
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ACIS 2015 Proceedings Australasian (ACIS)

2015

High-Performance Computing for Scheduling Decision Support: A High-Performance Computing for Scheduling Decision Support: A

Parallel Depth-First Search Heuristic Parallel Depth-First Search Heuristic

Gerhard Rauchecker
Department of Management Information Systems, University of Regensburg,
gerhard.rauchecker@wiwi.uni-regensburg.de

Guido Schryen
Department of Management Information Systems, University of Regensburg, guido.schryen@wiwi.uni-
regensburg.de

Follow this and additional works at: https://aisel.aisnet.org/acis2015

Recommended Citation Recommended Citation
Rauchecker, Gerhard and Schryen, Guido, "High-Performance Computing for Scheduling Decision Support:
A Parallel Depth-First Search Heuristic" (2015). ACIS 2015 Proceedings. 86.
https://aisel.aisnet.org/acis2015/86

This material is brought to you by the Australasian (ACIS) at AIS Electronic Library (AISeL). It has been accepted for
inclusion in ACIS 2015 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more
information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301386069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/acis2015
https://aisel.aisnet.org/acis
https://aisel.aisnet.org/acis2015?utm_source=aisel.aisnet.org%2Facis2015%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/acis2015/86?utm_source=aisel.aisnet.org%2Facis2015%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Australasian Conference on Information Systems Rauchecker & Schryen
2016, Adelaide A Parallel Heuristic for Scheduling Decision Support

High-Performance Computing for Scheduling Decision
Support: A Parallel Depth-First Search Heuristic

Gerhard Rauchecker
Department of Management Information Systems
University of Regensburg
Germany
Email: gerhard.rauchecker@wiwi.uni-regensburg.de

Guido Schryen
Department of Management Information Systems
University of Regensburg
Germany
Email: guido.schryen@wiwi.uni-regensburg.de

Abstract

Many academic disciplines - including information systems, computer science, and operations
management - face scheduling problems as important decision making tasks. Since many scheduling
problems are NP-hard in the strong sense, there is a need for developing solution heuristics. For
scheduling problems with setup times on unrelated parallel machines, there is limited research on
solution methods and to the best of our knowledge, parallel computer architectures have not yet been
taken advantage of. We address this gap by proposing and implementing a new solution heuristic and
by testing different parallelization strategies. In our computational experiments, we show that our
heuristic calculates near-optimal solutions even for large instances and that computing time can be
reduced substantially by our parallelization approach.

Keywords scheduling, decision support, heuristic, high performance computing, parallel algorithms

1 Introduction

Scheduling problems can be found in several academic disciplines. For example, in cloud computing,
applications are scheduled (Beloglazov et al. 2012; van der Meer et al. 2012; Yang et al. 2014), in
energy management, enterprise resources have to be scheduled (Bodenstein et al. 2011; Brandt and
Bodenstein 2012; Zhao et al. 2013), and in sports management, tournaments and leagues are
scheduled (Duran et al. 2014; Nurmi et al. 2014; Su et al. 2013). In healthcare management,
appointments and visits are scheduled (Mak et al. 2015; Meyer et al. 2014; Paulussen et al. 2013), in
disaster management, rescue units are scheduled (Rolland et al. 2010; Schryen et al. 2015; Wex et al.
2014; Wex et al. 2011), and in information systems, scheduling systems are built (Chandra et al. 2012;
Faghihi et al. 2014; Miranda et al. 2012). In computer science, software application jobs are assigned
to computer processors (Li and Peng 2011; Silberschatz et al. 2013; Terekhov et al. 2014), in operations
management, production jobs are scheduled on machines (Joo and Kim 2015; Mensendiek et al. 2015;
Wang and Liu 2013) and workers are assigned to shifts or jobs (Cote et al. 2011; Elahipanah et al.
2013; Rauchecker et al. 2014), and in logistics, transportation scheduling problems occur (Emde and
Boysen 2014; Sterzik and Kopfer 2013; Ullrich 2013).

As numerous scheduling problems are NP-hard (Pinedo 2012), which means that there is no
algorithm that can solve the problem to optimality in polynomial time, many large real-world
instances are computationally intractable due to time limitations. Thus, there is a need for heuristics
which are computationally efficient. However, heuristics lead to suboptimal decisions which result in a
waste of time, increased costs, and even fatalities. Therefore, it is important for solution heuristics not
only to run computationally efficient but also to be effective, i.e., to find near-optimal solutions. While
the effectiveness of (deterministic) heuristics is fixed by their algorithms, the efficiency can often be
increased by using modern parallel hardware architectures.

Recent developments in high performance computing (HPC) have led to a substantial increase in
computing power. For example, modern PCs and even smartphones have multiple cores, which allow
for parallel code execution. At the extreme, computer clusters and supercomputers, which have up to
several hundreds of thousands or even several millions of cores (TOP500 2014), are pushing the
boundaries of HPC. Supercomputers have shown an exponential growth in peak performance, with the
Tianhe-2 (MilkyWay-2), currently the fastest supercomputer, having more than 54 PFlop/s (5.4·1016

Australasian Conference on Information Systems Rauchecker & Schryen
2016, Adelaide A Parallel Heuristic for Scheduling Decision Support

floating point operations per second) (TOP500 2014). However, HPC does not require access to a
supercomputer; it can also be done on computing clusters, which have become commodity IT
resources. For example, they are available at many universities and are provided by some cloud
providers, especially by Amazon Web Services (Mauch et al. 2013). To sum up, HPC has not only
become technologically feasible, but also economically affordable.

In this paper, we focus on a specific problem which occurs in many application domains: the parallel
machine scheduling problem on unrelated machines, sequence- and machine-dependent setup
times, machine eligibility restrictions, and a total weighted completion time objective function,
classified by Pinedo (2012) as in the established -notation (Graham et al.

1979) and proven to be NP-hard by Wex et al. (2014).

For this scheduling problem, we address two research questions:

 How can near-optimal solutions for large instances of the scheduling decision problem be
found in reasonable time?

 How efficient is the application of HPC to the scheduling decision problem?

To answer these questions, we propose a heuristic based on an exact branch-and-price (b&p)
algorithm, which was originally formulated by Lopes and de Carvalho (2007), and evaluate a parallel
implementation of the heuristic on a high performance cluster. We demonstrate the efficiency of our
heuristic in terms of runtime and the performance of its parallelization based on an established
scalability metric. Further, we show the effectiveness of our heuristic by (1) reporting upper bounds of
the gap between the (unknown) optimal solution and the heuristic solution and (2) comparing it with
an established heuristic.

The remainder of this paper is structured as follows: We present the literature related to our research
from both the scheduling and the HPC perspective in the following section. The third section outlines
the mathematical model of our scheduling problem, a sophisticated branch-and-price algorithm based
heuristic, and our techniques to develop a parallel implementation of the heuristic. In the fourth
section, we present our computational experiments before presenting and discussing our results in
section five and closing the article with a conclusion.

2 Literature Review

In this section, we present the relevant literature for our approach from different perspectives. We
outline achievements and limitations of existing works in each subsection, which leads to formulating
the research questions proposed in the introduction.

2.1 Scheduling Decision Support

Scheduling problems appear in many forms and have attracted thousands of research papers which
deal with different solution methods to support decision making in real-world settings. In order to
structure this large body of research, several comprehensive literature reviews have been conducted.
In their well-established surveys, Allahverdi et al. (1999; 2008) classify scheduling problems into those
which account for setup times (costs) and those which do not. Problems of the former type are further
classified along the dimensions single machine/parallel machines, batch/non-batch and sequence-
dependent/sequence-independent setup times. Using this classification, the scheduling problem
 , being considered in this paper, is a generalization of the problem class parallel-

machine scheduling on unrelated machines, non-batch sequence-dependent setup times, and a total
weighted completion time objective function. To be more precise, the problem class formulated in the
literature is more restrictive than our problem () in the sense that, in the former

problem class, setup times are machine-independent and each machine is capable of processing each
job.

2.2 Exact Algorithms

Regarding the NP-hard scheduling problem and related types of problems, there

are only a few research papers that present exact solution algorithms. The survey of Li and Yang
(2009) lists two articles with exact solution algorithms for the problem (which does not

account for setup times). The algorithms are capable of solving small instances with 25 jobs and 2
machines in less than 15 minutes (Azizoglu and Kirca 1999) and medium-sized instances with 100 jobs
and 20 machines in less than one hour (Chen and Powell 1999). Lopes and de Carvalho (2007)

Australasian Conference on Information Systems Rauchecker & Schryen
2016, Adelaide A Parallel Heuristic for Scheduling Decision Support

presented a b&p strategy for the parallel machine scheduling problem on unrelated

machines with sequence- (but not machine-) dependent setup times, release dates, due dates, and a
total weighted tardiness objective function. Their algorithm is capable of solving instances with 150
jobs and 50 machines in less than one hour.

Another approach is to model our scheduling problem as a quadratic binary program and to have it
solved using off-the-shelf optimization software, such as GUROBI or CPLEX. However, computational
studies indicate that this strategy is inefficient as it fails to compute optimal solutions for small-sized
instances consisting of 40 jobs and 10 machines within several hours (Schryen et al. 2015).

In summary, exact algorithms for problems similar to , such as and

 , have been scarcely addressed in the literature and are not capable of solving large

instance sizes in reasonable time.

2.3 Heuristics

Regarding parallel machine scheduling on unrelated machines with non-batch sequence-dependent
setup times, there are only a few publications that develop solution heuristics (Lin and Ying 2014).
Kim et al. (2002) and Low (2005) use Simulated Annealing to minimize the total tardiness and the
total flow time, while Vallada and Ruiz (2011) minimize the makespan using a genetic algorithm. A
Tabu Search to minimize total tardiness, total weighted tardiness, maximum tardiness, and maximum
lateness has been investigated by Chen (2006), Chen and Wu (2006), Kim and Shin (2003), and
Logendran et al. (2007). Rabadi et al. (2006) introduced a Randomized Priority Search metaheuristic
to minimize the makespan while de Paula et al. (2007) presented a Variable Neighborhood Search to
minimize the sum of both makespan and total weighted tardiness. Chen (2005), Wex et al. (2014), and
Weng et al. (2001) developed problem-specific heuristics that minimize the total weighted completion
time and the makespan.

For the parallel machine scheduling problem on unrelated machines with a total weighted completion
time objective function, there are some approximation algorithms which are based on model
relaxations and give a theoretical worst-case performance (see Li and Yang (2009) for an overview).
However, these theoretical bounds are not promising for practical contexts as they are not very tight.
Tabu search and genetic algorithms are used by Lin et al. (2011) and Vredeveld and Hurkens (2002)
while Weng et al. (2001) and Wex et al. (2014) develop problem-specific heuristics. A good overview is
further provided by Rodriguez et al. (2013).

2.4 High Performance Computing

HPC is used in many scientific disciplines, including biology, chemistry, physics, geology, weather
forecasting, aerodynamic research, and computer science (Bell and Gray 2002; Vecchiola et al. 2009).
But to the best of our knowledge, opportunities for modern parallel hardware architectures have been
largely ignored in the scheduling literature.

Although HPC has become an integral part of several academic disciplines over the last decades, there
is no commonly agreed definition of what HPC actually is. HPC implicitly refers to the use of parallel
hardware architectures, which consist of a usually large set of interconnected multi-core processors
(nodes). The particular relevance of parallel computing architectures lies in the limitation of speed
improvement on a single core due to technological reasons (Hager and Wellein 2010).

At the extreme of HPC, supercomputers are used, which perform at or near the currently highest
operational rate for computers. Today’s 50 fastest supercomputers operate with more than 1 TFlop/s
(TOP500 2014).

Parallel architectures provide a high potential to improve execution times of parallelizable algorithms.
Dominating parallelization designs are OpenMP and MPI, with OpenMP allowing for intra-node
shared-memory parallelization and MPI providing for inter-node distributed-memory network
parallelization (MPI 2012; OpenMP 2013). OpenMP is used to execute a program using multiple
threads (on multiple cores) and MPI is used to execute a program using multiple processes (on
multiple processors). Both parallelization paradigms can be combined straightforwardly.

3 Scheduling Model and Parallel Depth-First Search Heuristic

In this section, we formulate the scheduling problem by means of a mathematical optimization model
and we present a heuristic to obtain high-quality solutions. Finally, we present our parallelization
concept for the proposed heuristic.

Australasian Conference on Information Systems Rauchecker & Schryen
2016, Adelaide A Parallel Heuristic for Scheduling Decision Support

3.1 Problem Formulation

In this subsection, we provide a mathematical formulation of our scheduling problem

 . It comprises jobs which have to be processed on exactly one machine . Let

 be the set of all feasible schedules on machine , be the number of times job is included in

schedule , and
 be the total weighted completion time of schedule on machine . A decision

variable
 is if schedule is used on machine and otherwise. The scheduling problem can then

be formulated by the following binary linear optimization model.

Different formulations are proposed in the literature, see Li and Yang (2009) for an overview; the
chosen one has proven to be particularly suitable for branch-and-price algorithms (Chen and Powell
1999; Chen and Powell 2003; Lopes and de Carvalho 2007; van den Akker et al. 1999).

3.2 Depth-First Search Heuristic

In this subsection, we describe a depth-first search (DFS) heuristic based on a branch-and-price (b&p)
algorithm. A b&p algorithm is a branch-and-bound (b&b) algorithm with the special characteristic that
the linear relaxation at each node of the b&b tree is solved using column generation, which was
originally introduced to solve huge linear programs by Dantzig and Wolfe (1960). The original
formulation of a b&p algorithm goes back to Barnhart et al. (1998).

B&p algorithms have been established to solve unrelated parallel machine scheduling problems exactly
for rather small instances (Chen and Powell 1999; Lopes and de Carvalho 2007). Existing approaches
use an implementation based on a node selection strategy where the active node with the best lower
bound is selected to be explored next during the b&b algorithm. The selected node is then branched
into two child nodes and nodes’ relaxations are solved immediately afterwards. This strategy is called
eager best-first strategy (Clausen and Perregaard 1999). However, these implementations fail at
solving large instances to optimality due to time limitation.

Line Pseudo code

1 Solve root node’s relaxation using column generation

2 if root node has integer optimal solution

3 return the solution as optimal solution

4 else

5 branch on root node by adding some restrictions

6 initialize list of active nodes with both child nodes

7 while no integer solution is found do

8 select active node with highest depth to be explored next

9 solve selected node’s relaxation using column generation

10 if selected node’s relaxation is not infeasible

11 branch on selected node by adding some restrictions

12 add both child nodes to the list of active nodes

13 return integer solution as heuristic solution

Table 1. Pseudo code of the DFS heuristic

Australasian Conference on Information Systems Rauchecker & Schryen
2016, Adelaide A Parallel Heuristic for Scheduling Decision Support

We adapt these algorithms by implementing a different node selection strategy - the so called lazy DFS
strategy - which selects the active node with the highest depth in the b&b tree to be processed next.
After solving a node’s relaxation, the node is branched into two child nodes which are added to the list
of active problems. We terminate the procedure when an integer optimal solution for one of the
subproblems is found. An integer optimal solution of an arbitrary subproblem is always a feasible (not
necessarily optimal) solution of the original problem and therefore can be used as a heuristic solution
value.

We select the lazy DFS strategy (i.e., branching on a node after solving its relaxation) based on two
premises. First, the DFS strategy quickly finds a feasible solution for (BinLP) and second, lazy DFS
strategies are more suitable for parallelization than eager DFS strategies (Clausen and Perregaard
1999).

Each node in the b&b tree is of a structure similar to (BinLP), only differing by some job ordering

restrictions (depending on the branching decisions) which affect only the node-specific sets . The
pseudo code of our DFS heuristic is presented in Table 1.

The code lines 2, 3, 4, 6, 7, 10, 12, and 13 are self-evident. We briefly explain the other code lines in the
following.

The selection of an active node in line 8 is always possible since in the case of no active nodes, an
optimal solution to the original problem would have been found, which means that the code would
have already terminated the while loop.

The column (i.e., variable) generation procedure for solving the linear relaxation of a node (lines 1 and
9) is described in the following. As step 1 of the column generation procedure, a restricted form of the
linear program is solved by considering only a (typically small) feasible subset of variables and setting
the remaining variables to zero. An initial feasible subset of variables is either adopted from the
solution of the parent node in the b&b tree or from a solution heuristic (for the root node). As step 2 of

the column generation procedure, the algorithm determines whether there are any variables
 in the

relaxed linear program that have a negative reduced cost
 which is given by

 .

where are the dual variables corresponding to the constraints in the relaxed linear program

(Lopes and de Carvalho 2007). If there are variables with negative reduced cost, a fixed number of
them are added to the restricted problem. Steps 1 and 2 of the column generation procedure are
repeated until there are no variables left with negative reduced cost. Having reached this point, the
optimal solution of the current restricted problem is also optimal for the node’s linear relaxation,
setting all remaining variables to (Lopes and de Carvalho 2007). The problem of finding a variable
with minimal reduced cost is called the pricing problem and will be discussed in the next subsection
since it is highly suitable for parallelization.

The branching (lines 5 and 11) strategy is explained in the following. Let
 } be

the optimal solution of the linear relaxation of the root node (line 5) or the selected node (line 11) and
let denote the number of times job is processed immediately before job in schedule . Then we

define the total flow of edge by

 .

Branching on these variables has been proven to be very efficient in b&p algorithms (Chen and Powell

1999; Chen and Powell 2003; Lopes and de Carvalho 2007). We branch on the flow variable

 with

the largest integer infeasibility, i.e., the one closest to . The branching is conducted by modifying the

sets of feasible schedules in a way that, in one child node, is forced to be processed by
immediately before , and in the other child node, is forbidden to be processed by immediately
before (Lopes and de Carvalho 2007).

3.3 Parallelization of the DFS Heuristic

There are two possible ways to utilize parallel computing for accelerating the execution speed of the
DFS heuristic. First, the major part of the solution of each single b&b node can be parallelized on
single multicore processors via shared-memory programming using OpenMP. Second, concurrently
active nodes in the b&b tree can be processed independently using different multicore processors.

Australasian Conference on Information Systems Rauchecker & Schryen
2016, Adelaide A Parallel Heuristic for Scheduling Decision Support

We describe the solution of the pricing problems in the column generation procedure (lines 1 and 9 in
Table 1) and its parallelization using OpenMP in the following. Let be an upper bound on the
makespan, i.e., the time until all jobs have been processed, of an optimal solution for (BinLP). This
value is unknown a priori but can be estimated efficiently (see Lopes and de Carvalho (2007) for

details). For performance reasons, we allow schedules in to be cyclic, i.e., each job is allowed to be
processed more than once. Note that this does not affect the DFS heuristic solution because a cyclic
schedule can never be used in an integer solution of a subproblem, since one of the coefficients

would be larger than .

Arbitrary jobs on a machine , require a time
 for processing on , a setup time

 for processing

directly after on , and have a weight . All of these parameters are assumed to be integers. We have

a set
 of possible predecessors of job on a machine and a fictitious job for modeling purposes.

Let denote the minimum reduced cost of all schedules that process last and finish

processing exactly at time . We initialize for all , , and
for all (Lopes and de Carvalho 2007). The parallel pseudo code for the pricing problem is
presented in Table 2. The omp parallel for pragmas divide the k-loop among all available threads using
OpenMP.

Line Pseudo code

1 Initialize as described above

2 #pragma omp parallel for

3 for

4 for

5 for

6 set

7 return minimum reduced cost
 .

Table 2. Parallelized pricing problem

The parallel pseudo code for the branching decision (code lines 5 and 11 in Table 1) is presented in
Table 3.

Both code fragments in Table 2 and Table 3 are highly suitable for parallelization, since the work in
each iteration of the k-loops can be done independently on different threads. Our pre-tests showed
that the presented ordering of the for-loops and the selected parallelization strategy perform most
efficient in terms of execution time since caching of data, i.e., making use of spatial and temporal data
locality, is most efficient in this setting.

Line Pseudo code

1 #pragma omp parallel for

2 for

3 for

4 for

5 calculate

6 return branching edge

Table 3. Parallelized branching decision

In the following, we describe our strategy to parallelize the independent processing of concurrently
active nodes of the b&b tree using the distributed-memory paradigm MPI. The MPI parallelizable part
of the algorithm is represented by the while loop in code lines 7 to 12 in Table 1. We use a centralized

Australasian Conference on Information Systems Rauchecker & Schryen
2016, Adelaide A Parallel Heuristic for Scheduling Decision Support

master/worker setting for our parallelization as described in Clausen and Perregaard (1999) for
instance. The pseudo code for the master process is presented in Table 4.

Line Pseudo code

1 while no integer solution is found do

2 communicate with an idle worker process by

3 receiving a solved node from the worker (if available)

4 if received node’s relaxation is not infeasible

5 branching on selected node by adding some restrictions

6 adding both child nodes to the list of active nodes

7 selecting active node with highest depth to be explored next

8 sending the selected node to the worker

Table 4. MPI master's pseudo code of while loop

The pseudo code for the worker processes is illustrated in Table 5.

Line Pseudo code

1 while no integer solution is found do

2 communicate with the master process by

3 sending a solved node to the master (if available)

4 receiving a new node from the master

5 solve the received node’s relaxation using column generation

Table 5. MPI workers' pseudo code of while loop

The master process is responsible for the tree management while the worker processes perform the
solutions of the nodes’ relaxations - except the root node’s relaxation, which is solved by the master
process.

4 Computational Experiments

Our experiments were conducted on a Linux-based computing cluster consisting of multiple network-
connected computing nodes. Each node is represented by a two-socket Intel Westmere X5675 shared-
memory system with 6 cores per socket and a clock speed of 3.07 GHz. This is a standard architecture
in modern high performance systems (Hager and Wellein 2010). The algorithm was coded in C++ and
the restricted linear programs during column generation were solved via the GUROBI 6.0 C++ API.

We randomly generated ten instances for each of the instance sizes 300/300, 300/150, 300/100,
300/75, 300/60, 300/45, and 300/30, with n/m representing a setting with n jobs and m machines,
in order to gain insights into how the DFS heuristic performs and how the parallelization works for
different ratios of n to m.

The processing times in our experiments are uniformly distributed over , the setup times
(which are typically lower than the processing times) are uniformly distributed over }, and the
weights are uniformly distributed over . We generated 20 columns in each iteration of the
column generation procedure and set the probability that a machine is eligible for processing a job to
20%. Similar settings have been used in the literature (Chen and Powell 1999; Chen and Powell 2003;
Lopes and de Carvalho 2007; van den Akker et al. 1999; Weng et al. 2001).

Australasian Conference on Information Systems Rauchecker & Schryen
2016, Adelaide A Parallel Heuristic for Scheduling Decision Support

5 Results and Discussion

In this section, we present and evaluate our results. We discuss the effectiveness of the DFS heuristic
and its efficiency. Finally, we present our findings about the parallel implementation.

5.1 Effectiveness of the DFS Heuristic

For each instance, we calculated the solution of the DFS heuristic and of the best performing heuristic
presented by Weng et al. (2001) and Wex et al. (2014) – we refer to this heuristic as SCHED – and
documented execution times as well as solution quality (cf. subsection 2.3). The pseudo code of the
SCHED heuristic is presented in Table 6. Let denote the set of all pairs where machine is
eligible of processing job .

Line Pseudo code

1 Initialize the current completion time , the current job , and
the current schedule for every machine

2 Initialize the set of remaining jobs

3 while do

4
 set

5 update

, ,

6 update

7 return as the list of schedules

Table 6. Pseudo code of the SCHED heuristic

The average gaps between the DFS heuristic solutions and (1) the best lower bounds (at time of
algorithm termination) and (2) the solutions of the SCHED heuristic are presented in Table 7. These
measures have been used in the literature, e.g., by Wex et al. (2014) and Schryen et al. (2015), and
allow for quantifying the solution quality of DFS compared to (1) optimal solutions and (2) the SCHED
heuristic.

Instances 300/300 300/150 300/100 300/75 300/60 300/45 300/30

 0.00% 0.03% 0.11% 0.10% 0.18% 0.36% 0.35%

 3.26% 4.99% 5.27% 6.18% 7.68% 8.83% 11.35%

Table 7. Effectiveness of the DFS heuristic

The gaps are in fact upper bounds on the gap between the DFS heuristic solutions and the
optimal solutions. A graphic illustration is provided in Figure 1. In this figure, LB denotes a lower
bound on the value of the optimal solution, OPT denotes the value of the optimal solution, and DFS
(SCHED resp.) stands for the value of the DFS (SCHED resp.) solution.

Figure 1: Exemplary illustration of both gaps

We conclude that the DFS heuristic solution values are either optimal or extremely close to the
optimum as the average upper bound of the gap is not higher than 0.36% (scenario (300/45)). Even

Australasian Conference on Information Systems Rauchecker & Schryen
2016, Adelaide A Parallel Heuristic for Scheduling Decision Support

the maximum gap among all 70 tested instances was as low as 0.71%. Furthermore, the SCHED
heuristic can be improved considerably by the DFS heuristic in terms of effectiveness.

5.2 Efficiency of the DFS Heuristic

The DFS heuristic calculated the solutions in less than 5 minutes even in a purely serial mode of
execution. The average runtimes for each ratio n/m are presented in Figure 2.

Figure 2: Average runtimes of the DFS heuristic in serial execution mode

While the runtimes of the DFS heuristic seem to increase super-linear, the runtimes of the SCHED
heuristic were below one second in all tested instances. The super-linear increase of execution time of
DFS is a disadvantage compared to SCHED. However, execution times are at an acceptable level for
our tested instance sizes as the algorithm terminates within a few minutes.

5.3 Impact of HPC

The parallel implementation of our algorithm was tested on different configurations – 1, 6, and 12
threads on 1, 3, and 5 processes. This implementation is capable of substantially reducing runtimes for
each of the instance sizes. Figure 3 depicts the decrease in execution time with an increasing number
of threads on one process.

Figure 3: Average runtimes of the DFS heuristic using multiple threads and one process

The effect of HPC was evaluated using an established scalability metric – the comparison of theoretical
and observed parallel speedup on one process and multiple threads (Hager and Wellein 2010). Let
denote the purely serial part of a program. The theoretical speedup using threads can then be
calculated as

.

Note that

, which is known as Amdahl’s law (Amdahl 1967). Table 8 lists the theoretical

and observed speedups for all instance sizes and shows that our parallelization achieves runtimes
which are just slightly below the theoretical boundaries.

The theoretical speedup decreases substantially with an increasing ratio of jobs to machines. The
reason for this phenomenon is the increasing part of GUROBI’s execution time compared to the
overall execution time. Although GUROBI is claimed to use internal parallelization, we did not observe

Australasian Conference on Information Systems Rauchecker & Schryen
2016, Adelaide A Parallel Heuristic for Scheduling Decision Support

any parallelization effects in our context. Therefore, we pinned GUROBI to a single thread and
consequently added GUROBI’s execution time to the serial part of the algorithm.

Our experiments further show that average execution times decrease by up to 2% in the best case but
increase by up to 106% in the worst case using three or five processes. Using multiple processes
therefore does not lead to an improvement in efficiency.

Type of SU Theoretical Observed Theoretical Observed Theoretical

Threads 6 6 12 12

300/300 4.51 4.36 6.33 5.65 12.28

300/150 3.55 3.54 4.76 4.62 7.27

300/100 3.05 3.04 3.84 3.77 5.19

300/75 2.87 2.84 3.53 3.44 4.59

300/60 2.70 2.65 3.25 3.17 4.09

300/45 2.42 2.36 2.83 2.74 3.39

300/30 2.19 2.14 2.49 2.40 2.88

Table 8. Parallel OpenMP speedup (SU) of the DFS heuristic on one MPI process

The reason for this phenomenon is the increasing number of explored nodes using multiple processes.
The MPI approach enables the parallel processing of concurrently active nodes. This effects the
exploration of unattractive nodes during the b&b algorithm and thus the DFS strategy becomes less
efficient in our problem setting.

6 Conclusion

Many academic fields face scheduling problems as important decision making tasks. In this paper, we
formulated a new heuristic for the NP-hard scheduling problem . The heuristic is

based on a branch-and-price algorithm and uses a lazy depth-first search strategy.

We showed that the proposed heuristic can solve large problem instances with 300 jobs in less than
five minutes, even in serial execution of the algorithm. In addition, our heuristic returns solutions that
differ only marginally from the optimal solution – 0.71% in the worst of all 70 tested scenarios.

The solutions were compared with an established solution heuristic for and the

results show that this heuristic can be improved by an average 11.35% in the most difficult instance
size using our approach. This leads to a high potential to save cost and time in practical applications.

Furthermore, we implemented different parallelization strategies for our heuristic and analysed their
performance. We used shared-memory programming with OpenMP for the parallelization of the
pricing problems and the branching decisions. We found that this approach substantially reduces
runtimes of the heuristic when using multiple threads. In addition, we tested a distributed-memory
MPI approach to process concurrently active nodes in the b&b tree independently on multiple
processes. However, this approach tends to increase execution times because of an increasing number
of explored b&b nodes. The best hardware setup for our algorithm would therefore be a single
multicore processor with a large number of cores.

These findings provide substantial value for both the research community and practitioners. The
research community can profit from our approach since we have bridged the largely unexplored gap
between using HPC and solving scheduling problems. Practitioners can also benefit from our findings
as we provide an easily accessible way to determine solutions of large-sized instances in reasonable
time that are substantially better – in terms of the gap to the optimal solution - than solutions
generated from an established heuristic proposed in the literature.

A limitation of our approach is the absence of real problem data. We coped with this problem by
generating data sets randomly, which is a widely-used approach in the scheduling literature. However,
we are in contact with emergency response organizations in order to evaluate our heuristic in real-

Australasian Conference on Information Systems Rauchecker & Schryen
2016, Adelaide A Parallel Heuristic for Scheduling Decision Support

world disaster response situations where a large number of incidents needs to be processed by rescue
units. This is part of our ongoing work.

7 References

Allahverdi, A., Gupta, J.N.D., and Aldowaisan, T. 1999. "A Review of Scheduling Research Involving
Setup Considerations," Omega (27:2), pp 219-239.

Allahverdi, A., Ng, C.T., Cheng, T.C.E., and Kovalyov, M.Y. 2008. "A Survey of Scheduling Problems
with Setup Times or Costs," European Journal of Operational Research (187:3), pp 985-1032.

Amdahl, G.M. 1967. "Validity of the Single Processor Approach to Achieving Large Scale Computing
Capabilities," Proceedings of the April 18-20, 1967, Spring Joint Computer Conference, pp.
483-485.

Azizoglu, M., and Kirca, O. 1999. "Scheduling Jobs on Unrelated Parallel Machines to Minimize
Regular Total Cost Functions," IIE Transactions (31:2), pp 153-159.

Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., and Vance, P.H. 1998. "Branch-
and-Price: Column Generation for Solving Huge Integer Programs," Operations Research
(46:3), pp 316-329.

Bell, G., and Gray, J. 2002. "What's Next in High-Performance Computing?," Communications of the
ACM (45:2), pp 91-95.

Beloglazov, A., Abawajy, J., and Buyya, R. 2012. "Energy-Aware Resource Allocation Heuristics for
Efficient Management of Data Centers for Cloud Computing," Future Generation Computer
Systems (28:5), pp 755-768.

Bodenstein, C., Schryen, G., and Neumann, D. 2011. "Reducing Datacenter Energy Usage through
Efficient Job Allocation," Proceedings of the 19th European Conference on Information
Systems.

Brandt, T., and Bodenstein, C. 2012. "Evaluating Scheduling Methods for Energy Cost Reduction in a
Heterogeneous Data Center Environment," Proceedings of the 20th European Conference on
Information Systems.

Chandra, C., He, J., Liu, Z., and Ruohonen, T. 2012. "Some Promising Areas for Is Research in the
Healthcare Industry: Implications from a Case Study of Hospital Operation Room
Scheduling," Proceedings of the 18th American Conference on Information Systems.

Chen, J.-F. 2005. "Unrelated Parallel Machine Scheduling with Secondary Resource Constraints," The
International Journal of Advanced Manufacturing Technology (26:3), pp 285-292.

Chen, J.-F. 2006. "Minimization of Maximum Tardiness on Unrelated Parallel Machines with Process
Restrictions and Setups," The International Journal of Advanced Manufacturing Technology
(29:5-6), pp 557-563.

Chen, J.-F., and Wu, T.-H. 2006. "Total Tardiness Minimization on Unrelated Parallel Machine
Scheduling with Auxiliary Equipment Constraints," Omega (34:1), pp 81-89.

Chen, Z.-L., and Powell, W.B. 1999. "Solving Parallel Machine Scheduling Problems by Column
Generation," INFORMS Journal on Computing (11:1), pp 78-94.

Chen, Z.-L., and Powell, W.B. 2003. "Exact Algorithms for Scheduling Multiple Families of Jobs on
Parallel Machines," Naval Research Logistics (50:7), pp 823-840.

Clausen, J., and Perregaard, M. 1999. "On the Best Search Strategy in Parallel Branch-and-Bound:
Best-First Search Versus Lazy Depth-First Search," Annals of Operations Research (90), pp 1-
17.

Cote, M.-C., Gendron, B., and Rousseau, L.-M. 2011. "Grammar-Based Integer Programming Models
for Multiactivity Shift Scheduling," Management Science (57:1), pp 151-163.

Dantzig, G.B., and Wolfe, P. 1960. "Decomposition Principle for Linear Programs," Operations
Research (8:1), pp 101-111.

de Paula, M.R., Ravetti, M.G., Mateus, G.R., and Pardalos, P.M. 2007. "Solving Parallel Machines
Scheduling Problems with Sequence-Dependent Setup Times Using Variable Neighbourhood
Search," IMA Journal of Management Mathematics (18:2), pp 101-115.

Duran, S., Özener, O.Ö., and Yakici, E. 2014. "League Scheduling and Game Bundling in Sports
Industry," Computers & Industrial Engineering (74), pp 92-101.

Elahipanah, M., Desaulniers, G., and Lacasse-Guay, E. 2013. "A Two-Phase Mathematical-
Programming Heuristic for Flexible Assignment of Activities and Tasks to Work Shifts,"
Journal of Scheduling (16:5), pp 443-460.

Emde, S., and Boysen, N. 2014. "One-Dimensional Vehicle Scheduling with a Front-End Depot and
Non-Crossing Constraints," OR Spectrum (36:2), pp 381-400.

Australasian Conference on Information Systems Rauchecker & Schryen
2016, Adelaide A Parallel Heuristic for Scheduling Decision Support

Faghihi, V., Reinschmidt, K.F., and Kang, J.H. 2014. "Construction Scheduling Using Genetic
Algorithm Based on Building Information Model," Expert Systems with Applications (41:16),
pp 7565-7578.

Graham, R.L., Lawler, E.L., Lenstra, J.K., and Rinnooy Kan, A.H.G. 1979. "Optimization and
Approximation in Deterministic Sequencing and Scheduling: A Survey," Annals of Discrete
Mathematics (5), pp 287-326.

Hager, G., and Wellein, G. 2010. Introduction to High Performance Computing for Scientists and
Engineers. CRC Press.

Joo, C.M., and Kim, B.S. 2015. "Hybrid Genetic Algorithms with Dispatching Rules for Unrelated
Parallel Machine Scheduling with Setup Time and Production Availability," Computers &
Industrial Engineering (85), pp 102-109.

Kim, C.O., and Shin, H.J. 2003. "Scheduling Jobs on Parallel Machines: A Restricted Tabu Search
Approach," The International Journal of Advanced Manufacturing Technology (22:3-4), pp
278-287.

Kim, D.-W., Kim, K.-H., Jang, W., and Chen, F.F. 2002. "Unrelated Parallel Machine Scheduling with
Setup Times Using Simulated Annealing," Robotics and Computer-Integrated Manufacturing
(18:3), pp 223-231.

Li, J.-F., and Peng, J. 2011. "Task Scheduling Algorithm Based on Improved Genetic Algorithm in
Cloud Computing Environment," Journal of Computer Applications (31:1), pp 184-186.

Li, K., and Yang, S.-l. 2009. "Non-Identical Parallel-Machine Scheduling Research with Minimizing
Total Weighted Completion Times: Models, Relaxations and Algorithms," Applied
Mathematical Modelling (33:4), pp 2145-2158.

Lin, S.-W., and Ying, K.-C. 2014. "Abc-Based Manufacturing Scheduling for Unrelated Parallel
Machines with Machine-Dependent and Job Sequence-Dependent Setup Times," Computers
& Operations Research (51), pp 172-181.

Lin, Y., Pfund, M.E., and Fowler, J.W. 2011. "Heuristics for Minimizing Regular Performance
Measures in Unrelated Parallel Machine Scheduling Problems," Computers & Operations
Research (38:6), pp 901-916.

Logendran, R., McDonell, B., and Smucker, B. 2007. "Scheduling Unrelated Parallel Machines with
Sequence-Dependent Setups," Computers & Operations Research (34:11), pp 3420-3438.

Lopes, M.J.P., and de Carvalho, J.M.V. 2007. "A Branch-and-Price Algorithm for Scheduling Parallel
Machines with Sequence Dependent Setup Times," European Journal of Operational
Research (176:3), pp 1508-1527.

Low, C. 2005. "Simulated Annealing Heuristic for Flow Shop Scheduling Problems with Unrelated
Parallel Machines," Computers & Operations Research (32:8), pp 2013-2025.

Mak, H.-Y., Rong, Y., and Zhang, J. 2015. "Appointment Scheduling with Limited Distributional
Information," Management Science (61:2), pp 316-334.

Mauch, V., Kunze, M., and Hillenbrand, M. 2013. "High Performance Cloud Computing," Future
Generation Computer Systems (29:6), pp 1408-1416.

Mensendiek, A., Gupta, J.N.D., and Herrmann, J. 2015. "Scheduling Identical Parallel Machines with
Fixed Delivery Dates to Minimize Total Tardiness," European Journal of Operational
Research (243:2), pp 514-522.

Meyer, G., Adomavicius, G., Johnson, P.E., Elidrisi, M., Rush, W.A., Sperl-Hillen, J.M., and O'Connor,
P.J. 2014. "A Machine Learning Approach to Improving Dynamic Decision Making,"
Information Systems Research (25:2), pp 239-263.

Miranda, J., Rey, P.A., and Robles, J.M. 2012. "Udpskeduler: A Web Architecture Based Decision
Support System for Course and Classroom Scheduling," Decision Support Systems (52:2), pp
505-513.

MPI. 2012. "Mpi: A Message-Passing Interface Standard Version 3.0." Retrieved 30.06.2015, from
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

Nurmi, K., Kyngas, J., Goossens, D., and Kyngas, N. 2014. "Scheduling a Professional Sports League
Using the Peast Algorithm," Proceedings of the 2014 International MultiConference of
Engineers and Computer Scientists, pp. 1176-1182.

OpenMP. 2013. "Openmp Application Program Interface Version 4.0." Retrieved 30.06.2015, from
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

Paulussen, T., Heinzl, A., and Becker, C. 2013. "Multi-Agent Based Information Systems for Patient
Coordination in Hospitals," Proceedings of the 34th International Conference on Information
Systems.

Pinedo, M.L. 2012. Scheduling: Theory, Algorithms, and Systems. Springer.

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

Australasian Conference on Information Systems Rauchecker & Schryen
2016, Adelaide A Parallel Heuristic for Scheduling Decision Support

Rabadi, G., Moraga, R.J., and Al-Salem, A. 2006. "Heuristics for the Unrelated Parallel Machine
Scheduling Problem with Setup Times," Journal of Intelligent Manufacturing (17:1), pp 85-
97.

Rauchecker, G., Yasasin, E., and Schryen, G. 2014. "A Decision Support System for It Security Incident
Management," Proceedings of the 11th International Conference on Trust, Privacy, and
Security in Digital Business, pp. 36-47.

Rodriguez, F.J., Lozano, M., Blum, C., and Garcia-Martinez, C. 2013. "An Iterated Greedy Algorithm
for the Large-Scale Unrelated Parallel Machines Scheduling Problem," Computers &
Operations Research (40:7), pp 1829-1841.

Rolland, E., Patterson, R.A., Ward, K., and Dodin, B. 2010. "Decision Support for Disaster
Management," Operations Management Research (3:1-2), pp 68-79.

Schryen, G., Rauchecker, G., and Comes, T. 2015. "Resource Planning in Disaster Response," Business
& Information Systems Engineering (57:4), pp 243-259.

Silberschatz, A., Galvin, P.B., and Gagne, G. 2013. Operating System Concepts. Wiley.
Sterzik, S., and Kopfer, H. 2013. "A Tabu Search Heuristic for the Inland Container Transportation

Problem," Computers & Operations Research (40:4), pp 953-962.
Su, L.-H., Chiu, Y., and Cheng, T.C.E. 2013. "Sports Tournament Scheduling to Determine the

Required Number of Venues Subject to the Minimum Timeslots under Given Formats,"
Computers & Industrial Engineering (65:2), pp 226-232.

Terekhov, D., Down, D.G., and Beck, J.C. 2014. "Queueing-Theoretic Approaches for Dynamic
Scheduling: A Survey," Surveys in Operations Research and Management Science (19:2), pp
105-129.

TOP500. 2014. "Top500 Supercomputer Sites." Retrieved 30.06.2015, from
http://www.top500.org/list/2014/11/

Ullrich, C.A. 2013. "Integrated Machine Scheduling and Vehicle Routing with Time Windows,"
European Journal of Operational Research (227:1), pp 152-165.

Vallada, E., and Ruiz, R. 2011. "A Genetic Algorithm for the Unrelated Parallel Machine Scheduling
Problem with Sequence Dependent Setup Times," European Journal of Operational Research
(211:3), pp 612-622.

van den Akker, J.M., Hoogeveen, J.A., and van de Velde, S.L. 1999. "Parallel Machine Scheduling by
Column Generation," Operations Research (47:6), pp 862-872.

van der Meer, D., Dutta, K., and Datta, A. 2012. "A Cost-Based Database Request Distribution
Technique for Online E-Commerce Applications," MIS Quarterly (36:2), pp 479-507.

Vecchiola, C., Pandey, S., and Buyya, R. 2009. "High-Performance Cloud Computing: A View of
Scientific Applications," Proceedings of the 10th International Symposium on Pervasive
Systems, Algorithms, and Networks, pp. 4-16.

Vredeveld, T., and Hurkens, C. 2002. "Experimental Comparison of Approximation Algorithms for
Scheduling Unrelated Parallel Machines," INFORMS Journal on Computing (14:2), pp 175-
189.

Wang, S., and Liu, M. 2013. "A Branch and Bound Algorithm for Single-Machine Production
Scheduling Integrated with Preventive Maintenance Planning," International Journal of
Production Research (51:3), pp 847-868.

Weng, M.X., Lu, J., and Ren, H. 2001. "Unrelated Parallel Machine Scheduling with Setup
Consideration and a Total Weighted Completion Time Objective," International Journal of
Production Economics (70:3), pp 215-226.

Wex, F., Schryen, G., Feuerriegel, S., and Neumann, D. 2014. "Emergency Response in Natural
Disaster Management: Allocation and Scheduling of Rescue Units," European Journal of
Operational Research (235:3), pp 697-708.

Wex, F., Schryen, G., and Neumann, D. 2011. "Intelligent Decision Support for Centralized
Coordination During Emergency Response," in: Proceedings of the 8th International
Conference on Information Systems for Crisis Response and Management.

Yang, C.-W., Guo, J.-D., and Chi, J. 2014. "Min-Cost with Delay Scheduling for Large Scale Cloud-
Based Workflow Applications Platform," Proceedings of the 18th Pacific Asian Conference on
Information Systems.

Zhao, Z., Lee, W.C., Shin, Y., and Song, K.-B. 2013. "An Optimal Power Scheduling Method for
Demand Response in Home Energy Management System," IEEE Transactions on Smart Grid
(4:3), pp 1391-1400.

http://www.top500.org/list/2014/11/

Australasian Conference on Information Systems Rauchecker & Schryen
2016, Adelaide A Parallel Heuristic for Scheduling Decision Support

Copyright: © 2015 Gerhard Rauchecker & Guido Schryen. This is an open-access article distributed
under the terms of the Creative Commons Attribution-NonCommercial 3.0 Australia License, which
permits non-commercial use, distribution, and reproduction in any medium, provided the original
author and ACIS are credited.

http://creativecommons.org/licenses/by-nc/3.0/au/

	High-Performance Computing for Scheduling Decision Support: A Parallel Depth-First Search Heuristic
	Recommended Citation

	tmp.1576837807.pdf.BN9_M

