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Abstract Within the process mining domain, research on

comparing control-flow (CF) discovery techniques has

gained importance. A crucial building block of empirical

analysis of CF discovery techniques is obtaining the

appropriate evaluation data. Currently, there is no answer

to the question of how to collect such evaluation data. The

paper introduces a methodology for generating artificial

event data (GED) and an implementation called the Process

Tree and Log Generator. The GED methodology and its

implementation provide users with full control over the

characteristics of the generated event data and an integra-

tion within the ProM framework. Unlike existing approa-

ches, there is no tradeoff between including long-term

dependencies and soundness of the process. The contribu-

tions of the paper provide a solution for a necessary step in

the empirical analysis of CF discovery algorithms.

Keywords Artificial event logs � Process discovery �
Empirical analysis

1 Introduction

Process mining is the research domain focused on

extracting knowledge from process execution logs, com-

monly referred to as event logs (van der Aalst 2016;

Dumas et al. 2013). Most attention within process mining

has been paid to a group of techniques aimed at control-

flow (CF) discovery whose goal it is to discover the process

control-flow directly from an event log. Over the past 15

years, researchers have developed a multitude of algo-

rithms for CF discovery (for an overview see van der Aalst

2016; De Weerdt et al. 2012). In the early days researchers

developed algorithms for discovering specific process

constructs, while recently, new algorithms focus on out-

performing existing algorithms in terms of certain quality

measures. This shift has led to an increased importance of

research on comparing such algorithms (Rozinat et al.

2007; De Weerdt et al. 2012; vanden Broucke et al. 2014;

Wang et al. 2012; Weber et al. 2013).

The framework introduced by Rozinat et al. (2007)

describes an empirical evaluation method to compare CF

discovery techniques. Such an evaluation requires large

amounts of appropriate data (models and event logs) as

input for empirical analysis. Yet, which data is appropriate

to use for comparing CF discovery algorithms? How to

collect such data? These questions have received little to

no explicit attention, despite their many challenges.

To illustrate the problem, consider the following

example: a researcher investigates which algorithm per-

forms best for rediscovering processes with structured

loops and long-term (LT) dependencies, algorithm x or y?

An empirical comparison requires logs that guarantee such

behavior while controlling for other behavior. Therefore,

the researcher needs a method to generate these logs which

guarantees a correct experimental design.

This paper advocates the use of artificial event logs

rather than real event logs for empirical evaluation. First of

all, the process population characteristics of a real event

log are unknown because a reference model is lacking.

Secondly, the number of real event logs is limited. How-

ever, in order to draw statistically significant conclusions,

large amounts of data sets are needed. Artificially
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generated event data can overcome both of these limita-

tions and therefore are more appropriate for tackling the

challenge of collecting event data for empirical analysis of

CF discovery techniques.

None of the current artificial event data approaches

presents a general methodology of how to generate process

models and event logs to empirically evaluate process

discovery algorithms. However, this is necessary to ensure

a correct experimental design which in turn guarantees

statistically valid conclusions of the empirical analysis.

Moreover, in current approaches a tradeoff exists between

the inclusion of LT dependencies and soundness of the

final model. On one hand, approaches using block-struc-

tured models guarantee sound models but naturally cannot

handle LT dependencies. On the other hand, approaches

with models that include long-term dependencies cannot

guarantee soundness. However, block-structured models

impose a rather restrictive assumption (van der Aalst

2016), while soundness ensures that simulation of a model

(i.e., the generation of an event log) cannot get stuck in a

deadlock or livelock.

To overcome these issues, this paper introduces a

methodology and implementation for generating random

artificial process models and event logs to enable empirical

CF discovery analysis. The objective fits into the design

science framework as it aims at the scientific study and

creation of artifacts with the goal of solving practical

problems of general interest (Johannesson and Perjons

2014). Design science methodology defines four funda-

mental steps: define requirements, design and develop

artifact(s), demonstrate artifacts, and evaluate artifacts.

This paper is structured accordingly. It makes the following

contributions:

• A general methodology for generating random artificial

process models and event logs (Sect. 2).

• Implementation of the methodology for generating

random sound process models with LT dependencies

and corresponding event logs (Sect. 4).

Section 5 demonstrates and evaluates the generated arti-

facts. Section 6 summarizes the conclusions of the paper.

2 GED Methodology Versus Related Work

Approaches for generating artificial event data have

already been introduced by Burattin (2015), Jin et al.

(2011), van Hee and Liu (2010), Kataeva et al. (2014).

Each of these approaches focus on the algorithms and

implementation of generating artificial models and event

logs. However, none of the existing approaches presents a

methodology of how to generate event data for empirically

evaluating CF discovery techniques. Such a methodology,

nonetheless, is an essential starting point to ensure that the

empirical analysis has a sound experimental design that

guarantees valid statistical claims.

To fill this gap, the starting point of the paper is a new

methodology for Generating artificial Event Data (GED)

for process discovery evaluation. This methodology (il-

lustrated in Fig. 1) consolidates concepts of experimental

design in statistics with existing process mining research

methodology. To our knowledge, this is the first time that a

methodology combines the ideas of those two research

areas. The GED methodology is the foundation from which

specific requirements for our artifacts are derived.

2.1 GED Methodology

The GED methodology uses a hierarchical experimental

design (Box et al. 2005) for the generated event data.

Figure 2 illustrates this design: the first level comprises the

process model population (hereafter called model popula-

tion), the second level a random sample of process models,

and the third level a random sample of event logs generated

from the models in the second level. This structure gives

researchers full control over the control-flow behavior in

the generated event data. Additionally, it enables the

researcher to generalize findings from the event logs to a

known model population.

The GED methodology starts by defining the model

population. A model population specifies the control-flow

patterns and their probabilities. Examples of such patterns

are the workflow control-flow patterns (WCP), identified

by Russell et al. (2006), which represent process behavior

common to all real business processes. A probability dis-

tribution is assigned to each pattern such that the sample

(drawn in the second step) contains random models from

the population. Each model in the sample will then be

simulated into a set of event logs while setting parameters

to control the number of traces and the amount of noise.

This set of logs forms a sample of all possible logs pro-

duced by the model population.

The last two steps of the GED methodology are adopted

from existing process mining methodology (see vanden

Broucke et al. 2014; Weber et al. 2013; Wen et al. 2007;

de Medeiros et al. 2007). In contrast to existing approaches

in which researchers typically created models by hand in an

ad hoc manner, GED generates models which are random

observations from a model population. This allows

researchers to generalize their results to a pre-defined

population.

One possible use case for the GED methodology is the

performance comparison of CF discovery algorithms in

terms of model quality. In this case a researcher needs to

define populations with an extended set of control-flow

patterns. If only a limited set of basic patterns were
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available, the simplicity of the event data could bias the

comparison results. A second use case for GED is the goal

to understand the effect of specific control-flow behavior

on algorithm performance. This use case requires full

control over all possible control-flow patterns in the gen-

erated models to enable causal analysis.

Based on these use cases, more specific requirements for

the GED methodology implementation are derived (see

leftmost column of Table 1). The first group of require-

ments regards the full control over the control-flow

behavior in the generated process models (control-flow

patterns) and event logs (log characteristics). A multitude

of evaluation studies vanden Broucke et al. (2014),

de Medeiros et al. (2007), van Dongen et al. (2009)

assessed discovery algorithms using an extensive set of

control-flow patterns. This set includes the basic WCP

(Russell et al. 2006): sequence (WCP-1), parallelism

(WCP-2 and 3), exclusive choice (WCP-4 and 5), ‘or’

(WCP-6 and 7) and structured loops (WCP-21). Besides

the basic patterns, the set also covers the complex con-

structs invisible (skipping) activities, duplicate activities

and LT dependencies. De Medeiros and vanden Broucke

et al. (2014) also studied the effect of log characteristics,

i.e., number of traces, noise, and infrequent behavior.1

Consequently, the implementation of the GED methodol-

ogy should support control over all these patterns and

characteristics.

Additionally, the soundness was added as a requirement

for each generated model. This ensures that the produced

model can never cause a deadlock during the simulation. A

simulator allowing for unsound models requires the

detection of the violation and the repair of that violation

which is far from trivial (Buijs 2014).

The second group of requirements relates to random-

ness. In order to generalize findings from event logs to the

model population, the event logs should be random sam-

ples to avoid biased conclusions. To be more specific, the

implementation should allow to draw a random sample of

models from the model population. In the next step, the

implementation should support the simulation of a random

sample of logs from the sample of models.

The third and last group of requirements specifies the

formats of the generated event data and integration with

process mining tools. A discovery evaluation experiment

can exploit the extensive set of algorithms and confor-

mance checking techniques in the ProM framework (Ver-

beek et al. 2011). This framework uses the XES standard

(Verbeek et al. 2011) for event logs and supports different

XML-based formats for process models. Therefore, it is

important that the implementation of the GED methodol-

ogy produces models and logs in these standard formats.

An additional advantage would be the integration within

the ProM framework (Verbeek et al. 2011) to enable

automated experiments.

Each of the requirements are listed in the leftmost col-

umn of Table 1, grouped by category: full control, ran-

domness, and standard formats. The use of the GED

Fig. 1 The GED methodology for generating artificial event data

Fig. 2 General methodology: a hierarchical model

1 Noise is defined in this paper as incorrect behavior in the log (see

Sect. 4.4).
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methodology for artificial event data needs an implemen-

tation that supports all these requirements.

2.2 Evaluation of Related Work

We have evaluated the existing implementations for gen-

erating event data against the requirements stated above.

The results in (Table 1) show that none of the existing tools

fulfills all the requirements. PLG2 (Burattin 2015) is the

most mature tool, but is limited to block-structured process

models, i.e., the models cannot contain LT dependencies,

which imposes a rather restrictive assumption (van der

Aalst 2016). The approach using GraphGrammar (Kataeva

et al. 2014) only allows for generating and simulating

rather simplistic process models. The BeehiveZ tool (Jin

et al. 2011) gives users limited control over the control-

flow constructs in the generated models as users can only

pick a class of process models from which a random

sample is drawn and simulated. Finally, the TestBed

tool (van Hee and Liu 2010) does not include a simulator,

but allows for LT dependencies. However, to model LT

dependencies it uses non-free choice constructs which do

not guarantee soundness of the produced models. An

alternative solution to guarantee soundness would be as

follows: first, generate a subclass of Workflow nets (called

Jackson nets (van Hee and Liu 2010) that are always

sound, then extend these models with non-free choice

constructs (NFC) to introduce LT dependencies. Each time

a NFC is added, check for soundness, if there is a violation,

revert the NFC and try another. However, deciding

soundness may be intractable for complex nets (van der

Aalst 1998) and therefore this solution is insufficient.

Moreover, the randomness of the generated models,

another requirement of the GED methodology, is possibly

violated as some random sound models are excluded if they

require a series of bridge rules which first make the model

unsound and later on make the model sound again.

Other approaches for artificial event data generation

such as SecSy (Stocker and Accorsi 2013), CPN Tools

(Jensen et al. 2007) and GENA log generator (Mitsyuk

et al. 2017) only focus on simulation of an event log given

a process model as input. These approaches are less rele-

vant as the paper focuses more on model than on log

generation.

As none of the current tools meets all the requirements,

this paper introduces an implementation of the GED

Table 1 Evaluating existing implementations on the requirements of GED implementation

PLG2 GraphGrammar BeehiveZ TestBed

(Burattin 2015) (Kataeva et al. 2014) (Jin et al. 2011) (van Hee and Liu 2010)

R1 full control

Number of activities 4 4

Sequence (WCP-1) 4 4 4

Parallel (WCP-2-3) 4 4 4

Choice (WCP-4-5) 4 4 4

Loop (WCP-21) 4 4

Or (WCP-6-7)

Silent (skipping) activities 4

Reoccurring (duplicate) activities

Long-term (LT) dependencies 4
b

Infrequent paths 4

Soundness 4 4
b

No. traces 4 4 4

Noise 4 4

R2 randomness

Random generation 4 4 4 4

R3 standard formats

Models 4 4 4

Logs 4 4

ProM integration 4a
4

aPLG2 (Burattin 2015) is only available as a standalone tool, but the older PLG (Burattin and Sperduti 2011) is implemented in ProM with all the

indicated requirements
bThe approach allows to add ’arc bridges’ to create non-free choice constructs, yet it does not guarantee sound models
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methodology that conforms to all the requirements. In this

paper we will mostly focus on the challenge of solving the

trade-off between including LT dependencies while

ensuring soundness of the generated models.

3 Preliminaries

The implementation of the GED methodology uses process

trees (van der Aalst et al. 2012; Buijs 2014) for modeling

the randomly generated processes. A first advantage of

process trees is that each tree is inherently sound (van der

Aalst et al. 2012). The soundness property guarantees that

the simulation of a tree, in the simulation step of the

methodology, can never deadlock. Another advantage is

that process trees can easily be built in a stepwise manner

using the patterns defined in the population as building

blocks. Definition 1 formalizes a process tree

PT(N, r, m, c, p, s, b) used in the remainder of this paper.

It extends the definition by Buijs (2014) with a parent

(p) and a probability mapping function (b).

Definition 1 (Process tree) Let A � A be a finite set of

activities and PT be a tree: PT ¼ ðN; r;m; c; p; s; bÞ, where:

• N is a non-empty set of nodes consisting of operator

(NO) and leaf nodes (NL) such that: NO \ NL ¼ ;
• r 2 NO is the root node of the tree

• O ¼ f!; �; ^; �k; _g are the base patterns: ‘se-

quence’,‘choice’,‘parallel’,‘loop’ and ‘or’.

• m : N ! A [ O is a mapping function mapping each

node to an operator or activity, with s representing a

silent activity:

mðnÞ ¼
a 2 A [ fsg; if n 2 NL:

o 2 O; if n 2 NO:

�

• Let N� be the set of all finite sequences over N then

c : N ! N� is the child-relation function:

cðnÞ ¼ hi if n 2 NL

cðnÞ 2 N� if n 2 NO

such that

• each node except the root node has exactly one

parent:

8n 2 Nnfrg : 9p 2 NO : n 2 cðpÞ^ 6 9q
2 NO : p 6¼ q ^ n 2 cðqÞ;

• the root node has no parent: 6 9n 2 N : r 2 cðnÞ;
• each node appears only once in the list of children

of its parent: 8n 2 N : 81� i\j� jcðnÞj : cðnÞi 6¼ cðnÞj;
• a node with a loop operator type has exactly three

children such that the first child is always executed

first, the second child is executed maximum k 2 N

times, each time followed by the first child, and

finally the third child is executed once:

8n 2 N : ðmðnÞ ¼ �kÞ ) jcðnÞj ¼ 3:

• p : N ! N is the parent relation function:

pðnÞ ¼ q , n 2 cðqÞ
• each node has a probability of being chosen: b : N !

½0; 1� is a mapping function mapping a probability to

each node n:

bðnÞ ¼
1; if pðnÞ 62 N�

2 ½0; 1�; such that
Pk2cðpðnÞÞ

k

bðkÞ ¼ 1 if pðnÞ 2 N�:

8><
>:

• Let N� be the set of all finite sequences over N then

s : N ! N� is the subtree function, returning all nodes

of n in a pre-order:

sðnÞ ¼
n; if n 2 NL:

n � sðcðnÞ1Þ � . . . � sðcðnÞjcðnÞjÞ; if n 2 NO:

(

• A node n 2 N can be denoted in shorthand as follows:

n ¼ thn1; . . .; nki where t ¼ mðnÞ and

hn1; . . .; nki ¼ cðnÞ.

Figure 3 shows an example process tree PT1 ¼ !
ð�ða; bÞ; c;^ðd; eÞÞ that represents a simple process that

starts with a choice between activities a and b, followed by

activity c, and then followed by activity d and e in parallel.

4 Process Tree and Log Generator

This section describes the implementation of the GED

methodology: (1) how to specify a model population, (2)

how to draw a sample of process trees from that population,

(3) how to add random LT dependencies to a process tree,

and (4) how to simulate a tree into an event log. The

requirements stated in Sect. 2 are taken as the starting point

for all steps.

Fig. 3 PT1 ¼ ! ð�ða; bÞ; c;
^ðd; eÞÞ
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4.1 Define a Model Population

The first step of the GED methodology is the definition of a

model population. In this step the user defines the building

blocks, i.e., control-flow patterns, of which the models in

the population consist. The full control requirement cate-

gory in Sect. 2 listed an extensive set of control-flow pat-

terns a researcher wants to control during discovery

algorithm evaluation (listed in the first column of Table 2).

In the implementation of the methodology, the model

population consists of process trees. Each process tree

consists of operator and leaf nodes (see Definition 1). An

operator node represents one of the basic workflow control-

flow patterns: ‘sequence’ (!), ‘choice’ (�), ‘parallel’ (^),
‘loop’ (�k) and ‘or’ (_). A leaf node represents an activity

which can be a visible activity (a 2 A) or a silent activity

(s).
Our method requires users to specify six probability

distributions to define a tree population. First, the user

assigns a triangular distribution for the number of visible

activities to control the size of the trees. A triangular dis-

tribution is characterized by a lower limit, a mode and an

upper limit: y � triangular(minimum,mode,maximum).

As a result, all trees in the population will have a number of

visible activities y ¼ jfn 2 NLjmðnÞ 2 Agj between the

lower and upper limit with the mode as most likely value.

Secondly, the frequency of the operator types ‘sequence’

(!), ‘choice’ (�), ‘parallel’ (^), ‘loop’ (�) and ‘or’ (_) in
a tree is defined by a categorical distribution. As a result,

each of these operator types has a fixed probability:

P!;P^;P�;P_;P�. Together the probabilities of these

basic patterns should always sum to one. Therefore, every

tree in the population has at least one operator node to rule

out an overly simplistic tree with only one leaf node.

Finally, each of the more complex patterns are assigned

to a binomial distribution. The number of silent activities

depends on the probability Ps to add a silent activity to a

‘choice’ or ‘loop’ node. The number of reoccurring activ-

ities is determined by the probability to duplicate a visible

activity PRe. The number of LT dependencies is subject to

the likelihood PLt of inserting a dependency between

activities in ‘choice’ nodes. Finally, the number of ‘choi-

ces’ with infrequent outgoing path(s) depends on the

probability PIn.

Definition 2 formalizes a model population MP used in

the remainder of this paper.

Definition 2 (Model Population) A model population is

defined as MP ¼ (minimumVisibleAct, modeVisibleAct,

maxVisibleAct, PBase,Ps,PRe,PLt,PIn) such that:

• The number of visible activities y� triangular (mini-

mumVisibleAct, modeVisibleAct, maxVisibleAct)

• The type of an operator node n 2
NO �CategoricalðPBaseÞ with
PBase ¼ fP!;P^;P�;P_;P�g

• The number of silent activities

�BinomialðjfN� [ N�gj;PsÞ
• The number of duplicated visible activities

�Binomialðy;PReÞ with y the number of visible

activities

• The number of LT dependencies �BinomialðD;PLtÞ
with D the total number of possible dependencies

• The number of choice nodes with infrequent paths

�BinomialðjN�j;PInÞ

4.2 Sample Models

The definition of the model population enables the second

step of the GED methodology: draw a random sample of

models from the population. The implementation of this

step uses a process tree generating algorithm illustrated in

Fig. 4.

The tree building algorithm in Fig. 4 builds a random

process tree PT given a model population MP. It starts by

drawing a random value y from the distribution of activities

to decide how large the tree will grow in terms of visible

activities. After that, the algorithm adds nodes to the tree

for as long as there are activities left to incorporate

(#act\y). In each iteration the algorithm selects a random

visible leaf node (or the root node in case the tree has no

nodes yet) and replaces this node with an operator node

based on the probabilities in PBase.2 Then, the algorithm

adds leaf nodes to the assigned operator: a loop node

always has three leaf nodes, all the other operators get two

Table 2 Probability settings of control-flow patterns

Parameter Setting

Number of visible activities (min,mode,max)

Sequence (P!) (WCP-1) 2 ½0; 1�
Parallel (P^) (WCP-2/3) 2 ½0; 1�
Choice (P�) (WCP-4/5) 2 ½0; 1�
Loop (P�) (WCP-21) 2 ½0; 1�
Or (P_) (WCP-6/7) 2 ½0; 1�
Silent activities (Ps) 2 ½0; 1�
Reoccurring activities (PRe) 2 ½0; 0:5�
Long-term dependencies (PLt) 2 ½0; 1�
Infrequent paths (PIn) 2 ½0; 1� 2 Invisible activities are endpoints in the tree and hence are never

selected to be replaced.
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leaf nodes. If the operator is of type choice or loop, one of

the added leaf nodes can be an invisible activity based on

the probability Ps. The next step updates the number of

visible activities #act in the tree. After all activities are

added (#act ¼ y), the tree is reduced. This step merges

parent and child nodes if they have the same operator type

except for loops.3 As a result, the reduced tree is not lim-

ited to operators with only two children. The next step of

the algorithm duplicates the labels of leaf nodes based on

the probability PRe. Finally, the algorithm assigns either

equal or unequal branch probabilities to each choice node

based on the probability PIn.

This paper adopts the process tree operator semantics

from Buijs (2014). For each operator there exists a trace

equivalent Petri net translation. A process trees generated

by the above algorithm is free-choice and therefore does

not contain LT dependencies. Section 4.3 presents a

method to add random LT dependencies to a given process

tree.

4.3 Adding Long-term Dependencies

Process trees, as generated in the previous step, are block-

structured models, i.e., all trees can be decomposed into

blocks with single entry and single exit points. As a result,

all dependencies in a tree are local, i.e., there are no LT

dependencies. Yet, such dependencies are part of the full

control requirement of the GED methodology. Previous

approaches that generate models with LT dependencies do

not guarantee soundness, another requirement of the GED

methodology. Therefore, this paper proposes an approach

to incorporate random LT dependencies in a given tree

resulting in a so called ‘unfolded choice tree’ which is

always sound (see Algorithm 1). The paper adopts the

definition of LT dependencies of Buijs (2014): ‘‘choices

that depend on decisions made earlier in the process’’. It

focuses on decisions represented as exclusive choices

(WCP-4 and 5), as such the considered LT dependencies

correspond to the non-free-choice constructs in cases a, e, f

and g of Fig. 5 in (Wen et al. 2007). To our knowledge,

this approach is the first to extend process trees with LT

dependencies.

As an example, consider the process tree PT2 illustrated

in Fig. 6a. Tree PT2 has a ‘sequence’ operator as root node

with several ‘choice’ nodes (choices) as descendants.4 PT2
contains no LT dependencies, e.g., if activity a was chosen

in �ða; bÞ, then this decision would not affect the choice

between f and g in �ðf ; gÞ later in the process. The pro-

posed approach will allow to incorporate LT dependencies

to allow for dependencies between choices. Consider for

example a dependency between activities in choices

�ða; bÞ and �ðf ; gÞ: if a is chosen, then f cannot be chosen

later on.

The following subsections will describe the two steps of

the proposed approach to insert LT dependencies: a tree

preparation step followed by an insertion step.

4.3.1 Preparing the Tree for Long-term Dependencies

The first step of the approach to insert LT dependencies is a

preparation step. A LT dependency limits the choice

behavior of one choice based on what happened in

Fig. 4 Flowchart of tree building algorithm

Fig. 5 Illustration of the loop unfolding step

3 Reducing parent and child loop nodes could cause the parent loop

node to have more than three children.

4 A descendant is a node reachable by repeatedly going from parent

to child.
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(an)other choice(s). For example, a dependency between

activity a and f in Fig. 6a limits the behavior in choice

�ðf ; gÞ, i.e., if a happens, then f cannot be chosen in

�ðf ; gÞ. As such, a LT dependency forbids behavior in a

combination of choices of a tree.

To insert LT dependencies in a process tree, one needs

combinations of choice behavior. However, a process tree

in its normal form does not display such combinations.

Therefore, the proposed approach first transforms the given

tree PT into a trace equivalent tree called the unfolded

choice tree using duplication of activity labels. The trans-

formed tree, denoted as PT�, contains only one choice

which is the root node r0. Each branch (subtree) under the

root r0 contains a combination of choice behavior in the

Fig. 6 Unfolding of tree PT2
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original tree. As such, the choice at the root r0 represents all
choices in the original tree. At the same time, PT� is still

block-structured and thus sound (see proof of Theorem 1).

Lines 10–18 of Algorithm 1 describe how to unfold the

original tree PT into PT� in a recursive way using the

transformation rules in Definition 3. Each time, take the

deepest choice in the tree and apply a transformation rule

in Definition 3 to move it closer to the root node. Notice

that there is no transformation rule for a loop node with a

choice as the first or second child as a direct unfolding of

such a choice would make PT� not trace equivalent to PT.5

Therefore, the user can decide if such choices in loops are

unfolded. Not unfolding these first and second child choi-

ces will exclude them from the generated LT dependencies.

If a user chooses to unfold the choices in the first or second

child of the loop, then this requires a special unfolding step

for that particular loop.

Definition 1 specifies that a loop node has exactly three

children such that the first child node is always executed

first, the second node is executed maximum k times, each

time followed by the first child node, and finally the third

child node is executed to conclude. Because k is a finite

number, one can unfold the bounded loop into a trace

equivalent structure of ! and � nodes as illustrated in

Fig. 5 with k ¼ 2. The bounded loop can be justified by

accepting a so-called fairness assumption by van der Aalst

(1998): ‘‘soundness and strong fairness means that each

process instance will eventually terminate correctly’’. The

user can specify the number k, i.e., the maximum times a

loop can repeat. After the loop unfolding, the resulting

choices can be unfolded again with the rules in

Definition 3.

When applying the transformation rules in Definition 3

the branching probabilities of the children of the original

choice move to the children of the new unfolded choice.

The loop unfolding results in a choice node with as chil-

dren the number of loop repetitions. The probability of

these repetitions is defined using a categorical distribution:

PRepetitions ¼ fP0;P1; . . .;Pk	1;Pkg : Pi ¼ 0:5iþ1 8i 2
½0; k 	 2� and Pi ¼ 0:5k 8i 2 ½k 	 1; k�, where Pi is the

probability of i repetitions and k the maximum number of

repetitions. As such this distribution is equivalent to the

behavior of a bounded loop with a probability of 50% to do

a loop iteration and a probability of 50% to exit the loop.

Definition 3 (Unfolded Choice Tree) A given tree PT ¼
ðN; r;m; c; p; s; bÞ with at least one choice block, i.e.,

jf�ij�i 2 NOgj
 1, can be transformed to the unfolded

choice tree form PT� using the following rules:

1. ! ð�ð. . .1; . . .2Þ; . . .3Þ ¼ �ð! ð. . .1; . . .3Þ;!
ð. . .2; . . .3ÞÞ

2. �ð�ð. . .1; . . .2Þ; . . .3Þ ¼ �ð. . .1; . . .2; . . .3Þ
3. ^ð�ð. . .1; . . .2Þ; . . .3Þ ¼ �ð^ð. . .1; . . .3Þ;^ð. . .2; . . .3ÞÞ
4. �kð. . .1; . . .2;�ð. . .3; . . .4ÞÞ ¼ �ð�kð. . .1; . . .2; . . .3Þ;

�kð. . .1; . . .2; . . .4ÞÞ
5. _ð�ð. . .1; . . .2Þ; . . .3Þ ¼ �ð_ð. . .1; . . .3Þ;_ð. . .2; . . .3ÞÞ
The branching probabilities assigned to each of the chil-

dren of a choice node �i by the mapping function bðcð�iÞjÞ
in PT are transferred to the new choice �0

i in PT� each

time a rule is applied:

• if pð�iÞ 2 fN! [ N^ [ N_ [ N� g, then the probabili-

ties move up with the �i operator:

bðcð�0
iÞjÞ ¼ bðcð�iÞjÞ

• if pð�iÞ 2 N�, then the branching probabilities of both

choice nodes are multiplied when merging:

�pð�ið. . .1; . . .2Þ; . . .3Þ ¼ �0
pið. . .1; . . .2; . . .3Þ, then the

probabilities of �0
pi are:

• bðcð�0
piÞ1Þ ¼ bðcð�pÞ1Þ � bðcð�iÞ1Þ

• bðcð�0

piÞ2Þ ¼ bðcð�pÞ1Þ � bðcð�iÞ2Þ
• bðcð�0

piÞ3Þ ¼ bðcð�pÞ3Þ

To illustrate the tree transformation, consider the tree

PT2 in Fig. 6a. First, select the deepest choice node that is

not the first or second child of a loop node, i.e., �ða; bÞ.
Then apply transformation rule 1 of Definition 3 to obtain

the tree in Fig. 6b. This tree contains two branches that are

equal, except for the leaf nodes a and b. The probabilities

of the original children of the choice, i.e., a and b, move up

together with the choice operator.

The two remaining choices under the root are both the

second child of a loop node. To include these choices in LT

dependencies, a loop unfolding step is needed. Consider for

example an unfolding with a maximum of 1 repetition,6

then the trace equivalent unfolded tree is shown in Fig. 6c.

Due to the unfolding of the loops, new choice nodes

appear under the root node. Therefore, similarly to the first

step, one can again apply transformation rule 1 to the

choice �ðf ; gÞ (in the left and right branch) to obtain the

tree in Fig. 6d. In the next step, apply transformation rule 2

to merge parent with child choices. This results in the tree

in Fig. 6e. The probabilities of parent and child branches

are multiplied when merging the choices.

The unfolding of all choices continues until the root

node of the tree is the only choice node in the tree (e.g., in

Fig. 7a). If the user opts to not include the choices in the

first or second child of a loop node in the dependencies, the

unfolding stops when the root node is a choice and all other
5 Tree PT1 ¼ �kð�ða; bÞ; c; dÞ is not trace equivalent to tree

PT2 ¼ �ð�kða; c; dÞ;�kðb; c; dÞÞ. 6 Notice that activity e can be repeated once.
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choices are either a first or second child under a loop node

(e.g., in Fig. 6b).

4.3.2 Inserting Random Dependencies

After the preparation step, the approach inserts random LT

dependencies into the unfolded choice tree (see lines 19–24

of Algorithm 1). LT dependencies are created on a trace

level while ensuring soundness. Each branch under the root

node of the unfolded choice tree PT� represents one

combination of choice behavior in the original tree PT, i.e.,

a set of traces in the resulting event log. Removing a

branch from the tree PT� forbids this combination and thus

inserts a LT dependency. To ensure random LT depen-

dencies, the removal of a branch depends on the probability

to insert LT dependencies PLt.

To guarantee soundness, one could not simply remove

any set of combinations of choice behavior, because some

combinations together restrict too much choice behavior

and thus result in dead activities. A dead activity occurs if

an activity in the original tree PT does not occur in the tree

PT�. The goal of the approach is to insert LT dependencies

by limiting the choice behavior in a tree while preventing

unsound behavior such as dead activities.

The pruning mechanism in Definition 4 prevents dead

activities by checking if removing a branch from the root

causes a dead activity in tree PT�. First, the mechanism

retrieves all activities in the branch Ai. Then, it retrieves all

activities in the other branches: Ao. If the activities in the

selected branch are not contained in the set of activities of

the other branches, i.e., Ai *Ao, then the selected branch

cannot be removed.

Definition 4 (Pruning Mechanism) The pruning mecha-

nism is a function / : N � N ! ½true; false� that given the

unfolded choice tree PT� and a branch of the root, i.e.,

cðr0Þi, returns ‘false’ if a dead activity occurs when elim-

inating the branch in the tree:

Fig. 7 Inserting dependencies in unfolded choice tree PT�
2
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Ai ¼ fmðnÞ 2 NLjn 2 sðcðr0ÞiÞg
Ao ¼ fmðnÞ 2 NLjn 62 sðcðr0ÞiÞg

/ðPT�; cðr0ÞiÞ ¼
true; if Ai � Ao:

false; if Ai *Ao:

�

The insertion of LT dependencies is illustrated in Fig. 7.

It starts from the unfolded choice tree PT�
2 (see Fig. 7a)

obtained from unfolding PT2 in Fig. 6. Then, Algorithm 1

visits each of the branches under the root choice node.

Based on the probability to insert LT dependencies,

PLt ¼ 0:5, the first, third and last branch are randomly

selected as candidates for removal. The first and third

branch can be removed as illustrated in Fig. 7b, c respec-

tively. However, the pruning mechanism prevents remov-

ing the last branch as this would make ‘g’ a dead activity.

Finally, after removing the branches in PT�, the sum of

the branching probabilities of the remaining children of the

root does not equal to one: i.e.,
Pjcðr0Þj

i¼1 bðcðr0ÞiÞ 6¼ 1.

Therefore, the branching probabilities of each of these

child nodes are normalized (see lines 25–28 of Algorithm

1): for each node n ¼ cðr0Þi with i 2 ½1; jcðr0Þj� do

bðnÞ ¼ bðnÞ=
Pjcðr0Þj

i¼1 bðcðr0ÞiÞ. In the example the branch-

ing probabilities of the tree in Fig. 7c are normalized as

shown in Fig. 7d. This results in the final unfolded choice

tree with LT dependencies which is sound:

Theorem 1 Algorithm 1 generates unfolded choice trees

with long-term dependencies that are sound.

Proof The proposed algorithm generates LT dependen-

cies on a trace level. It removes a set of branches from the

unfolded choice tree to exclude some combinations of

choice behavior in the tree. In this way choices are no

longer free, but depend on other choices made earlier in the

process, which conforms to the definition of LT depen-

dencies (see introduction of Sect. 4.3).

The unfolded choice tree PT� is created by applying the

five transformation rules in Definition 3 and the loop

unfolding step. The transformation rules use the operators

O ¼ f!; �; ^; �k; _g and add duplicate activity labels,

i.e., mðn1Þ ¼ mðn2Þjn1 6¼ n2 and n1; n2 2 NL, to unfold

choices while ensuring trace equivalent behavior. The loop

unfolding step replaces a loop operator (�k) by a combi-

nation of sequence and choice operators (!; �) plus a

silent activity (s) and duplicate activity labels. This loop

unfolding ensures trace equivalence with the original

bounded loop. As such the transformation rules plus the

loop unfolding results in an unfolded choice tree that

conforms with the Definition 1 of a block-structured

process tree which is inherently block-structured and thus

sound.

The removal of branches (subtrees) of the unfolded

choice tree PT� can never introduce deadlocks, but can

produce dead activities by eliminating all branches in

which a certain activity occurs. The pruning mechanism in

Definition 4 prevents dead activities by ensuring at that

each activity occurs in at least one branch of the final tree.

The absence of dead activities together with the block-

structuredness of PT� guarantees soundness. h

4.4 Sample Logs

This subsection focuses on the last step of the GED

methodology: how to generate a sample of event logs from

a sample of trees as generated in Sects. 4.2 and 4.3.

4.4.1 Setting Log Characteristics

The hierarchical design of the GED methodology (see

Fig. 2) shows that one process tree represents a population

of event logs. The population can be further refined using

log characteristics. This paper uses two characteristics

imposed by the full-control requirement in Sect. 2: the

number of traces and the amount of noise. Similar to the
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model population, the user needs to specify each of these

log characteristics.

Definition 5 formalizes a trace as a sequence of activi-

ties and an event log as a multiset of traces. The size of the

log |L| is equal to the number of traces t. It expresses how

many times the simulator will run from start to end through

the process tree, logging each of these runs as a separate

trace rj.

Definition 5 (Trace, Event Log) Let A � A be a finite set

of activities. A trace rj 2 A� is a sequence of activities. A

log L 2 BðA�Þ is a multiset of traces. The size of the log is

jLj ¼ t.

This paper adopts the definition of noise by Gün-

ther (2009): ‘‘noise is incorrect behavior in the log that can

be caused either by the logging mechanism or the consti-

tution of the event data’’. The following types of noise

behavior are adopted from Günther (2009): missing head,

missing body (episode), missing tail, order perturbation and

the introduction of additional activities. Assume a trace

rj ¼ ha1; . . .; an	1; ani. The missing head, body and tail

types, remove subsequences of a trace rj. The head of a

trace contains activities ai with i 2 ½1; n=3�, the body

consists of activities ai with i 2 ½ðn=3Þ þ 1; 2n=3� and the

tail contains activities ai with i 2 ½ð2n=3Þ þ 1; n�. The order
perturbation type interchanges two random activities. The

additional activities type introduces a random activity in

the trace.

The amount of noisy traces t� in a log is specified using

a binomial distribution: t� �BinomialðjLj;PNoiseÞ. PNoise

expresses the probability to select a trace for noise inser-

tion. A noisy trace contains a random type of noise

behavior which is decided based on a discrete uniform

distribution. A trace with only one activity cannot be

selected for noise insertion.

4.4.2 Simulating a Log From a Process Tree

This paper uses the principles of discrete-event simulation

(DES) to simulate process trees with the SimPy simulation

library (Matloff 2008). DES is a general and widely used

simulation approach that models a process (system) as a

series of events, i.e., instants in time when a state-change in

the process occurs (Robinson 2014). The simulation of a

DES model jumps in time from one event to the next in the

series.

The simulation approach in this paper first translates a

process tree into the general DES model components:

process, activities, events and entities (Shannon 1977). In a

next step, it simulates the obtained DES model into an

event log. The detailed algorithms for translating a process

tree into a DES model and simulating such a model are

outside the scope of this paper, but the interested reader is

referred to the technical paper (Jouck and Depaire 2017).

The implementations of the algorithms are based on the

SimPy simulation library (Matloff 2008)and are available

on Github: https://github.com/tjouck/PTandLogGenerator..

After the simulation, the noise insertion step will occur.

This step iterates over all the traces in the log. Based on the

probability PNoise a trace is selected. The selected trace

randomly gets one of the noise types discussed above.

Finally, the resulting log serves as input for process dis-

covery evaluation.

5 Demonstration and Evaluation

The previous sections focused on the design and develop-

ment of the GED methodology and its implementation.

This section will discuss the next steps within the design

science framework: the demonstration and evaluation of

the GED methodology.

5.1 Tool Implementation

Empirical analysis of CF Discovery algorithms typically

requires an extensive set of experiments. Therefore, the

implementation of the GED methodology should be auto-

mated for its application in empirical analysis. At the same

time, the automation needs to comply to the third group of

requirements of the GED methodology, i.e. standard for-

mats and integration within the ProM Framework (Verbeek

et al. 2011). For the standard formats, this means that the

output process trees and event logs should be in the PTML

and XES standard formats (Verbeek et al. 2011)

respectively.

Two tool implementations are available: one Python

package and one package with plugins in the ProM

framework. The Python package is available on Github.7

The package contains programs callable from command

line for generating random process trees and generating

event logs from those trees. The ProM package

PTandLogGenerator (Jouck and Depaire 2016) includes

the plugins ‘Generate Process Trees from Population’ and

‘Generate Log Collection (with noise) from Process Trees’.

Each of the tools support the necessary standard formats.

5.2 Data Generation Setup

To demonstrate the GED methodology and its implemen-

tation, a use case is designed. The use case evaluates the

performances of a set of CF discovery algorithms. In such a

case, the evaluation requires multiple process models and

7 https://github.com/tjouck/PTandLogGenerator.
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event logs with an extensive set of control-flow patterns to

avoid an oversimplified evaluation.

In the first step, the model populations are defined (see

Table 3). The definition of a model population MP (see

Definition 2) requires the specification of the top 12

parameters in column 1 of Table 3. This demonstration

uses two model populations MPNew and MPExisting each

with different parameter settings, except for the number of

visible activities which varies between 10 and 30. The

MPNew population contains all the base patterns, silent and

reoccurring activities and choices with infrequent paths.

Additionally it contains LT dependencies for which loops

with choices are unfolded with maximum one repetition.

The MPExisting population contains all the patterns available

in current state-of-the-art tool PLG2 (Burattin 2015).

Therefore, MPExisting does not contain ‘or’, reoccurring

activities and LT dependencies.

In the second step, a sample of models is drawn from

each model population (see Table 3). Finally, in the third

step, the simulator will generate event logs from the trees

in the sample. The simulation parameters to set are the

number of logs per tree, the number of traces in the log and

the probability of noise insertion (see Table 3). For the two

model populations, the demonstration will generate one

event log per tree, each log containing 1000 traces and 10%

noise probability.

The setup of the parameters as in Table 3 can serve as a

template for future users of the GED methodology in

empirical CF discovery analysis. Including this table in the

report of such an analysis will clearly describe the event

data used in the experiments and also enhance transparency

and reproducibility of the experiment results.

5.3 Evaluation

The evaluation investigates whether the GED methodology

implementation meets all the requirements stated in

Table 1. Additionally, it will assess the scalability of the

implementation. Finally, an empirical evaluation of four

process discovery techniques validates the effectiveness of

the GED methodology.

5.3.1 Requirements

The full control requirements imply that a user can control

the control-flow behavior in the generated process trees

(control-flow patterns) and event logs (log characteristics).

Therefore, this part of the evaluation checks whether the

characteristics of the sample of trees and logs of the use

case conform with the input parameters of population

MPNew in Table 3. Table 4 displays the descriptive statis-

tics of the tree and log sample characteristics drawn from

population 1.

Firstly, the distribution of the number of visible activi-

ties conforms the triangular distribution characterized in

Table 3. Secondly, the mean relative frequencies and the

confidence intervals for these means of all the control-flow

constructs are shown in the second and third column of

Table 3 Input parameters of

data generation
Parameter Population Population Population

MPnew MPexisting MPscalability

Number of visible activities (10,20,30) (10,20,30) (10,20,30)

Sequence (P!) 0.5 0.5263158 2[0,1]
Parallel (P^) 0.15 0.1578947 2[0,1]
Choice (P�) 0.25 0.2631579 2[0,1]
Loop (P�) 0.05 0.0526316 2[0,1]
Or (P_) 0.05 0.0 2[0,1]
Silent activities (Ps) 0.1 0.1 0.1

Reoccurring activities (PRe) 0.1 0.0 0.1

Long-term dependencies (PLt) 0.5 0.0 2[0,1]
Unfold loops True / 2{False,True}
Max repeat (k) 1 / 2{0,1,2}
Infrequent paths (PIn) 0.5 0.5 0.5

Sample size (number of trees) 2000 50 1000

Logs per model 1 1 /

Number of traces (t) 1000 1000 /

Noise (PNoise) 0.1 0.1 /
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Table 4.8 The population values of most parameters are

contained in the confidence interval of the mean and some

only differ slightly from the interval. A noticeable excep-

tion is the confidence interval for LT dependencies, which

is more than 10% points lower than the population value.

This was caused by the pruning mechanism which prevents

inserting LT dependencies that cause dead activities. As

such the average percentage of LT dependencies a tree will

mostly be below the population value.

The number of traces in the generated event logs are

exactly as specified in the input parameters. The average

percentage of noisy traces is slightly lower than the prob-

ability set in Table 3. This percentage was influenced by

not considering traces with only one activity which has led

to fewer than 1000 candidate traces in some logs.

Overall, the implementation satisfies the full control

requirement as it effectively allows users to control the

characteristics of the generated models and logs through a

population. Note that the soundness requirement was

already proven by Theorem 1 in Sect. 4.3.

Next, to the input parameters, Table 4 shows the mean

tree and log generation time in seconds. These perfor-

mances were accomplished on a laptop with an Intel Core

i5-4200U processor and 8 GB of RAM memory.

The randomness requirement implies that the generation

of the trees and logs should be done in a random way. Both

the ProM and Python tool implementations support such a

random generation. The subsection describing the tool

implementation already mentioned that both tools meet the

formats requirement.

5.3.2 Scalability

This subsection describes an analysis done in order to

assess the scalability of the tree generation.9 This part of

the evaluation studies the relation between tree generation

time and model population parameters. The unfolding of a

tree into the unfolded choice tree is the most expensive

operation in terms of computation time. Such unfoldings

happen when choice and loop constructs appear in the tree

and the probability to insert LT dependencies is larger than

0 (see Sect. 4.3). Therefore, 1000 model populations are

specified with varying probabilities and settings

(MPscalability in column 4 in Table 3):

• The probabilities of ‘sequence’, ‘choice’, ‘parallel’, ‘or’

and ‘loop’ vary between 0 and 1 while ensuring the sum

is equal to 1.

• The probability of LT dependencies varies between 0

and 1.

• The unfolding of loops with choices in the first or

second child has a probability equal to 50%

• If loops are unfolded, then the maximum number of

repititions of the loop varies between 0 and 2

From each of the 1000 model populations, one random tree

is generated. The tree generation aborts after 10,000 s. In

total 23 trees, i.e. 2.3% of all generated trees, were aborted.

The other 977 trees have a median generation time of 0.63

s and a minimum and maximum of respectively 0.03 and

8736 s. To understand which model parameters influence

the long tree generation, spearman correlation coefficients

were calculated. Table 5 shows that there are only 4 small,

yet significant positive correlation coefficients using a 5%

significance level. When the probability of a loop construct

Table 4 Descriptive statistics

of a sample from population

MPNew

Parameter Sample mean Confidence interval Population value in CI?

Number of visible activities (11,21,30) / /

Sequence (P!) 0.4982 [0.4931, 0.5032] True

Parallel (P^) 0.1506 [0.1470, 0.1542] True

Choice (P�) 0.2544 [0.2502, 0.2586] False

Loop (P�) 0.0471 [0.0449, 0.0493] False

Or (P_) 0.0498 [0.0475, 0.0520] True

Silent activities (Ps) 0.0976 [0.0921, 0.1032] True

Reoccurring activities (PRe) 0.0987 [0.0958, 0.1016] True

Long-term dependencies (PLt) 0.3835 [0.3753, 0.3917] False

Infrequent paths (PIn) 0.4833 [0.4708, 0.4958] False

Tree generation time (seconds) 17.849 [2.9137, 32.784] /

Mean percentage of noisy traces 0.0934 [0.0924, 0.0943] False

Log generation time (seconds) 1.37 [1.3421, 1.3894] /

8 These mean relative frequencies of the operator types were

calculated before the trees were reduced.

9 The scalability of the log generation is outside the scope of this

paper as the focus is on model generation with LT dependencies.
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or the maximum number of loop repetitions increases, then

the probability of exceeding 10,000 s for tree generation

tends to increase. Similarly, when the probability of a

choice construct or the maximum number of loop repeti-

tions increases, the tree generation time tends to increase.

Overall, it is hard to predict a long tree generation time

using only model parameters. One could assign more

computing time or use statistical techniques that can handle

missing values, e.g., truncated data analysis, to handle the

exceptionally long tree generation times.

In comparison, trees without LT dependencies never

suffer from exceptionally long generation times. An addi-

tional experiment specified another 1000 model popula-

tions without LT dependencies and varying probabilities of

‘sequence’, ‘choice’, ‘parallel’, ‘or’ and ‘loop’ as before.

Again one tree is generated from every model population.

Each of those trees could be generated within 2 s. All

performances were accomplished on a laptop with an Intel

Core i5-4200U processor and 8 GB of RAM memory.

5.3.3 Effectiveness

The final part of the evaluation asserts the effectiveness of

the GED methodology and implementation. It tests the

hypothesis that an evaluation with the GED methodology

and implementation leads to new insights that could not be

obtained by using the current state-of-the art technique

PLG2 (Burattin 2015). For this purpose, an empirical

evaluation with four discovery algorithms, aþþ (Wen et al.

2007), ILP (van derWerf et al. 2009), Inductive (Leemans

et al. 2014) and Flexible Heuristics (Weijters and Ribeiro

2011), on two model populations has been done. The first

model population (MPexisting) contains models with all

constructs supported by PLG2, the second model popula-

tion (MPnew) additionally contains the constructs ‘or’,

reoccurring activities and LT dependencies as supported by

GED methodology and implementation. Columns two and

three of Table 3 display the specific parameter settings for

each of the constructs. Notice that the proportions between

the constructs sequence, choice, parallel and loop con-

structs is kept constant, e.g., P�=P! ¼ 0:5. If the above

stated hypothesis is true, discovery algorithms will perform

differently on the two populations.

The evaluation first draws a random sample of 50

models from each population. Then, one log per model is

simulated containing 1000 traces and 10% of noise using a

combination of the noise operators in Sect. 4.4. Then, all

four discovery algorithms mine a model from each log and

the quality of each discovered model with regard to that log

is measured in terms of fitness and precision using the

alignment based fitness and precision metrics (Van der

Aalst et al. 2012). These two metrics are combined in one

value using the F1-score, i.e., the harmonic mean of fitness

and precision: 2�precision�fitness
precisionþfitness

. Finally, the differences in fit-

ness, precision and F1 values of the process discovery

algorithms are compared statistically.

Table 6 shows an overview of the obtained results:

column two contains the results for MPexisting, while col-

umn three shows the results for MPnew. For each quality

dimension the average rank for each discovery algorithm is

shown. The algorithms are sorted with the best performing

algorithm (with the highest rank) on top. The Friedman

test (Demsar 2006) is applied to determine whether there is

a significant difference in performance of the discovery

technique. The results indicate that the techniques do not

perform equivalently for each combination of quality

dimension and dataset, i.e., the null hypothesis is rejected

using a 95% confidence interval. This is followed by a

Wilcoxon signed rank test (Benavoli et al. 2016; Demsar

2006) to test the significance of each of the pairwise dif-

ferences between algorithms using a Bonferroni corrected

significance level to guarantee that the family-wise Type I

Table 5 Positive significant correlations between tree generation

time (‘Time’) or aborting tree generation (‘Aborted’) and model

population parameters

Variable 1 Variable 2 Spearman correlation P-value

Loop (P�) Aborted 0.12 1.19e-04

Max repeat Aborted 0.19 1.43e-09

Choice (P�) Time 0.32 1.39e-24

Max repeat Time 0.19 7.73e-40

Table 6 Average rankings for process discovery algorithms for each

quality dimension within a model population

Quality metric MPexisting MPnew

Fitness ILP (4.0) ILP (4.0)

Heuristics (2.54) Inductive (2.52)

Inductive (2.46) Heuristics (2.42)

aþþ (1.0) aþþ (1.06)

Precision Heuristics (3.6) Heuristics (3.36)

Inductive (3.18) Inductive (2.94)

ILP (1.62) aþþ (2.28)

aþþð1:6Þ ILP (1.42)

F1 Heuristics (3.68) Heuristics (3.5)

Inductive (3.28) Inductive (3.2)

ILP (1.78) ILP (1.9)

aþþ (1.26) aþþ (1.4)

Pairs of techniques that do not differ statistically from each other at

the 95% confidence level are underlined
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error is smaller than 5%. Pairs of techniques that do not

differ statistically are underlined.

In the fitness dimension the order between Heuristics

and Inductive miner is different for the two datasets.

However, the difference between these two miners is not

statistically significant. In the precision dimension the

order between ILP and aþþ miner is different for the two

datasets, yet the difference between the algorithms is not

statistically significant for the MPexisting dataset. Also in the

precision dimension, the difference between Heuristics and

Inductive miner is only statistically significant for the

MPexisting dataset. Looking beyond the average rankings,

the Heuristics miner outperforms Inductive 36 times for the

MPexisting dataset while it decreases to 33 times for the

MPnew dataset. Finally, all differences in terms of F1

between miners are statistically significant for the MPexisting
dataset, while for the MPnew dataset the difference between

Heuristics and Inductive miner is not statistically

significant.

Overall, the conclusion of the analysis is that the dif-

ference between Heuristics and Inductive miner becomes

smaller in terms of precision for models with ‘or’, reoc-

curring activities and LT dependencies. Conversely, the

difference between aþþ and ILP in terms of precision

becomes larger for such models. These observations show

that the extra constructs have negative effects on the

Heuristics, Inductive and ILP miner (only on precision),

while it has positive effects on the aþþ miner. Moreover,

the negative effects on Heuristics miner are larger than the

negative effects on Inductive miner. As such, these

observations provide evidence for the hypothesis that

evaluation with the GED methodology and implementation

leads to new insights that could not be obtained by using

the current state-of-the art technique PLG2 (Burattin

2015). This demonstrates the effectiveness of the proposed

methodology and implementation.

6 Conclusions

This paper introduces the GED methodology and imple-

mentation to generate artificial event data for empirical CF

discovery analysis. It involves three steps: defining a model

population, drawing a sample of models from that popu-

lation and simulating the sample of models into a sample of

event logs. The demonstration and evaluation show that the

implementation of the GED methodology succeeds in

generating artificial data for empirical process discovery

analysis such that:

• the generated models are random samples of predefined

populations, allowing for a wide range of suitable (con-

firmatory) statistical experimental analysis,

• the populations allow for more complex process models

than the existing approaches do (including LT depen-

dencies, ‘or’ and duplicate activities),

• the approach is sufficiently performant for large scale

experiments,

• the approach is able to reveal insights which remained

hidden when considering simpler process populations

(which were the only ones the existing techniques could

handle so far).

The implementation in this paper does not claim to have

achieved full control over all possible control-flow pat-

terns. However, it includes all patterns that were frequently

used in CF discovery comparisons. Moreover, the defini-

tion of LT dependencies in this paper focuses on depen-

dencies between exclusive choices, but, in future work this

definition could be extended to allow for dependencies

between non-exclusive choices.

Due to the focus on CF discovery, the scope of the

methodology and implementation is limited to the control-

flow perspective. However, new process discovery algo-

rithms also focus on extracting knowledge in other per-

spectives such as time, resources and data (e.g., de Leoni

et al. 2016). Naturally, the empirical analysis of such

techniques requires event data that include these other

perspectives as well. As a result, new challenges and

opportunities for extending the proposed GED methodol-

ogy and implementation arise, for example, the inclusion of

LT dependencies based on the data attributes of the process

instances.
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