT (i.e., in Crews and
Butterfield, 2002).

4.2 Results of FlowC Use

The introduction of FlowC into the C programming course
was—Ilike most curriculum innovations—not performed
using a rigorous experimental design. As a consequence,
evidence of its effectiveness needs to be coaxed from a
variety of sources, including both quasi-experimental data
and evaluation data gathered from students.

When FlowC was first introduced into the course, during
the spring semester of 2002, the primary change to the
course materials was the replacement of a casual
flowcharting assignment with the much more rigorous (and
demanding) current version o f the assignment. The o ther
assignments remained virtually unchanged. It is therefore
reasonable to view the transition from a quasi-experimental
perspective, with the introduction of FlowC being treated
as the experimental manipulation. In this context, two
outcome measures would seem to be particularly relevant:
1) overall course evaluations and 2) percentage of students
completing all seven assignments. The changes to the two
measures are presented in Table 3.

Table 3: Changes accompanying introduction of
FlowC assign

t

Fall 2001 5
(pre FlowC) 2.63 23%
Spring 2002 0
(post FlowC) iy A

74

Although both differences resulting from the transition
were positive and highly significant, the reader is
cautioned against attributing too much weight to these
results. Accompanying the change in assignments was also
a change to content delivery options—-the introduction of
web-based discussion boards for each assignment. Since
subsequent surveys indicated that students also viewed the
discussion board favorably (4.5 on a I to 5 satisfaction
scale), it is impossible to separate the effects of the two
manipulations (not to mention any other changes that
weren't measured). Such ambiguity is almost inevitable
when using quasi-experimental methods.

Another technique that has been used to assess the value of
flowcharting is to survey students (e.g., Scanlan, 1989). In
this context, starting in Spring 2003, the course instructor
developed a comprehensive survey, derived primarily from
three previously validated instruments, to gather data on all
aspects of the class. Students were offered extra credit for
completing the instrument (which took 30 minutes to |
hour to fill out) and 45 students (60% of the students
enrolled in the class) completed it. A number of items from
the survey are informative with respect to role played by
flowcharting and FlowC. The most direct of these had
students rate the statement "Assignment 3 was a helpful
learning activity" on an agree (5) to disagree (1) scale. The
result o fthis was a mean score 0f4.16 (SE of the mean
0.15).

Another direct test involved ranking the assignments
according to their perceived value. These results, shown in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 15(1)

Figure 6: Analysis of assignment rankings

Std. Std.

Deviatio | Error

N Mean n Mean

6Assignment 44 | 25000 | 1.69129 | .25497
;xssignment 45| 3.3778 | 1.96895 | 29351
?ssignment 45 | 3.4444 | 1.82851 | .27258
assisment |45 | 36880 | 160712 | 23958
?SSig“mem 42| 40714 | 2.02897 | 31308
;\ssignmem 44 | 43864 | 1.58798 | .23940
g\SSignme“t 43| 5.1395| 1.56725 | 23900

One-Sample Test

Test Value = 3.3778 (Assignment 3 mean value)

g = o | 95% Confidence
g g 9 2 Interval of the
12l E oo g Sk Difference
a £ 5l S
< o0 o A

t df | Lower | Upper
. 244 i .808 | .0666 | -.4827 .6160
% 4.213 g .000 1'002 5258 | 1.4914
3 4

.000 4 1.000 | .0000 | -.5916 5915
4 1.299 2 201§ 3111 4§ -.1717 1939
[7am| 3| 00| ML 12794 | 22441
i -3.443 2 001 8778 - 3636

: 31 - 13920 | ~
| 2me| Y| 032 6936 | 0614 | 13250

Figure 6, indicate that FlowC ranked second best of all the
assignments—with the observed difference being
significant for three of the lower ranked assignments: 2, 5
and 7.

The fact that FlowC was designed with code generation in
mind (rather than acting as an interpreter, as FLINT does)
may account for some differences between its observed
impacts and those observed for FLINT. For example,
students exhibited a nearly universal preference (observed
by the instructor and tcaching assistants) for answering
questions during Assignment 3 oral examinations using
FlowC-generated C code than using source flowcharts.
This would suggest that flowcharting’s key role was in
getting the student started writing programs, rather than in
helping the student to understand complex code (somewhat

75

different from the enhanced benefits of flowcharts for
complex vs. simple problems reported by Crews and
Butterfield, 2002). There may also have been a difference
in the population of students involved. Whereas, gender-
related differences in the efficacy of flowcharting that were
observed in carlier studies (Crews, et al., 2002), gender did
not appear to be a significant predictor of any outcome for
the students in the FlowC class (including performance on
assignments prior to FlowC’s introduction in the class).

A final result to be addressed is that of time taken to lcarn
flowcharting (and, particularly, the degree to which it
might take way from time programming). Here, the
evidence would seem to suggest that the time demands of
covering flowcharting are not excessive. The median
reported time for Assignment 3 (15 hours, which
presumably included the time required to become
acquainted with the tool) was Iess than that of cither of the
two other major programming assignments (both 20
hours), despite the fact that all three assignments had equal
weights. Further, there was slight agreement (3.33, on a 1
to 5 scale where 3 is neutral) with the statement "FlowC is
easy to use". Surprisingly, the level of agreement was
stronger among those who never taken prior programming
courses (3.70 for first-timers vs. 2.95 for those who had
taken prior courses, with a p-value bordering on
significance at < 0.06). One possible interpretation of this
finding is that the joint flowcharting-code generation
nature o f the assignment ¢ aused novice users to attribute
difficulties to the coding aspects of the assignment, rather
than blaming the tool. Also unexpectedly, reported FlowC
ease o fuse did not correlate significantly with the many
other software experience items contained in the survey,
which included:

e An inventory of previously completed programming
courses (both in any languages and in C/C++,
specifically)

e An inventory of self-reported skills in various
application packages and programming languages

e An inventory of self-reported skills in various
categories of video game software.

5. DIRECTIONS FOR FUTURE RESEARCH

Since its inception, FlowC has continued to evolve. That
evolution is taking place in two major directions at the
present time. The first category of enhancements is
allowing objects to be represented, using a subset of UML
diagrams (particularly those d escribing c lass membership
and inheritance). This capability is being implemented by
extending the summarization box feature. The
development of this particular capability is motivated by
the desire to introduce eclementary object-oriented
programming capabilities at the end of the course in which
FlowC is currently used. The prototype version of FlowC
that incorporated this capability was introduced in fall of
2003, at which time the code generator was modified to
produce C++ code, as opposed to pure C. A textbook
incorporating the revised version of FlowC was published
in the spring of 2004 (Gill, 2004)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 15(1)

The second category of enhancements is the incorporation
of built-in syntax checking. This is being implemented
through the use of a grammar file, modeled after the Prolog
language, which is loaded into the application when it
starts running and then allows the user to check the text
entered into the flowchart for consistency with the
grammar. The ultimate objective here is to route the user to
an appropriate help page—explaining the appropriate
contents of the box—in the event an error is encountered.

6. CONCLUSIONS

That IS practitioners will never again prepare large logic
flowcharts is a virtual certainty. There is also little reason
to expect that programmers will resume using flowcharts
to explain complex code to each other (if they ever did). In
discarding flowcharting, however, we must take care not to
throw out the baby with the bathwater. Learning the basics
of programming is a very different process from
application development. There is no reason to believe that
what is true for experienced developers will necessarily
hold true for neophytes. The value of flowcharting appears
to be a case in point.

When using flowcharting to teach programming, there are
two major obstacles: the potentially tedious nature of
flowcharting and the time it takes to teach rigorous
flowcharting. The exploratory findings presented here
support earlier exploratory findings (e.g., Crews and
Butterfield, 2002) that the use of a tool designed to aid
students in constructing flowcharts may reduce both
tedium and time associated with teaching flowcharting.
Given that tools such as FLINT and FlowC are now
available, it makes sense to revisit how we teach
programming. At a minimum, further research into the
value of flowcharting in programming curricula is
warranted.

7. REFERENCES

Brewer, R.K. (1976) "Documentation Standards for
Beginning Students". The papers of the ACM
SIGCSE-SIGCUE technical symposium on Computer
Science and Education. February. pp. 69-73.

Brooks, T. (1975) The Mythical Man-Month: Essays of
Software Engineering. Addison Wesley, Reading,
MA.

Camp,T. (1997) "The Incredible Shrinking Pipeline"
Communications of the ACM. 1997. Vol. 40(10).
103-110.

Chapin, N. (1970) "Flowcharting With the ANSI
Standard: A Tutorial". Computing Surveys. June, Vol.
2(2), pp. 119-146.

Crews, T. and J. Butterfield. (2002) "Using Technology to
Bring Abstract Concepts into Focus: A Programming
Case Study". Journal of Computing in__Higher
Education. Spring, Vol 13(2), pp. 25-50.

Crews, T., J. Butterfield and R. Blankenship. (2002)"Right

From the Start: Leveling (then Raising) the Playing

76

Field". In D. Colton, M.J. Payne, N. Bhatnagar and C.R.
Woratscheck (eds.) The Proceedings of ISECON 2002 v
19 (San Antonio): 343c.

Gill, T.G. (2004) Introduction to Programming Using
Visual C++ NET. John Wiley & Sons, New York.

Haskell, R.E., D.E. Boddy and G.A. Jackson. (1976) "Use
of Structured Flowcharts in the Undergraduate
Computer Science Curriculum”. The Papers of the ACM
SIGCSE Sixth Technical Symposium on Computer
Science Education. September, pp. 67-74.

Hosch, F.A. (1977) "Whither Flowcharting?". Proceedings
of the Eighth Technical Symposium in Computer
Science Education, February.

Nassi, I. and B. Shneiderman. (1973) "Flowchart
Techniques for Structured Programming". SIGPLAN
Notices. August, Vol. §, pp. 12-26.

Ramsey, H.R., M.E. Atwood, and J.R. Van Doren, (1983)
"Flowcharts Versus Program Design Languages: An
Experimental Comparison". Communications of the
ACM. June, Vol. 26(6), pp. 445-449.

Scanlan, D. (1988) "Should Short, Relatively Complex
Algorithms be Taught Using Both Graphical and Verbal
Methods?: Six Replications". ACM SIGSE Bulletin,
Proceedings of the nineteenth SIGSE technical
symposium on Computer Science Education. February,
Vol. 20(1), pp. 185-189.

Scanlan, D.A. (1989) "Structured Flowcharts Outperform
Pseudocode: An Experimental Comparison”. IEEE
Software. September, pp. 28-35.

Shneiderman, B. (1982) "Control Flow and Data
Structures: Two Experiments”. Communications of the
ACM. January, Vol 25(1), pp. 55-63.

Shneiderman, B., R. Mayer, D. McKay and P. Heller.
(1977) "Experimental Investigations of the Utility of
Detailed Flowcharts in Programming”. Communications
of the ACM. June, Vol 20(6), pp. 373-381.

Zhao, B. and G. Salvendy. (1996) "Compatibility of Task
Presentation and Task Structure in Human-Computer
Interaction". Perceptual and Motor Skills. Vol. 83, pp.
163-175.

ENDNOTES

Instruments used as the basis of the class survey were:

1) "Student Opinion Survey" (located at
http://oerl.sri.com/instruments/cd/studcourse/instr 1 6.htmi
on 5/4/2003),

2) "Computer Programming Survey" (located at
http://oerl.sri.com/instruments/cd/studcourse/instr] 1 .html
on 5/4/2003) and

3) "Student Assessment of Learning Gains (SALG)"
(generated from
http://www.wcer.wisc.edu/salgains/instructor/

on 4/14/2003).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 15(1)

AUTHOR BIOGRAPHY

T. Grandon Gill is an Associate Professor at University of
- South Florida. His cducational
background includes three d egrees
from Harvard University: an
undergraduate degrec in Applied
Mathematics (cum laude) from
Harvard College, a Masters of
Business Administration (high
distinction) from Harvard Business
School and a Doctor of Business
Administration in thc Management
of Information Systems, also from Harvard Business
School. His teaching arcas have included programming,
management of information systems, database design, the
Internet and case method research. He has reccived
numerous teaching awards, including the Florida Atlantic
University award for excellence in undergraduate teaching.
His rescarch interests include expert — systems,
organizational learning and MIS education and include
numerous publications in prestigious journals, such as MIS
Quarterly. He has also done extensive programming, in a
variety of languages, and has designed and programmed a
number of commercial software applications.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

