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Abstract: 

In our fast-paced digital economy, expectations for improved user experiences (UX) increasingly drive innovation. Thus, 
companies must fully grasp users’ points of view when they design innovative technologies that can successfully 
compete in a crowded global market. These technologies must not only satisfy users’ expectations but also empower 
them and improve their quality of life. To address this challenge in our rapidly evolving and globally expanding digital 
economy, we need new theories and models for technology design—ones that incorporate UX. In this paper, we address 
this need by developing conceptual models for UX-driven innovation. We explain how these models can enable 
innovative, responsive technologies that meet users’ needs in real time. These models also facilitate the production of 
new theories that are discovered via accessing the rich, real-time data sets that our increasingly smart and connected 
worlds create. 

Keywords: Technology Design, Innovation, User Experience, Smart and Connected systems, Internet of Things (IoT). 

Fiona Nah was the accepting senior editor for this paper. 

  



Transactions on Human-Computer Interaction 217  
 

Volume 11   Issue 4  
 

1 Introduction 
In today’s smart and connected environments, technological products and services play an ever-increasing 
role in commerce, business, government, healthcare, education, entertainment, communication, social 
connections, and so on. They have become essential in helping individuals conduct their personal and work-
related day-to-day activities. The many companies that seek to meet the demands for these computerized 
tools have created crowded markets for the overall information technology industry. In these crowded 
markets, companies compete by providing better and more innovative user experiences (UX). By focusing 
on better UX to compete, UX has begun to drive innovation in today’s digital economy (Wilson & Djamasbi, 
2015). For example, by putting UX at the forefront of innovative design, smartphones have set the standard 
for what people expect from mobile devices. The impact of smartphones on user expectation is not limited 
to mobile industry, smart phones have changed what people come to expect from technology in general. 
For example, people now expect their car to have an infotainment screen on which, with just a few taps, 
they can place phone calls, search for destinations, and access other features. To stay competitive, the 
auto industry has had no choice but to meet these expectations. Accordingly, automakers now produce 
vehicles with advanced infotainment systems that include large touch screens and voice and gesture 
recognition (Monticello, 2017). 

To address these innovative design challenges, we need new technology design models—ones that 
highlight UX as driving these innovative designs. Such new models benefit from examining technology 
design challenges through an innovation lens (see Figure 1). This lens, which advocates products and 
services that can compete successfully in the marketplace, requires us to consider both the usage world in 
which human-technology encounters take place and the design world in which technology design originates. 
While these two worlds inform and interact with each other, each also has its own paradigms, theories, 
practices, and constraints. A UX-driven innovation lens that considers both the design and usage worlds 
expands the opportunity space for designing and delivering novel technologies. It also highlights 
opportunities for building new theories and models that can self-adjust and/or discover new behavioral 
patterns in real time. 

 
Figure 1. Innovation Lens for UX-driven Technology Design 

In this paper, we explore what those opportunities are and how to exploit them by developing four conceptual 
models: 1) a model for UX-driven innovations (UXDI model) developed for traditional environments, 2) an 
extended version for smart and connected environments (UXDI-SC), 3) a process model for developing UX-
driven innovations in traditional environments, and 4) another process model for smart and connected 
environments. All four models include both the design and usage worlds. The models for traditional 
environments serve as a starting point for demonstrating the opportunities in smart and connected 
environments. As such, the second model (UXDI-SC) constitutes a key contribution because it explores 
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how we might capitalize on smart and connected environments’ ability to support innovative real-time 
adaptive systems that facilitate automatic experimentation and theory building. The fourth model has similar 
importance because it provides a process for exploring and exploiting these opportunities. Together, these 
models provide insights about an effective approach for exploring the solution space for designing novel 
technologies. They also provide ample opportunities for developing innovative theories. Before presenting 
our four models, we first briefly review how UX became a driver for innovation and how looking at technology 
design through an innovation lens can help develop competitive products and build new theories. 

2 UX-driven Innovation 
User experience (UX) refers to the dynamic, context-sensitive interaction between people and technology 
(Hassenzahl, 2003) that results in users’ affective responses (ideally satisfaction, appeal, and delight) and 
drives their behaviors (ideally technology adoption, continual system use, etc.). The interaction should offer 
a practical and engaging experience that addresses target users’ needs and goals.  

UX has begun to drive innovation in our digital economy due to the reciprocal relationship between 
technological advances and users’ needs for novelty. Advances in science and engineering provide 
increasing opportunities to design novel technologies for personal use (e.g., Fitbit) and organizational use 
(e.g., the UPS On-Road Integrated Optimization and Navigation tool for package delivery) (Forrest, 2015). 
These novel technologies address users’ needs for novelty and, thus, increasingly shift market competition 
from utility to user experience. This shift in the nature of market competition, in turn, means that companies 
must design novel products and services that offer outstanding user experiences. While designing 
innovative experiences constitutes a challenging task on its own, being successful in designing novel 
experiences creates an even greater challenge for companies: a never ending cycle of demand for more 
innovative and novel products (i.e., more innovation) (see Figure 2a). Every successful novel experience 
raises the bar for what users expect from new products, and, thus, triggers a call for new and useful 
experiences. Novelty tends to wear off rather quickly and becomes something that users expect in new 
products. An expected experience, while important for user satisfaction, can no longer foster the joy and 
delight that novel experiences typically trigger. Hence, the mere success in creating delightful experiences 
perpetuates the demand for more innovation, which, in turn, drives advances in technology (Wilson & 
Djamasbi, 2015). 

 
Figure 2. UX-driven Innovation 

While such a never-ending cycle of demand poses a great challenge to technology designers, a closer look 
at the design space for UX-driven innovations (see Figure 2b) reveals innumerable opportunities for 
addressing the market need for novel solutions. Innovation refers to addressing market needs with solutions 
that customers find valuable (Terwiesch & Ulrich, 2009). Novelty is essential and implicit in the innovation 
concept. Novelty may refer to a new market need, to a new solution that can satisfy an existing need, or to 
a new way to match a need and a solution (Terwiesch & Ulrich, 2009; Estrin, 2009). We can group innovation 
into three major categories: incremental, orthogonal, and breakthrough. Incremental innovation refers to 
significant improvements in existing products (e.g., Web 2.0). Orthogonal innovation refers to matching 
existing needs and solutions in a new way (e.g., iPod). Breakthrough innovation refers to discovering 
something completely new—typically through basic research (e.g., the discovery of DNA) (Estrin, 2009). 
Designing successful products and services requires at least one of the three types of innovations and may 
include all three. 
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The design space for such UX innovations (see Figure 2b) has three major dimensions (user attributes, 
technology attributes, and the context), which indicates that a user experience requires an individual to use 
a technology designed for a use purpose in a specific context (Hassenzahl & Tractinsky, 2006; Hassenzahl, 
2003). In this design space, the user attributes dimension includes individual characteristics such as gender, 
age, culture, affect, expertise, preferences, needs, goals, and so on. The technology attributes dimension 
includes variables such as technology type (e.g., specificity of purpose), interaction type (e.g., touch, gaze, 
gesture, voice), and physical characteristics (e.g., size and/or shape). The context dimension, which refers 
to the environment in which the human-technology interaction takes place, includes all conditions external 
to both the user and the technology, such as the task, the setting, and/or the physical environment. 
Delineating and understanding the design space for UX innovation, as Figure 2b depicts, facilitates the 
exploration of innovation opportunities that best match a firm’s business strategy. Delineating the design 
space in this way also promotes the understanding of technology design based on its contribution to 
innovation (incremental, orthogonal, breakthrough). Because developing a novel technology (an artifact) 
itself represents a contribution to knowledge (Hevner, March, Park, & Ram, 2004), the UX innovation space 
for technology design can help to better categorize and theorize about such contributions to theory and 
practice (Figure 2c). 

3 Conceptual Model for UX-driven Innovations (UXDI) 
We now describe our conceptual model for UX-driven innovation (UXDI) more fully. The UXDI model 
considers both the usage world and the design world (see Figure 3). Behavioral theories typically focus on 
understanding the user perspective in the usage world. This focus on users’ perspectives is important and 
valuable because different people may have different reactions to the same artifact, and their reactions may 
differ from what designers envisioned (Hassenzahl, 2003). From an innovation lens, it is also critical to 
consider the design world. In the design world, which typically exists in an organizational setting (e.g., 
company, government institution), technology designers envision and give form to technologies for users. 
While their perceptions about users’ needs influence their design goals, organizational factors such resource 
availability, organizational culture, and business strategy also influence their design objectives. In the design 
world, a project typically receives approval only if it has acceptable return on investment (ROI), which means 
that a product must go beyond soliciting positive user reactions (e.g., satisfaction, delight) to also foster 
behavioral changes that meet key performance indicators (e.g., increased adoption rate and continued 
usage). 

 
Figure 3. UX-driven Innovation (UXDI) Conceptualization in Traditional Settings 

UX-driven innovation relies on more deeply understanding users’ needs, goals, challenges, and so on. Such 
understanding is typically achieved through qualitative UX research methods such as interviews and 
observations. The detailed and often complex information about users is then translated into effective 
representative groups of users, called personas (Bajracharya et al., 2019; Bhattacharyya, Mossman, 
Gustafsson, & Schneider, 2019; Jain, Djamasbi, & Wyatt, 2019; Javahery & Seffah, 2012). As Figure 3 
shows, this information, which is often gathered periodically, is used to drive design decisions. In the design 
world, this information aids with selecting the system type (e.g., mobile apps, wearables, IoT sensors) and 
features (e.g., content, presentation, functionality, interaction) in order to offer a practical and engaging 
experience that meets target users’ needs and goals. That is, the system is designed with specific planned 
outcomes in mind. In the usage world, the designed system ideally elicits desired affective responses (e.g., 
satisfaction, appeal, delight), evokes desired evaluative responses (e.g., ease of use, usefulness), and 
drives desired behaviors (e.g., adoption, continual system use) (Djamasbi, Strong, Wilson & Ruiz, 2016; 
Tulu et al., 2016; Wilson, Djamasbi, Strong, & Ruiz, 2017; Nguyen, Ruiz, Wilson, Strong, & Djamasbi, 2018). 
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The design process in the design world creates two important artifacts: the designed artifact and the theory 
artifact. The former refers to the system that is ready for launch in the usage world. The latter refers to 
theories or models that are used, modified, or discovered when designing and developing artifacts. The 
designed artifact is initially informed by existing theories such as those about design, technology, and users, 
although these theories may be only implicit during design. By exploring the solution space, designers have 
the opportunity to advance existing constructs, models, and/or methodologies that they used initially (Hevner 
et al., 2004). These advances then form an updated theory artifact, which they may or may not be explicitly 
articulated (the dotted lines in Figure 3 indicate this possibility). 

Once a designed artifact (e.g., a new product or service) is launched in the usage world, we can observe 
how its users actually experience the system in the real world settings (see Figure 3). User experience 
arises from the dynamic and context sensitive interaction between people and technology (Hassenzahl, 
2003). The affordances concept, which (a) refers to the potential for behaviors associated with achieving an 
immediate concrete outcome and (b) arises from the relation between an object (e.g., an IT artifact) and a 
goal-oriented actor or actors (Volkoff & Strong, 2013), can help designers understand how designed artifacts 
lead to various different user experiences. A relational concept, an affordance arises between a particular 
user and a particular system (i.e., an affordance does not represent a system’s features or a user’s 
characteristic but arises from the interaction between a system’s features and users’ characteristics and 
goals) (Volkoff & Strong, 2018). When user characteristics or goals change, the affordances that arise differ. 
Thus, affordances can differ for different users and even for the same user at different times or under 
different immediate user goals. 

While an affordance refers to a potential of a system to meet a user’s goal(s), user experience refers to 
actual outcomes that occur when a user interacts with a system (Strong et al., 2014). Depending on the 
person’s characteristics and situational need (goal), the person may see the object as helpful in different 
ways. For example, the encounter between a thirsty person and a mug will likely give rise to the mug’s 
potential to quench thirst. In a breezy office, the same person’s encounter with the mug may lead to a 
different affordance; namely, the mug’s potential to serve as a suitable paper weight. In each case, the user 
experience from interacting with the mug may also vary to the extent the person experiences satisfaction or 
delight in being less thirsty or to the extent the person experienced delight in solving the breeziness problem. 

Thus, Figure 3 shows affordances as a relational construct between the designed artifact and a user’s 
internal state (user attributes) in the usage world. Note that an affordance is a potential. When a user 
interacts with the designed artifact, the user actualizes affordances, which results in immediate concrete 
outcomes, such as a user’s experiences. That interaction with the designed system also provides users with 
the opportunity to observe whether the system has the ability to help achieve their goal. This observation 
has evaluative (system is useful), affective (system is appealing), and behavioral (system usage and 
continued usage) consequences. These consequences of a users’ interaction with the system generate the 
user experience. They may also give rise to the user discovering additional affordances through their 
learning. User learning effectively changes user characteristics and, thus, generates new affordances. 

Affordances’ complex and situational nature (Volkoff & Strong, 2013; Volkoff & Strong, 2018) explains why 
the consequences of a user’s interaction with an artifact in the usage world may differ from what designers 
envision in the design world (Hassenzahl, 2003; Kieffer, 2017). Therefore, it is crucial to collect information 
about the user experience of designed artifacts in the usage world (Djamasbi, 2014; Albert & Tullis, 2013). 
We refer to the collected information about user interactions and experiences with a system as the data 
artifact. The contents of the data artifact can be used to assess the alignment between the outcomes 
planned in the design world and actual outcomes that occur in the usage world. The information provided 
by the data artifact also can be used in the design world to address the demand for UX-driven innovation in 
the next production cycle. Both assessing the alignment between planned and actual outcomes and 
exploring UX-driven innovation space (Figure 2b) can contribute to knowledge and, thereby, impact the 
theory artifact. 

The UXDI model also facilitates experimentation; namely, it allows the examination of the impact that 
specific interventions can have on actual outcomes (see Figure 4). For example, through A/B testing or 
other controlled trials in which different groups randomly receive different flavors (prototypes) of the same 
service/product, companies can measure the extent to which a new intervention succeeds. While such an 
approach can effectively reveal whether an intervention is successful or not (yes or no), it does not 
necessarily reveal which factors made an intervention successful or which made them fail to produce 
desired outcomes (why and how) (Sheeran et al., 2017). To answer “why” and “how” questions, we need to 
have more information about the causal chain of effects that lead to an outcome. 
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Figure 4. Assessing Whether an Intervention is Successful 

To make this point clearer, consider a health and wellness app that provides theory-driven interventions for 
weight loss (e.g., information about healthy habits and reminders for daily exercise). With the model that we 
outline in Figure 4, we can assess whether these app-based interventions succeeded or not (e.g., whether 
users lost weight) through a fixed, controlled trial to test whether the designed app resulted in significant 
changes in the usage world. We would not be able to detect why the intervention succeeded or not without 
additional information (i.e., we need a more complex model than a simple intervention-outcome model). 
That additional information would track how a targeted intervention causes changes in individuals (e.g., they 
may gain knowledge about health and wellness or develop positive attitudes toward exercise) and/or 
changes in their social environment (e.g., connecting with people with similar weight loss goals). Such 
changes in individuals and their social environment can generate changes in health behaviors (e.g., 
consume food with low sugar and fat, exercise more often), which could potentially generate changes in 
desired health outcomes (e.g., weight loss). However, without capturing information along this chain of 
possible outcomes (from changes to individuals and their environment to changes in behavior and health 
outcomes), we cannot track and understand whether and why planned outcomes do or do not occur from 
interventions (see Figure 5). 

 
Figure 5. Assessing Why and How an Intervention is Successful 

To capture the chain of possible outcomes, we need a more advanced model. In Section 4, we describe 
such a model—specially, a UX-driven innovation model for designing technology in smart and connected 
environments (UXDI-SC). Using this model, we can automatically examine such “why” and “how” questions. 

4 UXDI-SC: UX-driven Innovation Model (UXDI) for Smart and 
Connected (SC) Worlds 

Smart and connected worlds rely on the Internet of things (IoT), a system of computing devices that can 
share data over a network without human intervention. These computing devices typically generate a 
massive amount of data. Machine learning (ML) engines now often process this data to gain insight for 
design and/or other business decisions. With the proliferation of reliable and affordable consumer grade 
IoT, these smart and connected environments will surely offer increasingly smart and seamless 
experiences, which, in turn, will likely increase the pace of user demand for innovation (see Figure 2a). To 
keep up with the accelerated need for innovation, smart and connected worlds should include a similarly 
paced mechanism for continual experimentation to facilitate scientific examination of new service/product 
experiences anywhere along the causal chain. That mechanism comprises a set of interacting smart 
artifacts that, as Figure 6b shows, resides between the design and usage worlds and interacts with both 
worlds. 

In traditional settings (see Figure 6a), the designed artifact and data artifact that results from use of the 
designed artifact connect the design and usage worlds. In these settings, after the designed artifact is 
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launched in the usage world, the data artifact (e.g., customer feedback) is then used in the design world to 
improve the existing product or identify opportunities for designing new products. The data artifact can be 
also used to verify or extend models that were used to develop the designed artifact. 

In smart and connected settings (see Figure 6b), the usage world facilitates the continual collection of 
behavioral data through IoT sensors and, thus, produces a rich, real-time data artifact. Such rich continual 
data serves as feedback for the designed artifact to adapt itself. That is, the availability of rich real-time data 
artifact makes it possible to develop adaptive designed artifacts, which can respond to user needs in real 
time (Shojaeizadeh et al., 2019). Because the real-time data artifact can collect information about the entire 
chain of outcomes (e.g., changes in individuals, social context, behavior, and actual outcome), it can feed 
machine learning engines that automatically identify triggers that impact user reactions along the chain of 
outcomes directly or indirectly. Those triggers, in turn, provide information for creating new or modified 
interventions. 

Detecting triggers that impact the causal chain of outcomes in real time enables the development of adaptive 
designed artifacts and also facilitates the development of theory artifacts that test and revise theories. Using 
the rich, real-time data in the data artifact, those theory artifacts can automatically test existing models and 
discover new constructs or models via various methods, such as ML engines.   

Together, the adaptive designed artifact with its ML engine, the theory artifact with its ML engine, and the 
real-time data artifact that feeds them form a set of smart artifacts. As such, smart artifacts are particularly 
important to information system (IS) research, which considers the development of viable designed artifacts 
and new theory artifacts as major contributions to knowledge (Hevner et al., 2004). 

 
Figure 6. UX-driven Innovation Conceptualization in Traditional and Smart Settings 

These smart artifacts working together constitute the mechanism for experimentation and automated 
learning in the smart and connected environment (see Figure 6b). The ML engines turn IoT data into 
meaningful information for the design world, the usage world, and the theory artifact to use. The designed 
artifact in this model is the arbiter between all the other components in the model. The data artifact (i.e., the 
steady stream of real-time data) does not go directly to the design world as it does in the model in Figure 
6a; rather, the data artifact is first processed by the designed artifact. The ML engines then use this 
processed data in the designed artifact to provide insight for the design world. For example, using the 
continual stream of data, the ML engines in the designed artifact can reveal new emerging markets or 
identify new services that existing users will likely find desirable. Similarly, the data that the ML engines 
process in the designed artifact can suggest design improvements for the next development cycle. 

The theory artifact can also use the IoT data that the designed artifact processes. Because the data artifact 
contains detailed information about individuals, their environment, their behavior, and the outcomes of the 
behavior, it can facilitate the development of advanced models that can lead to a more nuanced and dynamic 
understandings of user reactions and behavior change over time (Riley et al., 2011; Sheeran, Klein, & 
Rothman, 2017). 

The ability to provide real-time personalization in smart and connected and environments requires a smart 
theory artifact that can both automatically test existing models and build new ones by, for example, 
suggesting experimentation (i.e., interventions) that the designed artifact can put into action. Such a smart 
theory artifact would include embedded, specialized ML engines and a library of behavioral models. The 
embedded library would hold both interventions that have been verified as successful and unsuccessful 
along with the conditions under which they were tested. Depending on its setup in the design world, the 
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designed artifact can either conduct automatic experimentations that the theory artifact suggests or 
implement the suggested interventions only after the experts in the design world approve them. This control 
mechanism enables the management team to oversee the automation, enable or disable it as they see fit, 
and to ensure adequate control for situations that require human oversight (e.g., for critical interventions 
that involve health, safety, or data security). 

The UXDI-SC model in Figure 6b can also help address the double-adoption problem, which postulates that 
individuals can achieve behavioral goals only if they adopt both the new technology and new behaviors 
(Kelley, Chiasson, Downey, & Pacaud, 2011), i.e., technology adoption and use (Zhang & Venkatesh, 2018), 
and even a delightful user experience is not enough. For example, improved health requires more than 
using and enjoying using a health app; health behaviors must also change. The theory and designed 
artifacts in the UXDI-SC model minimize the double-adoption problem by working together to provide real-
time personalization (Nahum-Shani et al., 2014) and, thus, deliver interventions that lead to behavioral 
changes in that individual. For example, the availability of current contextual information for each individual 
user makes it possible to detect both positive and negative triggers for technology acceptance and behavior 
adoption. In turn, the detection of these triggers] allows the implementation of just-in-time adaptive 
interventions (i.e., dynamic interventions that change over time based on data) that target technology 
acceptance and behavior adoption. 

As compared to the UXDI model for traditional environments, the UXDI-SC model captures the ability in a 
smart and connected environment to deliver dynamic and adaptive interventions and to track the entire 
chain of outcomes of those interventions. Such a capability can provide an excellent framework for behavior 
change research, which often examines only interventions that remain fixed for a trial’s duration (Sheeran 
et al., 2017). More generally, the capabilities shown in the UXDI-SC model can lead to novel platforms for 
automatically refining old theories and automatically generating new models, theories, and theory-based 
interventions. 

5 Process Models for UX-driven Innovation in Traditional and in Smart 
and Connected Environments 

Maintaining a competitive advantage in a dynamic market place requires a development process for 
products and services that can effectively meet the never-ending demand cycle for innovation in those 
products and services. In this section, we outline a process model for developing successful UX-driven 
innovations to make the cycle of innovation clear and to maintain engagement in both the design world and 
the usage world throughout the innovation process.  

Less desirable UX designs often arise due to inadequate application of design methodologies from the 
beginning of the project. In many projects, UX is often “treated as a downstream step in the development 
process” to “put a beautiful wrapper” around an already developed idea (Brown, 2008, p. 86). While making 
products and services aesthetically attractive helps make them more desirable for consumers, UX-driven 
innovation requires a significantly different approach. Rather than focusing on making an already developed 
idea more attractive, a UX-driven innovation process uses UX-based design methodologies from the start 
to frame and shape initial design ideas as they are being formed (Brown, 2008).  

The UXDI process model (see Figure 7) outlines a process for designing, developing, and implementing 
UX-driven innovations in traditional settings. This model has its foundations in research that advocates using 
UX-based design methodology from the early stages in product development and research that prescribes 
a scientific, iterative approach to exploring a design space (Brown, 2008; Hevner et al., 2004). This UXDI 
process model delineates activities that should occur in the design and usage worlds. We designed this 
process model to be consistent with research that advocates three interrelated innovation spaces: 
inspiration, ideation, and implementation spaces (Brown, 2008).  The inspiration space focuses on situations 
where companies search for a solution or new market opportunity. The ideation space focuses on 
developing and testing solution ideas, and the implementation phase focuses on designing a path that brings 
the tested and approved solutions to market (Brown, 2008).  
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Figure 7. UXDI Process Model for Traditional Settings 

Based on these ideas, the model categorizes the UX-driven technology design process into three distinct 
yet interconnected phases (Figure 7), the inspiration phase, the ideation phase, and the implementation 
phase. The first two phases in the model occur in the design world and the last phase occurs in the usage 
world. We need to distinguish between the design and usage worlds because, as we discuss in Section 3, 
each world has its own paradigms, theories, practices, and constraints. For example, design decisions, 
which occur in the design world, are informed by business strategy, which, in turn, is influenced by 
organizational culture and management mindset. User experience, which occurs in the usage world, is 
influenced by usage world constraints and situational and dynamic contextual factors such as the task and 
setting. 

The inspiration phase in our model involves exploring the UX design space to identify opportunities for 
incremental, orthogonal, or breakthrough innovations (Figure 2b). This phase requires a deep grasp of user 
needs, goals, and challenges. Especially with vaguely defined problems, studying user needs and 
challenges offers an effective way to identify and define innovation opportunities.  

The ideation phase involves designing, prototyping, and evaluating design ideas that address user needs. 
That is, in this phase, features and functionalities of the technology are designed, with alternative designs 
in the solutions space investigated as appropriate. This phase also involves choosing appropriate 
technologies (e.g., mobile apps, wearables, etc.) that can best deliver desired experiences. User tests for 
capturing and evaluating experience in this phase support the exploration of the solution space. These tests 
are conducted in the design world before implementing the resulting designed artifact in the usage world, 
and they serve as an important link between the design and usage worlds.  

The implementation phase, the part of process after a technology is launched into the usage world, provides 
the opportunity to observe the designed artifacts in a real-world, usage context rather than in an artificial 
context in the design world. After all, the true impact of a design process lies in its ability to execute a vision 
into action (Liedtka, 2018; Brown, 2008). By launching the design idea in the usage world, this phase allows 
us to test how theoretical models used in the inspiration and ideation phases hold up in practice. Hence, 
this phase offers the opportunity to verify, extend, and/or build new theories by observing the impact of 
usage world constraints on use and user experiences over time. This objective can be achieved using the 
model displayed in Figure 6a.  

The process that Figure 7 displays is an iterative course of action with many feedback loops. For example, 
the inspiration phase, which motivates the ideation phase, can also be informed by both the ideation and 
implementation phases. The circular nature of this process is due to the fact that the entire design and 
development process facilitates the exploration of the solution space. Through that exploration, new 
information is discovered about users, their needs, and their perception of what technology can do for them. 
The designed and theory artifacts can use this information directly and feed it back to designers in the 
design world. This information serves as a major source of innovation. 

The iterative process in Figure 7 becomes a series of steps as the process is executed. Figure 8 provides 
an example of the step-by-step process for iteratively designing a new product. We can see that, after the 
product is designed and launched in the usage world (steps 1-3), the actual usage context or consumer 
data artifact (step 4) provides insight for the improvement of the designed artifact (step 5). This insight is 
then used in the design world to improve and launch the designed artifact (steps 2-3), which will provide 
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data for continual improvement (step 4). The data artifact can also provide insight for persuing new market 
opprtunties (step 6), which then initiates the design of a new product (step 1). 

In smart and connected environments, the processes that Figures 7 and 8 show require extensions (see 
Figures 9 and 10). That is, Figures 9 and 10 outline the same process as in Figures 7 and 8 but for UX-
driven innovations in smart and connected environments. The models for traditional and IoT settings differ 
mainly in that, once the designed artifact is launched in smart and connected environments, the inspiration 
and ideation phases no longer occur only in design world. Smart artifacts, launched in the usage world, also 
embed an automated version of the inspiration and ideation phases, which are enabled by ML engines. This 
automation aggregates and analyzes data from various sensors into information for executive decisions 
about design improvements, market opportunities, experimentation, and so on. In smart and connected 
environments, the design world has a supervisory role to approve, deny, or modify insights that smart 
artifacts provide. 

Figure 10 provides an example of the step-by-step process for designing a new connected product. We can 
see that, after the connected product is developed and resleased to the usage world (steps 1-3), IoT sensors 
provide real-time data for smart artifacts (step 4), which trigger action for personalization (step 5) or provide 
insights for experts to review in the design world (step 6).  Experts in the design world can approve, reject, 
modify, or automate actions that smart artifacts recommend (step 7) and/or begin exploring new market 
opprtunties (step 8) and, thererby, start the pocess design for developing a new product (step 1). 

 
Figure 8. A Step by Step Example of UX-driven Innovation Process for Designing a New Product in 

Traditional Settings 
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Figure 9. UXDI-SC Process Model for Smart and Connected Settings 

 

 
Figure 10. A Step-by-step Example of UX-driven Innovation Process for Designing a New Product in Smart 

and Connected Settings 
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6 Conclusion 
A reciprocal relationship between advances in technology and novel user expectations creates a never-
ending cycle of demand for innovation, which the fast pace of our digital economy exacerbates. Fortunately, 
the proliferation of smart and connected technologies provides opportunities for addressing the continual 
demand for innovation with an equally fast and continual process that promotes exploration of the innovation 
space through automatic experimentation. 

UX-driven design must aspire to build solutions that go beyond meeting user needs; it must aspire to build 
solutions that empower users and improve their quality of life (Brown, 2008; Bajracharya et al., 2019; 
Bhattacharyya et al., 2019; Jain et al., 2019). A recent study demonstrates that putting users at the forefront 
of design is critically important in making successful design decisions (Jain et al., 2019). Doing so also 
serves as an organizational key performance indicator (KPI) for assessing the degree to which 
organizational assumptions about consumer needs align with actual market needs (Jain et al., 2019). The 
conceptual models that we outline in this paper also provide other KPIs (e.g., continual assessment of 
planned and actual outcomes) that will likely prove essential for staying relevant and competitive in today’s 
fast-paced, digital economy. 

Despite the call for UX-driven design as a key approach for empowering users and improving their quality 
of life (Brown, 2008; Bajracharya et al., 2019; Bhattacharyya et al., 2019; Jain et al., 2019), many systems 
that organizations use internally fail to deliver the user experiences that people have come to expect and 
demand from consumer products and services. One reason for a lack of UX focus in organizations may 
involve their requiring individuals to use those systems (mandatory use). Using popular mobile applications 
and website services, however, have changed what employees consider good user experiences (Wilson & 
Djamasbi, 2015). Requiring employees to use systems that fail to deliver an adequate UX can cause 
frustration and lead to ineffective technology usage and, hence, poor return on investment (ROI). Both 
frustration and poor ROI have significant negative impact on organizational outcomes. Hence, UX-driven 
innovation is relevant and important for not only customer-facing technologies that individuals voluntarily 
choose to use but also systems that employees must use internally in an organization. 

In this paper, we develop four conceptual models for UX-driven innovations, two for traditional environments 
and two for smart and connected environments. We outline how we can capitalize on the power of smart 
and connected environments to 1) develop novel experiences that are continually tested and improved by 
automatic experimentation and 2) build advanced theories. The models that we outline in this paper 
represent a first step toward building a comprehensive scientific framework for UX-driven design. Future 
research is needed to refine the models we present in this paper through their use to guide UX-based 
innovation. Because the models we discuss in this paper include both design and usage worlds, 
collaborative industry-academic research is needed to gain both a more holistic and nuanced picture of 
opportunities that are inherent in UX-driven innovation, particularly those offered by smart and connected 
environments. 
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