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Abstract The focus in the field of process mining, and

process discovery in particular, has thus far been on

exploring and describing event data by the means of

models. Since the obtained models are often directly based

on a sample of event data, the question whether they also

apply to the real process typically remains unanswered. As

the underlying process is unknown in real life, there is a

need for unbiased estimators to assess the system-quality of

a discovered model, and subsequently make assertions

about the process. In this paper, an experiment is described

and discussed to analyze whether existing fitness, precision

and generalization metrics can be used as unbiased esti-

mators of system fitness and system precision. The results

show that important biases exist, which makes it currently

nearly impossible to objectively measure the ability of a

model to represent the system.

Keywords Process mining � Process discovery � Process
quality � Fitness � Precision � Generalization � Exploratory
data analysis � Confirmatory data analysis

1 Introduction

Nowadays, organizations are storing huge amounts of data

related to various business processes. Process mining pro-

vides different methods and techniques to analyze and

improve these processes, allowing companies to gain a

competitive advantage. Initiated with the discovery of

work-flow models from event data (Agrawal et al. 1998;

Cook and Wolf 1995; Datta 1998), the process mining field

has evolved over the past 20 years into a broad and diverse

research discipline.

The results of process discovery and consecutive anal-

yses are often directly based on a sample of event data that

may not have captured all possible/actual behavior cor-

rectly or completely. Therefore, the question whether they

also apply to the real, underlying process typically remains

unanswered. In order to resolve this, there is a need for

unbiased estimators of a discovered model’s quality as a

representation of the underlying process. The adequacy of

the established quality dimensions fitness, precision and

generalization is typically only demonstrated using a lim-

ited set of special cases, such as flower models or models

enumerating one or more traces (Rozinat and van der Aalst

2008; van Dongen et al. 2016). Hence, a critical analysis of

these classical dimensions, both on theoretical and empir-

ical grounds, is missing and certainly necessary for process

discovery to evolve towards a mature research discipline.

In this paper, we extend the established distinction

between exploratory and confirmatory data analysis from

traditional statistics to process discovery. As a result,

– we propose a new paradigm to quantify the quality of

discovered process models, depending on the type of

analysis, and discuss its necessity,
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– we inventorize the state-of-the-art quality metrics and

relate them to the proposed perspectives, and

– we empirically analyze the difference between the

perspectives and investigate possible biases when using

metrics for a different purpose than the one they were

designed for.

In thenext sectionwediscuss some relatedwork,whereafter the

distinction between exploratory and confirmatory analysis is

made, both in its traditional context and in a process discovery

context. Section 4 takes this distinction further to introduce

different sets of measures for quality measurement in process

discovery. This section also introduces the problem statement

underlying the empirical experiment described in the remainder

of the paper. The existing qualitymetrics are discussed inmore

detail in Sect. 5. Subsequently, an empirical study has been

conducted, of which the methodology is laid out in Sect. 6, the

results shown in Sect. 7, and its implications are discussed in

Sect. 8. Section 9 concludes the paper.

2 Related Work

The quality of discovered process models is typically

characterized by four dimensions: fitness, precision, gen-

eralization, and simplicity (van der Aalst 2016). While the

first three dimensions all compare the behavior of the event

log with the model, simplicity only takes into account the

model. Consequently, simplicity will not be considered in

the remainder of this paper.

By far the most studied quality dimension is fitness (de

Medeiros 2006; Greco et al. 2006; Rozinat et al. 2007; van

der Aalst et al. 2012; vanden Broucke et al. 2014; Wei-

dlich et al. 2011; Weijters et al. 2006). A model with a

good fitness allows for the behavior seen in the event log. A

good fitness is often regarded as a primary requirement,

before considering the other metrics.

Secondly, a model is precise if it does not allow for too

much unrecorded behavior. Precision has also received a

reasonable amount of attention in literature (Adriansyah

et al. 2015; Goedertier et al. 2009; Muñoz-Gama and

Carmona 2010; vanden Broucke et al. 2014).

Finally, a model should generalize and not restrict

behavior towards the examples seen in the event log. In

contrast to fitness and precision, only limited work on gen-

eralization is available (van der Aalst et al. 2012; vanden

Broucke et al. 2014). Furthermore, the precise definition of

the concept is still unclear, as there are multiple interpreta-

tions which differ in slight but important ways (van der Aalst

2013; Buijs 2014; vanden Broucke et al. 2014).

Over the last decades, several metrics have been

implemented to measure these quality dimensions. For a

comprehensive overview of these metrics, we refer to

Table 1 and Janssenswillen et al. (2017). The state-of-the-

art metrics will be further introduced in Sect. 5.

Table 1 Overview of existing quality metrics for fitness (F), precision (P) and generalization (G)

Metric Author Date Range Model input type Included

F Parsing measure Weijters et al. (2006) 2006 [0, 1] Heuristics net

Continuous parsing method Weijters et al. (2006) 2006 [0, 1] Heuristics net

Completeness Greco et al. (2006) 2006 [0, 1] Workflow schema

Partial fitness – complete de Medeiros (2006) 2007 ½�1; 1� Heuristics net

Token-based fitness Rozinat and van der Aalst (2008) 2008 [0, 1] Petri net �
Proper completion Rozinat and van der Aalst (2008) 2008 [0, 1] Petri net

Negative event recall vanden Broucke et al. (2014) 2009 [0, 1] Petri net �
Behavioral profile conformance Weidlich et al. (2011) 2011 [0, 1] Petri net

Alignment-based fitness van der Aalst et al. (2012) 2012 [0, 1] Petri net �
P Soundness Greco et al. (2006) 2006 [0, 1] Workflow schema

(Advanced) Behavioral appropriateness Rozinat and van der Aalst (2008) 2008 [0, 1] Petri net

Behavioral specificity Goedertier et al. (2009) 2009 [0, 1] Petri net

ETC-precision Muñoz-Gama and Carmona (2010) 2010 [0, 1] Petri net

Alignment-based precision van der Aalst et al. (2012) 2012 [0, 1] Petri net �
Negative event precision vanden Broucke et al. (2014) 2014 [0, 1] Petri net �
One align precision Adriansyah et al. (2015) 2015 [0, 1] Petri net �
Best align precision Adriansyah et al. (2015) 2015 [0, 1] Petri net �

G Alignment-based generalization van der Aalst et al. (2012) 2012 [0, 1] Petri net �
Frequency of use Buijs (2014) 2014 [0, 1] Process tree

Negative event generalization vanden Broucke et al. (2014) 2014 [0, 1] Petri net �

Based on Janssenswillen et al. (2017)
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The dimensions were first introduced in Rozinat et al.

(2007) and their adequacy has since received limited crit-

ical consideration. In van der Aalst (2013), the focus is on

the relation between modeled and recorded behavior.

Although the paper emphasizes that process discovery aims

to tell something about the unknown real process, it states

that fitness and precision metrics measure the fit between

the model and the event log, while generalization quantifies

the quality of these metrics as estimators of fit between

system and event log. Unfortunately, the discussion in van

der Aalst (2013) is restricted to a theoretical one and is not

experimentally validated.

A recent comparative study of process metrics

(Janssenswillen et al. 2017) shows that the role of general-

ization in measuring conformance is extremely ambiguous.

The generalization metrics were found to be uncorrelated,

with one of them appearing to be related to fitness.

A quite different approach is undertaken in Rogge-Solti

et al. (2016). In this study, the authors acknowledge that

neither log nor model (be it discovered or designed) pro-

vide an accurate description of the underlying process. In

order to find a representation of the latter, both log and

model are modified by taking into account a certain trust in

each of them. However, as the approach uses the existing

metrics for fitness, precision, and generalization, the

accuracy of the result will depend on the quality of these

metrics. As the approach is only validated on real-life event

logs (where the underlying process is unknown), it is not

clear whether the approach succeeds in finding the system.

It is frequently conjectured that the four quality

dimensions should not be optimized simultaneously, but

that trade-offs exist between the metrics which have to be

resolved based on the objective of the analysis (Buijs et al.

2012). However, no guidelines exist on how this trade-off

should be solved in a given situation.

In the remainder of this paper, we aim to cast a new light

upon these dimensions and metrics by drawing an analogy

with the difference between exploratory and confirmatory

analysis within traditional statistics.

3 Exploratory and Confirmatory Analysis

3.1 Traditional Data Science

The data science field largely originated from the discipline

of statistics during the last decades of the twentieth century

(Tukey and Wilk 1966). Within statistics, the emphasis has

historically been on confirmatory analysis, relying on the

well-known paradigms of testing and estimation (Gelman

2004), to confirm or reject a stated hypothesis. However,

confirmatory techniques are not designed to find hypothe-

ses. Only when one has a certain clearly formed idea or

hypothesis and data which can be exploited to elucidate

that idea, can confirmatory statistics be used to investigate

whether or not the idea is justified in the light of the evi-

dence (Erickson and Nosanchuk 1992).

With the arrival of more computational power, and the

increase of readily available data, the field of exploratory

data analysis (EDA) emerged (Tukey 1977). Exploratory

analyses are typically the starting point for a line of

research, when no specific statistical hypotheses are spec-

ified. It mainly encompasses methods to plot your data and

transform it. Even when the question to be answered is

perfectly clear, the analysis can benefit from exploratory

analysis to test whether underlying assumptions for the

confirmatory tests are met and by highlighting and subse-

quently neutralizing other variables which might have an

impact on the question asked.

Exploratory and confirmatory methods are not each

other’s competitors, but rather go hand in hand. Explora-

tory analysis will both lead to new ideas to be tested, and

perhaps new data to be collected. Moreover, it will form

the groundwork for the confirmatory analysis. In confir-

matory analysis, it is investigated whether the insights

learned from the sample can be applied to the population as

a whole. While confirmatory analysis can be seen as the

work conducted in a law court to determine guilt based on

evidence, exploratory analysis can be seen as the indis-

pensable detective work that has to be performed in

advance. Data are explored to find clues, get ideas, and

follow up on them in search for new hypotheses (Erickson

and Nosanchuk 1992). It is clear that one cannot exist

without the other, but they are complimentary and can be

used in alternation or parallel.

3.2 Exploring and Confirming Within Process

Discovery

Process mining started to emerge at the end of the last

century, with pioneering works on the discovery of control-

flow from event logs (Agrawal et al. 1998; Cook and Wolf

1995; Datta 1998). Reasons for the emergence of this

discipline were the accelerating boost of the data science

field and the availability of event-based data, which toge-

ther have the potential to deliver a highly competitive edge

to the process-centric companies of the twentyfirst century.

The concept of a sample from statistics finds its equiv-

alent in process mining as the event log L. On the other

hand, we define a system S (Buijs 2014) as the population

of process behavior. The system thus refers to the under-

lying process, the way work is done. Just as in traditional

statistics, the system and event log are not equal, as the

event log is only a sample and can contain noise, i.e.,

measurement errors and inaccuracies. This is shown con-

ceptually in Fig. 1, originally introduced in Buijs (2014).
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In Fig. 1, the process model M is also represented. This

can be either a model designed by the process owners or

discovered from event data. But even when the model is

learned from the event log, both are typically not equiva-

lent. In order to quantify the quality of a process model to

represent a process, different quality dimensions and

associated measures implementing these dimensions have

been defined. However, Fig. 1 points out that the quality of

a model can have different interpretations. Given the fact

that we can approach the event log as a sample and the

system as the population, we can distinguish between an

exploratory and confirmatory approach.

When a confirmatory analysis is intended, it is important

that the model used is a correct representation of the sys-

tem, i.e., M ¼ S. For a descriptive, exploratory analysis,

this is not the case. In the latter situation, the model used

for analysis should have a close fit with the data, i.e.,

M ¼ L.

Just as with traditional exploratory and confirmatory

analysis, these two perspectives on the quality of a dis-

covered process model do not need to be in competition

with each other. Nevertheless, each of them requires a

different conformance checking approach. The next section

will thus introduce different quality perspectives for pro-

cess discovery, each with its own specific metrics.

4 Quality Perspectives for Process Discovery

In this section, the different perspectives towards process

quality are introduced formally. In order to do this, some

preliminaries are needed.

4.1 Preliminaries

4.1.1 Activity Sequences

Let A be the activity alphabet. T = A� is the set of all finite
sequences over A, representing the universe of activity

sequences. An activity sequence, or trace, r 2 T is a finite

sequence of activities \a1; . . .; an [ . jrj ¼ n refers to the

number of activities in a trace. hðr; kÞ refers to the activity

sequence prefix of the first k activities in trace r. hðr; 0Þ
refers to the empty trace ;.

4.1.2 Event Log

An event log L is a multiset of activity sequences, and can

be defined as L 2 BðT Þ, where BðT Þ is the set of all

multisets of T . The support of L, denoted as supp(L), is the

set of unique activity sequences in L. Note that

suppðLÞ � T . For an activity sequence r, the frequency of

this trace in event log L is defined as LðrÞ. The number of

distinct activity sequences in an event log is defined as |L|.

L ¼ BðT Þ represents the domain of all possible logs.

4.1.3 Model

A model M is a subset of the universe of activity sequen-

ces, and can be defined asM � T . |M| indicates the number

of activity sequences part of the model. M ¼ PðT Þ rep-

resents the domain of all possible models, where PðT Þ is
the powerset of T .

4.1.4 System

A system is defined as a subset of the universe of activity

sequences, and can be defined as S � T . |S| indicates the

number of activity sequences part of the system. S ¼ PðT Þ
represents the domain of all possible systems.

Using the concepts of log, model and system, we can

now formalize different conceptual quality metrics, both

for exploratory process discovery and confirmatory process

discovery.

4.2 Model-Log Similarity

In the case of exploratory analysis, it is important that there

is a close correspondence between the event log and the

model. The fit between an event log and a process model is

monitored by two ratios (Buijs 2014), log fitness and log

precision. Given event log L, the log fitness and log pre-

cision of a model M can be defined as follows. In these

definitions, we assume that the amount of behavior in S, M

and supp(L) is countable, which is reflected by a count

function #ð. . .Þ.

Definition 1 (Log fitness) Log fitness is a function

FL : M� L ! ½0; 1�, which quantifies how much of the

behavior in the event log is captured by the model. This can

be defined conceptually as (Buijs 2014):

Model M

System S

Event log L

Fig. 1 Venn diagram representing the behavior in the modelM, event

log L and system S Buijs (2014)
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FL ¼ FLðM; LÞ ¼ #ðsuppðLÞ \MÞ
#ðsuppðLÞÞ ð1Þ

Definition 2 (Log precision) Log precision is a function

PL : M� L ! ½0; 1�, which quantifies how much of the

behavior in the model was recorded in the event log. This

can be defined conceptually as (Buijs 2014):

PL ¼ PLðM; LÞ ¼ #ðsuppðLÞ \MÞ
#ðMÞ ð2Þ

Only when both log fitness and log precision are

equal to 1, then suppðLÞ ¼ M, i.e., the event log and the

model represent exactly the same behavior. These

metrics are orthogonal to each other, which makes it

possible to construct models which score poorly on one

criterion and excellent on the other. Acting as com-

plementary forces, maximizing log fitness and log

precision simultaneously maximizes the fit between the

model and the event log.

4.3 Model-System Similarity

For confirmatory analysis, one would like to reject or ac-

cept hypotheses such as Model M1 is more likely than

Model M2 to be the real underlying system. In order to do

this, it is necessary to estimate how well a model M rep-

resents the system S.

When drawing the analogy, it is evident that two

similar dimensions are needed to quantify the match

between the model and the system. Firstly, there is a need

for a metric that ensures the selection of models that

contain all possible real behavior. Secondly, a metric that

favors the selection of models that only contain real

behavior is required. Therefore, given the system S, the

system fitness and system precision of a model M can be

defined as:

Definition 3 (System fitness) System fitness is a function

FS : M� S ! ½0; 1�, which quantifies how much of the

behavior in the system is captured by the model. This can

be defined conceptually as (Buijs 2014):

FS ¼ FSðM; SÞ ¼ #ðS \MÞ
#ðSÞ ð3Þ

Definition 4 (System precision) system precision is a

function PS : M� S ! ½0; 1�, which quantifies how much

of the behavior in the model is part of the system. This can

be defined conceptually as (Buijs 2014):

PS ¼ PSðM; SÞ ¼ #ðS \MÞ
#ðMÞ ð4Þ

4.4 Problem Statement

In a real-life process mining project, there is an inherent

difference between log-measures and system-measures

because of sampling errors and observational errors. Given

the complexity of business processes, it is unlikely that all

the possible behavior and dependencies in a process can be

recorded in a reasonable time span. As a result, log pre-

cision might be lower than the system precision because

the model allows for unrecorded but correct behavior. On

the other hand, there can be measurement errors in the data.

These can lead to a log fitness which is lower than system

fitness, because the model is penalized for not being able to

replay behavior which turns out to be incorrect. Further-

more, measurement errors can have an opposite impact on

precision, and sampling error can have an opposite impact

on fitness. However, system-based metrics cannot be

computed since the system is generally unknown in reality.

As a result, the question is whether the existing log-based

metrics are good estimators of their system-based coun-

terparts. To this end we define

DFðL;M; SÞ ¼ FLðM; LÞ � FSðM; SÞ ð5Þ

DF can be computed for each of the existing fitness met-

rics. For example, to investigate the quality of Token-based

Fitness as an estimator of system fitness, we inspect

DFtbðL;M; SÞ ¼ FtbðM; LÞ � FtbðM; SÞ. By using the

Token-based metric itself in the calculation of the system

fitness, any metric-dependent effects are ruled out.

The same analysis is conducted for precision, where we

define DP as

DPðL;M; SÞ ¼ PLðM; LÞ � PSðM; SÞ ð6Þ

Using an empirical analysis, we examine whether the

existing quality log-based metrics are indeed unbiased

estimators of system-quality. Formally, the next two

hypotheses are tested for each existing metric:

H0 : DF ¼ 0 H1 : DF 6¼ 0 ð7Þ

H0 : DP ¼ 0 H1 : DP 6¼ 0 ð8Þ

In the next section, we further introduce the existing met-

rics which are considered in the analysis. The methodology

of the empirical examination is detailed in Sect. 6.

5 Existing Quality Metrics

Based on the list of existing metrics in Table 1, nine

metrics are considered, as indicated in the last column of

Table 1. The selection of this set of metrics is based on the

following criteria:
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1. They accept a Petri Net as input

2. They return a single value on a [0, 1] scale

3. They can cope with imperfect inputs (unsound dis-

covered models, unfitting logs, etc.)

These criteria should not be interpreted as strict desirable

properties of metrics, but rather as practical restrictions

needed for a large-scale empirical analysis.

5.1 Fitness

Token-Based Fitness (Rozinat and van der Aalst 2008)

(from here on referred to as Ftb) is one of the first fitness

metrics that was defined. As the name suggests, it is highly

dependent on the Petri Net representation of the model

under consideration. The metric penalizes both when

tokens are missing, i.e., an recorded activity cannot be

replayed, and when tokens remain in the model after

replay. While the first penalty takes into account whether

an activity sequence from the log is part of the model, the

latter penalty makes sure that the requirement of proper

completion is taken into account. Formally, Token-based

Fitness is computed as follows:

Ftb ¼
1

2

�
1�

P
r2suppðLÞ LðrÞ � mMðrÞP
r2suppðLÞ LðrÞ � cMðrÞ

�

þ 1

2

�
1�

P
r2suppðLÞ LðrÞ � rMðrÞP
r2suppðLÞ LðrÞ � pMðrÞ

� ð9Þ

where mMðrÞ refers to the number of missing tokens when

replaying trace r on model M. c, r, and p refer to con-

sumed, remaining and produced tokens, respectively.

Alignment-Based Fitness (van der Aalst et al. 2012) (from

here on referred to asFab) is a fitnessmetric which differs from

Token-based Fitness in that it does not rely on the notion of

tokens flowing through a Petri Net. Instead, it aligns log and

model in terms of activities. This means that for non-fitting

traces, i.e., frjr 2 suppðLÞ ^ r 62 Mg, the algorithm looks for

the execution path in the model which is most alike, as mea-

sured by a cost function. The result is an alignment k between
the log trace and themodel trace, which by default has a cost of

1 for each insertion and1 for each deletion.1 Formally, the total

cost of aligning a log and a model is defined as

fcost ¼
X

r2suppðLÞ
dðr;MÞ � LðrÞ ð10Þ

where dðr;MÞ is the minimal alignment cost of activity

sequence r with model M. Given this cost function, the

Alignment-based Fitness is defined as follows:

Fab ¼ 1� fcostP
r2suppðLÞ

�
LðrÞ � jrj þ ðLðrÞ �mins2M jsj

�
ð11Þ

Note that the denominator of Fab is equal to the maximum

possible cost: the number of events in the event log and the

number of activities in the shortest path of the model times

the number of cases in the event log.

Note that the Alignment-based Fitness is very similar to

Token-based Fitness, except for the fact that it counts

inserted and deleted activity instances, instead of missing

and remaining tokens.

Negative Event Recall (Goedertier et al. 2009) (from here

on referred to as Fne), also known as Behavioral recall, is

different from Token-based and Alignment-based Fitness,

in that it uses the notions of precision and recall, known

from the field of information retrieval and binary classifi-

cation. If we define True Positives (TP) as the number of

events in the log that can be correctly replayed, and False

Negatives (FN) as the number of events in the log for

which a transition was forced to fire, Negative Event Recall

can be defined as follows:

Fne ¼
TP

TPþ FN
ð12Þ

Note that this formula is the same as the well-known for-

mula for recall in binary classification. In this case, the log

is regarded as the true condition while the model is

regarded as the predicted condition. The negative event

conformance metrics are based on the induction of artificial

negative events. However, the negative events only impact

the negative event precision and generalization metrics,

which will be addressed further on.

Just as Alignment-based and Token-based Fitness, the

Negative Event Recall relies only on the log as the single

version of the truth. It differs from the other fitness metrics,

as it does not penalize improper completion.

5.2 Precision

Alignment-Based Precision (van der Aalst et al. 2012)

(from here on referred to as Pab) computes the precision of

a model based on the same concept of alignments such as

Alignment-based Fitness. It starts from an aligned log, in

which all the non-fitting traces are replaced with (one of)

their optimal alignment(s).2 Based on this event log, it

considers the activity prefix hðr; kÞ of each event, and

counts which activities are enabled in the model after this

activity prefix (enMðhðr; kÞÞ), and which occurred in the

1 In practice, these costs can be configured for each activity type

individually, to reflect that certain deviations should be penalized

more than others.

2 Optimal alignments are the alignments for which the cost is

minimized.
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log after this activity prefix (enLðhðr; kÞÞ). It follows that

precision is defined as:

Pab ¼
P

r2suppðLÞ LðrÞ
Pjrj�1

j¼0
enLðhðr;jÞÞ
enMðhðr;jÞÞP

r2suppðLÞ jrj � LðrÞ
ð13Þ

The precision measured by this formula will decrease when

for one or more activity prefixes more activities are enabled

in the model than occurred in the log.

Negative Event Precision (vanden Broucke et al. 2014)

(from here on referred to as Pne) is a precision metric which

is related to Negative Event Recall, and is also called

Behavioral precision. Just like recall, its formula equals the

well-known precision formula from the field of binary

classification.

Pne ¼
TP

TPþ FP
ð14Þ

In this case, False Positives (FP) are events which are

allowed by the model but should not be, as their real

condition is negative. However, since negative events are

not available in process discovery, they have to be induced

artificially. The creation of artificial negative events is

discussed in Goedertier et al. (2009). During the induction

of negative events, a confidence for each negative event is

also calculated, which makes it possible to compute a

weighted negative event precision.

One-Align Precision (Adriansyah et al. 2015) (from

here on referred to as Poa) is a combination of ETC-pre-

cision (Muñoz-Gama and Carmona 2010) and alignments

(van der Aalst et al. 2012). ETC-precision, or precision

based on escaping edges, is a precision metric which

constructs an automaton of the behavior in the log. Sub-

sequently, it looks for escaping edges, which essentially

are events that are allowed by the model in a certain state,

but which are never recorded. The precision is then defined

as follows,

Petc ¼ 1�
P

r2suppðLÞ
Pjrj�1

j¼0 jEðhðr; jÞÞjP
r2suppðLÞ

Pjrj�1
j¼0 jAðhðr; jÞÞj

ð15Þ

where Eðhðri; jÞÞ refers to the number of escaping edges

after activity j of trace ri, and Aðhðri; jÞÞ refers to the

number of allowed tasks (both recorded activities and

escaping edges).

Since the ETC-precision itself requires that the event log

has a perfect fitness, it will not be considered further in this

paper. However,One-align Precision or Best-align Preci-

sion are used instead, which use an aligned log to compute

ETC-precision (Adriansyah et al. 2015).

One-align Precision refers to the application of

PetcðLa;MÞ where La is an aligned log using one optimal

alignment for each non-fitting trace. Note that more than

one optimal alignment can be available for a certain trace.

Best-Align precision (Adriansyah et al. 2015) (from here

on referred to as Pba) is similar to One-align Precision, with

the only difference that it does not use one alignment but

all the optimal alignments for each trace.

5.3 Generalization

Alignment-Based Generalization (van der Aalst et al.

2012) (from here on referred to as Gab) was the first gen-

eralization metric to be implemented, and uses trace

alignments just like the related fitness and precision met-

rics. It starts from an aligned log, and for each event cal-

culates the probability that the next time this state is

visited, a new path will be recorded. Given n as the number

of unique activities enabled in this state, and f as the

number of times the state was visited, the probability is

defined as

pnewðn; f Þ ¼
nðnþ 1Þ
f ðf � 1Þ ; if f � n	 2

1; otherwise

8<
: ð16Þ

For example, in a state with 2 unique activities and 2 visits,

pnew = 1, as is also the case with 3 visits. If f = 4, pnew =
2�3
4�3 ¼ 0:5. If f = 5, 2�3

5�4 ¼ 0:3. The larger the difference

between the number of visits and the number of unique

activities, the lower the probability. If the average proba-

bility over the log is low, then generalization is assumed to

be high. As such,

Gab ¼ 1

�
P

r2suppðLÞ
Pjrj�1

j¼0 pnewðenLðhðr; jÞÞ; f ðhðr; jÞÞP
r2suppðLÞ jrj � LðrÞ

ð17Þ

where enLðhðr; jÞÞ is the number of activities are enabled

in the model after this activity prefix and f ðhðr; jÞÞ is the
frequency with which this state is visited in the log.

Relating this definition to one of the concepts introduced

in Sect. 4 is not a trivial task. It tends to favor models in

which more activities are possible in a specific state than

those which actually occurred in the log. However there is

no indication that this additional behavior is real (i.e.,

belongs to the system, thereby increasing system fitness).

Nor is there any upper limit, which means that the flower

model will have a perfect generalization according to this

metric.

Negative Event Generalization (vanden Broucke et al.

2014) (from here on referred to as Gne), also called

Behavioral Generalization, is related to Behavioral recall

and precision and relies on the induction of artificial neg-

ative events. Negative Event Generalization is defined as
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Gne ¼
AG

AGþ DG
ð18Þ

where AG refers to the number of allowed generalizations

and DG refers to the number of disallowed generalizations.

Generalized events are events which were not recorded but

at the same time not considered as negative. In other words,

they are supposed to reflect real behavior and thus belong

to the system S. Consider system S� as defined by the

induced negative events as an approximation of the real

system S. The complete number of generalized events,

AGþ DG is thus equal to jS� n Lj. Generalized events

which can be replayed by the model are called allowed

generalizations, i.e., AG ¼ jM \ S� n Lj. Disallowed gen-

eralized events are generalized events which are not

allowed by the model, i.e., DG ¼ jS� n ðL [MÞj. This

means that Gne can be rewritten as

Gne ¼
jM \ S� n Lj
jS� n Lj ð19Þ

which resembles the formula for system fitness, with the

only difference that S is replaced by S� n L.

6 Methodology

In order to analyze the quality of the introduced metrics as

unbiased estimators of the fit between a discovered model

and the underlying system, an experiment is conducted

consisting of the following steps:

1. Generate systems

2. Calculate number of paths

3. Simulate logs

4. Discover models

5. Measure log-quality

6. Measure system-quality

7. Statistical analysis

A schematic overview of the methodology is shown in

Fig. 2. The different steps are discussed in more detail in

the following paragraphs.

6.1 Generate Systems

Firstly, 10 different systems were created. These can be

regarded as the real process underlying 10 different busi-

ness processes. The systems were generated using the

methodology in Jouck and Depaire (2016). Process trees

were chosen as notation because they can represent all

block-structured models. Furthermore, the methodology in

Jouck and Depaire (2016) allows to generate process trees

with long-term dependencies using unfolded choice trees.

Moreover, process trees lend themselves well for this large-

scale experiment, as they are guaranteed to be free of

deadlocks.

Ten process trees were generated, each from a different

population with another probability distribution for the

type of operators (choice, and, loop, etc.), as well as dif-

ferent probabilities for the number of duplicate tasks, silent

tasks, long-term dependencies, etc. An overview of the

population parameters is shown in Table 2.

The first three parameters define a triangular distribution

from which the number of visible activities is randomly

drawn. The next five parameters - P!;P^;P�;P� and

P_ - define a probability distribution over the different

types of process tree operators: sequence, parallel, exclu-

sive choice, loops, and or choice, respectively. The prob-

ability that a silent (invisible) activity is included in an

exclusive choice, loop, or choice construct is given by Ps,

the probability that an activity is duplicated is defined by

PRe, and PLt gives the probability that a long-term

dependency is included between two decision points.

The probabilities for sequence, parallel and choice

constructs are based on the work in Kunze et al. (2011). In

this work, the occurrence of sequence, exclusive choice,

and parallelism in a large set of models is analyzed, which

(when normalized to 100%), are on average 46%, 35% and

19%. Population 1–6 can be seen as slight variations of the

above mentioned probabilities, while populations 7–10 can

be seen as more special cases, including duplicate and

silent tasks, long-term dependencies, and atypical proba-

bility distributions for constructs. The implications of these

settings and their limitations are discussed in Sect. 8.

Fig. 2 Schematic overview of methodology
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6.2 Calculate Number of Paths

After the generation of the systems, the maximum number

of execution paths in each tree is calculated using the

algorithm in Janssenswillen et al. (2016). In order to cope

with loop operators, the algorithm assumes that a loop

cannot be iterated over more than three times, thereby

effectively limiting the number of paths which can be

generated by a loop in a realistic manner. This limit ensures

that each model has a finite number of possible execution

paths and is inspired by a fairness assumption, meaning

that a certain task should not be delayed indefinitely. The

number of paths in a model is needed to control the com-

pleteness of event logs in the next step, i.e., the simulation

of event logs.

6.3 Simulate Logs

For each system, different event logs were simulated using

the methodology in Jouck and Depaire (2016). Firstly, a

ground truth event log was created for each system. This is

an event log with zero noise and 100% completeness

(indicated by the number of distinct paths calculated in the

previous step). This ground truth event log will be used

later to calculate the system-quality of models.

Secondly, event logs with varying levels of complete-

ness and noise are generated. The completeness, in terms of

number of distinct traces, varies between 25%, 50%, 75%

to 100%. The amount of noise ranges from 0% to 5%, 10%

and 15%. Noise is defined as low-frequent incorrect

behavior (de Medeiros et al. 2007), and the types of noise

which are induced are adapted from Maruster (2003).

To assure that the introduction of noise does not

decreases the completeness, noise is not directly added to

the event log. Instead, a sample of the event log is taken to

which noise is added, that is then combined with the

original event log. The size of the sample is derived from

the target noise threshold: to obtain an event log with 15%

of noise, a sample of size x% is needed such that

x=ð100þ xÞ ¼ 15%). Since the original part of the event

log still belongs to the modified event log, completeness

does not decrease.

However, it is important to observe that this noise

threshold should be regarded as an upper bound. A modi-

fied trace,i.e., after introducing noise, can still be correct

behavior. Currently, the algorithm used for introducing

noise does not explicitly test this. Consequently, while

introducing noise will not decrease completeness, as a

result of the mechanism described above, it can increase

the completeness. This happens when the noisy traces are

still system behavior and have not yet been seen in the log.

As a result, the completeness threshold should be regarded

as a lower bound. This means that both the completeness

and the noise threshold are defined in a conservative way,

i.e., the actual level might be not as bad.

Definition 5 (Noise) Given a trace r ¼
\a1; a2; . . .; an�1; an [ ; then the following types of noise

are defined:3

1. Missing head: remove all activities ai with i 2 ½1; n
3
�

2. Missing body: remove all activities ai with

i 2 ½n
3
þ 1; 2n

3
�

3. Missing tail: remove all activities ai with i 2 ½2n
3
þ 1; n�

4. Swap tasks: interchange two random activities ai and

aj with i 6¼ j

5. Remove task: remove random activity ai

Table 2 Parameters for 10

model populations (MP) to

generate systems

Parameters Population

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10

Minimum of visible act 10 10 10 10 10 10 10 10 10 10

Mode of visible act 15 15 15 15 15 15 15 15 15 15

Maximum of visible act 20 20 20 20 20 20 20 20 20 20

Sequence (P!) 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.45

Parallel (P^) 0.30 0.00 0.15 0.15 0.00 0.10 0.10 0.10 0.10 0.00

Choice (P�) 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.40

Loops (P�) 0.00 0.30 0.15 0.00 0.15 0.10 0.10 0.10 0.10 0.00

Or (P_) 0.00 0.00 0.00 0.15 0.15 0.10 0.10 0.10 0.10 0.15

Silent act (Ps) 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00

Reoccuring act (PRe) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00

Lt. dependencies (PLt) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00

3 The types of noise used have been defined based on existing

literature (Maruster 2003). However, for future experiments, a more

elaborate reasoning for what qualifies as realistic noise is necessary.

For example, the swapping of random activities is not really a realistic

event. A detailed discussion of what can be regarded as noise is out of

the scope of this paper.

123

G. Janssenswillen, B. Depaire: Towards Confirmatory Process Discovery…, Bus Inf Syst Eng 61(6):713–728 (2019) 721



These types of noise have been defined based on the fact

that they mimic realistic measurement errors or data

inconsistency, due to system failures [1–3, 5] or unsyn-

chronized time registrations [4].

For each combination of noise level (4) and complete-

ness level (4), 5 different logs are generated, resulting in a

total of 4 � 4 � 5 ¼ 80 for each system, or 800 logs in total.

6.4 Discover Models

For each of the 800 event logs, three different models are

discovered by way of the Heuristics miner (Weijters et al.

2006), the Inductive miner (Leemans et al. 2013), and the

ILP miner (van der Werf et al. 2008). The total number of

discovered models is thus equal to 2400. ProM 6.5 was

used for the discovery of the process models, and each of

the miners was used with the default settings.

6.5 Measure Log Quality

After the event logs have been generated and the models

are discovered, the quality metrics discussed in Sect. 5 are

applied to each discovered process model and the event log

it was learned from. Since there are 2400 process models

and 9 quality metrics, this results in a total of 21,600

measurements.

6.6 Measure System Quality

Next to the log-quality, also the system quality of process

models is measured. This is done by applying each of the

fitness and precision metrics with respect to the ground

truth event log for each of the systems, as to compute

system fitness and system precision of these models. This

means that for each model there are actually 3 system fit-

ness measures and 4 system precision measures.

Note that the ground truth event log of the systems is

used for several reasons. Firstly, there are no metrics for

quantifying a notion of fitness and precision between two

process models, which is solved by representing one of

them as an equivalent event log. Secondly, the systems are

better candidates to be represented by a ground truth event

log than the models, as the latter may not be sound.

Deadlocks or livelocks might cause problems when simu-

lating the models. Also, the calculated number of paths (see

Sect. 6.2) is essential to assure the ground truth event logs

are complete. Calculating the number of paths in the

models might not be feasible for all discovered models, as

the technique in Janssenswillen et al. (2016) requires

block-structuredness, which is not guaranteed by ILP-

miner and Heuristic miner. Finally, from the viewpoint of

comparing log-measures with system-measures, it appears

more logical to use the discovered model in the same

appearance (i.e., as a process model) in both

measurements.

6.7 Statistical Analysis

The analysis of the results consists of two parts. The first

part analyzes the difference between log fitness and log

precision on the one hand, and system fitness and system

precision on the other hand. The second part analyzes the

relationship between generalization metrics and system

fitness.

6.7.1 Log Versus System-Perspective

In order to analyze the difference between log fitness and

system fitness, and log precision and system precision, we

investigate whether the existing fitness and precision

measures can be used as an unbiased estimator for system

fitness and system precision, respectively. This means that

E½DF� ¼ 0 ð20Þ

and

E½DP� ¼ 0 ð21Þ

regardless of the amount of noise of level of completeness

of the log. Recall that DF and DP are defined as follows:

DFðL;M; SÞ ¼ FLðM; LÞ � FSðM; SÞ ð22Þ

DPðL;M; SÞ ¼ PLðM; LÞ � PSðM; SÞ ð23Þ

The distribution and expected values of DF and DP under

different circumstances in terms of noise and completeness

are analyzed both visually and using t-tests.

6.7.2 Generalization

Although the concept of generalization, as discussed in

Sect. 2, does not directly match the perspectives proposed

in Sect. 4, it is to some extent related to system fitness. As

a result, next to log fitness metrics, generalization metrics

might be a viable candidate as estimators for system fit-

ness. In order to analyze the quality of generalization

metrics as unbiased estimators, we compare their value

with system fitness. In this analysis, Alignment-based Fit-

ness is chosen as the reference system fitness, as it is

considered as the state-of-the-art fitness-metric. Formally,

we define

DGðL;M; SÞ ¼ GLðL;MÞ � FS
abðM; SÞ ð24Þ

The distribution of DG is analyzed in the same way as

those related to fitness and precision, i.e., both graphically

and using t-tests.
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7 Results

7.1 Log Versus System-Perspective

7.1.1 Fitness

Figure 3 shows that the influence of completeness and

noise on the distribution of DF is quite different. Note that

in this and subsequent figures, there is a data point for each

combination of simulated event log, discovered model, and

quality metric used. In Fig. 3a it can be seen that, if the

completeness of the log decreases, log fitness measures

remain unbiased estimators of system fitness, but their

precision as estimator decreases.

On the other hand,when the amount of noise in the event log

increases - keeping completeness constant - both thevarianceof

DF increases and its expected value decreases. In the presence

of noise, log fitnessmetrics are thus biased estimators of system

fitness; they underestimate real system fitness.

Table 3 shows the extent of the biases in more detail for

each of the metrics. T-tests were conducted to see whether

the mean DF was equal to zero or not, under the various

circumstances. The annotated �’s indicate whether DF is

significantly different from zero in a certain situation. In

order to correct for multiple testing, the Bonferroni cor-

rection was applied. It can be recorded that the impact of

incompleteness (in the absence of noise) is limited, with

only a few statistically significant differences. However,

when the logs contain noise, there are statistically signifi-

cant underestimations of system fitness.

7.1.2 Precision

Figure 4a shows that when event logs are incomplete,

precision measures are increasingly underestimating sys-

tem precision, while Fig. 4b shows that they overestimate

system precision in case of noisy logs.

The mean DP for different levels of noise and com-

pleteness is shown in Table 4. In this case, both noise and

completeness have a statistically significant impact on DP.
In general, it can be stated that incompleteness of the

event log always leads to an underestimation of system

precision, while noise results in an overestimation. How-

ever, making assumptions about the completeness and the

amount of noise of a given event log is a non-trivial task.

As a result, quantifying the bias in a particular case would

not be straightforward.

Fig. 3 Impact of completeness and noise on DF. a Distribution of DF
for different levels of completeness, while noise is constant at 0%. b
Distribution of DF for different levels of noise, while completeness is

constant at 100%
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7.2 Generalization

Figure 5 shows the impact of both incompleteness

(Fig. 5a) and noise (Fig. 5b) on DG. It can be seen that

there is a clear distinction between the Alignment-based

Generalization and Negative Event Generalization.

Although DG is more or less stable for both metrics when

the completeness of event logs decreases, this is not the

case when the amount of noise increases.

Moreover, the impact of noise does not seem to be

linear. For Alignment-based Generalization there is a

sudden increase in DG when the amount of noise is

increased from 0% to 5%. As a result, this generalization

metric overestimates system fitness. However, when noise

increases further than 5%, there is no increase in the

overestimation. On the other hand, the pattern for Negative

Event Generalization is more erratic, with a strange

underestimation for logs with 10% noise, while the bias

remains limited at other levels of noise.

Fig. 4 Impact of completeness and noise on DP. a Distribution of DP for different levels of completeness, while noise is constant at 0%. b
Distribution of DP for different levels of noise, while completeness is constant at 100%

Table 3 Mean DF for fitness metrics under differing noise and completeness levels

Noise

Metric Completeness (%) 0% 5% 10% 15%

Alignment-based Fitness 100 - 0.0002 - 0.0071*** - 0.0144*** - 0.0212***

75 - 0.0013 - 0.0081*** - 0.0158*** - 0.0217***

50 0.0002 - 0.0066*** - 0.013*** - 0.0209***

25 0.0011 - 0.0051* - 0.0115*** - 0.0181***

Negative Event Recall 100 0.0011** - 0.0017*** - 0.0047*** - 0.0069***

75 0.0003 - 0.0017*** - 0.0049*** - 0.0076***

50 0.0024*** - 0.002*** - 0.0043*** - 0.008***

25 0.0033** 0.0011 - 0.0034*** - 0.0057***

Token-based Fitness 100 0.0007 - 0.0069*** - 0.0155*** - 0.023***

75 0.0011 - 0.0049*** - 0.0106*** - 0.0195***

50 0.0016 - 0.0037*** - 0.011*** - 0.017***

25 0.0024 - 0.0014** - 0.006*** - 0.0082***

�p\0:1; � � p\0:05; � � �p\0:01

Based on Wilcoxon signed rank test with Bonferroni correction

123

724 G. Janssenswillen, B. Depaire: Towards Confirmatory Process Discovery…, Bus Inf Syst Eng 61(6):713–728 (2019)



The mean values of DG in Table 5 show that for both

metrics, DG is statistically different from zero in nearly all

situations where noise or incompleteness is the case. This

indicates that Negative Event Generalization consistently

underestimates system fitness, even in the absence of noise

and for complete event logs.

8 Discussion

When assessing the quality of a process model, often the

implicit goal is to find out whether it reflects the underly-

ing, unknown process, on the basis of the sample of event

data that has been collected. However, the ability of current

metrics to assess the similarity between a process model

and the underlying system has never been explicitly tested.

As a result, one should be careful when interpreting the

obtained measures.

The empirical analysis described in this paper shows

that the fitness and precision measures are indeed biased

estimators of system fitness and system precision in real-

istic circumstances, i.e., in the presence of noise and

incomplete event data.

Noise leads to an overestimation of system precision and

underestimation of system fitness, while incompleteness

has the opposite effect. While the direction of the biases are

intuitive, the empirical study has shown how severe they

are in terms of the level of noise and incompleteness used.

Nonetheless, estimating what the amount of noise or the

level of log completeness is in a specific practical context

is a difficult task.

It can thus be concluded that, given the metrics which

are available today, we are not able to confidently quantify

which model is the best representation of the underlying

process under consideration, which is definitely an obstacle

to evolving towards confirmatory process discovery. It is

therefore important not to derive too many conclusions

when using fitness and precision metrics, as they only

assess the log-perspective.

Nonetheless, information on the direction of the biases,

i.e., under- vs overestimation, provides some guidance to

practitioners on how to use these obtained quality mea-

sures. In case of underestimation, the obtained values can

be seen as lower bounds, or conservative measures, while

in case of overestimation they should be regarded as being

optimistic. A key assumption here is that the practitioner

has a good understanding of the noise and completeness of

the data used.

The experiment described in this paper has some limi-

tations. Firstly, although the empirical analysis was per-

formed using a set of systems generated with various

parameter settings, the instances are too limited to compare

the impact of individual parameters on the measurement

biases. Further research would be needed to see whether

the biases can be linked to characteristics in the process,

and thus be analyzed in more detail. Moreover, while the

results can be generalized to the populations described in

Table 2, additional research is needed to determine

Table 4 Mean DP for precision metrics under differing noise and completeness levels

Noise

Metric Completeness (%) 0% 5% 10% 15%

Alignment-based precision 100 - 0.0002 0.0415*** 0.0453*** 0.0597***

75 - 0.0032*** 0.0339*** 0.043*** 0.049***

50 - 0.0101*** 0.0268 0.0379*** 0.0384***

25 - 0.0225*** 0.0018* 0.0093 0.0122

Best-align precision 100 0.0013 0.0412*** 0.0538*** 0.0636***

75 - 0.0066*** 0.0201*** 0.0161*** 0.0308***

50 - 0.015*** 0.0085 0.0118 0.0104

25 - 0.0394*** - 0.015 - 0.0063 - 0.0111

Negative event precision 100 - 0.0012*** 0.0595*** 0.0728*** 0.0837***

75 - 0.0055*** 0.0265** 0.0425*** 0.053***

50 - 0.0101*** 0.0157 0.0185 0.0246

25 - 0.0254*** - 0.0073 - 0.0088 - 0.0047

One-align precision 100 - 0.0004 0.0334*** 0.042*** 0.0467***

75 - 0.0049*** 0.0174*** 0.0262*** 0.0315***

50 - 0.0156*** 0.0069 0.012** 0.0152**

25 - 0.0381*** - 0.0124*** - 0.0064 - 0.0013

�p\0:1; � � p\0:05; � � �p\0:01 Based on Wilcoxon signed rank test with Bonferroni correction
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whether these parameters adequately represent realistic

process models.

Secondly, since the algorithm for noise induction does

not strictly ensure that the resulting traces are incorrect, the

noise threshold is an upper bound and the completeness

threshold is a lower bound. While this creates difficulties in

interpreting the results of the experiment, it is less relevant

from a practitioner’s point of view, in which the amount of

noise and completeness is unknown in any case.

Thirdly, only three discovery algorithms were used in

the experiment, each with default settings. While the aim

of the experiment was not to compare different algorithms,

further research is needed to verify whether the biases can

be generalized to other sets of models.

Future research is needed in order to resolve these

issues. We believe that additional insights from fields such

as statistics and machine learning can facilitate the finding

of solutions. Traditional statistical inference could provide

answers if event logs are regarded as sets of traces with

individual quality measures over which a standard devia-

tion can be computed. Moreover, a promising track for

further research would be to compare a set of possible

models using Bayesian inference, in order to estimate the

likelihood that they represent the underlying system, given

the data.

9 Conclusion

Since the emergence of the process mining field, the focus

has been largely on exploratory and descriptive data anal-

ysis. In other words, the main emphasis was on the sample

of event data under consideration, while few efforts have

been made to statistically confirm findings. For process

discovery to mature as a research field and in order to

increase the adoption of process discovery techniques in

industry, the latter step is however essential.

In this paper, we connect the process discovery context

with the traditional concepts and exploratory and confir-

matory analysis in statistics and data science. In particular,

when checking the quality of discovered process models, it

is important to be aware whether the conclusions of process

discovery techniques only apply to the sample of the event

data, or conversely apply to the broader context of the

process itself. It is shown that new quality dimensions are

needed in order to make these kinds of assertions about the

system.

An empirical analysis showed that current fitness and

precision metrics, which are targeted towards log and

model, are biased estimators of the resemblance between

model and the underlying system. As a result, although

they are sufficient for measuring the quality of a model as a

representation of the log, they should not be used when the

Fig. 5 Impact of completeness and noise on DG. a Distribution of DG
for different levels of completeness, while noise is constant at 0%. b
Distribution of DG for different levels of noise, while completeness is

constant at 100%
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goal is to make statements about the real process. Fur-

thermore, the generalization dimension has been identified

as a vaguely defined concept which is unable to properly

grasp the relation between model and system. The imple-

mented generalization metrics are moreover unfit for esti-

mating system fitness or system precision.
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