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AN APPROACH TO ADDRESSING THE USABILITY AND 
LOCAL RELEVANCE OF GENERIC ENTERPRISE  

SOFTWARE 

Research paper 

 
Magnus Li, Department of Informatics, University of Oslo, Norway, magl@ifi.uio.no 

Abstract 
Designing for usability and locally relevant features for end-users in generic ‘product’ or ‘packaged’ 
enterprise software projects is challenging. On the generic level, designers must aim at supporting 
variety, which is contradictory to the specificity needed to make user interfaces usable, and functional-
ity relevant to end-users within specific organizational contexts. Also, addressing these concerns dur-
ing the implementation of generic software is difficult due to limitations in the design flexibility of the 
software, time and resource constraints, possible maintenance issues following customization, and a 
lack of design methods appropriate for the context of software implementation. Reporting from an on-
going Action Design Research project following a global generic health software, this paper concep-
tualizes a Generic Software Design Lab that aims to equip design on the level of software implementa-
tion with flexibility, tools, and methods to efficiently localize generic software. By conceptualizing the 
approach and discussing how it works to strengthen implementation-level designers’ ability to address 
usability and local relevance, the paper contributes with learnings to research and practice related to 
design, development, and implementation of generic software. 
 
Keywords: Generic Software, Packaged Software, Product Software, Implementation, Design, Usabil-
ity, Design Infrastructure, Action Design Research, Misfits 
 

1 Introduction 
The challenge of making generic packaged or product enterprise software that is perceived as usable 
and relevant by end-users within the established practice of specific organizations has been well doc-
umented (David Martin, Mariani, & Rouncefield, 2007; Sia & Soh, 2007; Strong & Volkoff, 2010). A 
wealth of literature has described ‘misfits’ or ‘misalignment’ between enterprise software and organi-
zational practice as a key challenge within IS (Sia & Soh, 2007; Strong & Volkoff, 2010). Also, an 
extensive body of usability-oriented literature has established that such software is associated with 
poor usability for the end-users, for example with Enterprise Resource Planning Software (ERP) 
(Topi, Lucas, & Babaian, 2005; Wong, Veneziano, & Mahmud, 2016), and Health Information Soft-
ware (HIS) (Kaipio et al., 2017). This seems to be an inherent and inevitable aspect of generic soft-
ware, due to the way in which they are designed, focusing on markets of several organizations rather 
than the specific practices to be supported within each (Bertram, Schaarschmidt, & von Kortzfleisch, 
2012; Mousavidin & Silva, 2017; Sia & Soh, 2007). The required emphasis on the variety of use-cases 
challenges the traditional ways of usability and end-user oriented design (Harms & Grabowski, 2011). 
While software that is usable and relevant within end-users established practices is typically argued to 
be attained through designs that are specific to the context of use (Norman, 2013; Rosson & Carroll, 
2009), generic software that aims to serve a multitude of such contexts must emphasize the opposite, 
and avoid specificity that may potentially make the software irrelevant in other organizations (Martin, 
Rouncefield, O’Neill, Hartswood, & Randall, 2005; Pollock & Cornford, 2002). The necessary lack of 
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sensitivity to organization and practice-specific requirements in generic software design thus contrasts 
much of the prescriptive knowledge developed around how usable and relevant technologies are de-
signed, which emphasize bottom-up, ‘situated’ design processes where fit with established practices 
are at the center of concerns (Kujala, 2003; Norman, 2013; Rosson & Carroll, 2009; Suchman, 2002). 
Instead, the nature of generic software may enforce a rather top-down design process during imple-
mentation, where significant parts of user interfaces and functionality are pre-defined by the vendor, 
often geographically and culturally distant from the context of use (Davenport, 1998; Roland, Sanner, 
Sæbø, & Monteiro, 2017).  
Together with collogues, I have earlier argued that one approach to addressing the issue is for generic 
software designers to increasingly emphasize the development of socio-technical resources that help 
implementation-level designers to efficiently localize the software according to local needs during im-
plementation within specific organizations (Li & Nielsen, 2019b). I refer to this collection of resources 
as a design infrastructure for implementation-level design, including configurable and extendable 
software components, documentation, implementation-guidelines, and design-methods that are aligned 
with the adaption capabilities of the software (Li & Nielsen, 2019a). Similar arguments have been put 
forth by, for instance, Sommerville (2008), arguing that much of software development and design 
today is based on configurable generic packages. Thus, the configurability of generic software which 
provides the basis for processes of ‘construction by configuration’ during implementation is a core 
issue, but has received limited attention in IS and Software Engineering research. In the future, Som-
merville argues, researchers need to “explore the notion of configurability and to establish design 
principles and guidelines for developers of configurable systems” (Sommerville, 2008, p. 9). Along 
the same line of arguments, a body of research calls for increased focus on the process of localization 
during implementation or implementation-level design. That is, the process where the generic attrib-
utes of user interfaces and functionality are shaped to mesh better with local practice (e.g., Dittrich, 
2014; Dittrich, Vaucouleur, & Giff, 2009; David Martin et al., 2007). To facilitate this second level of 
design, the software needs to provide flexibility through various configuration and customization fea-
tures, yet avoid compromising the ability for future software upgrades (Dave Martin, Mariani, & 
Rouncefield, 2004; Sestoft & Vaucouleur, 2008). As such, addressing usability is a joint effort be-
tween two levels of design (Li & Nielsen, 2019b); generic and implementation. There is however lim-
ited research on generic software implementation as a process of design (Pries-Heje & Dittrich, 2009), 
and especially how generic software vendors may support such localization processes with an empha-
sis on usability and local relevance (Baxter & Sommerville, 2011; Dittrich, 2014; Li & Nielsen, 
2019a; Sommerville, 2008).  
Based on experiences from an ongoing Action Design Research project (Sein, Henfridsson, Purao, 
Rossi, & Lindgren, 2011), this paper contributes to this landscape by conceptualizing an approach to 
such a multi-level design effort as a generic software design lab. A distinctive feature of the approach 
is its concern for both generic and implementation-level design as a joint effort to address usability. 
The lab has been established with the aim of strengthening the usability and potential local relevance 
of the generic health information software District Health Information Software 2 (DHIS2), which is 
currently implemented in more than 60 countries within several health-related domains. The lab at-
tempts to strengthen the design infrastructure supporting implementation-level designers in their pro-
cess of building software that works according to the requirements of a specific organization. Con-
cretely, the research question explored in this paper is; how may usability and local relevance of ge-
neric packaged enterprise software be addressed through design? I will attempt to provide a possible 
answer to this rather extensive question by reporting from our ongoing efforts around the DHIS2 soft-
ware. Specifically, the process we follow, key characteristics, and how it relates to the generic and 
implementation level of design, and the design infrastructure between them will be presented. The 
contribution of the paper directly relates to calls for research on the need for an increased understand-
ing of how to support design and development during generic software implementation (Dittrich, 
2014; Pollock & Williams, 2008; Sommerville, 2008), and more generally, to research related to mis-
fits, usability, design and implementation of generic enterprise software (Bertram et al., 2012; Pollock 
& Williams, 2009; Sia & Soh, 2007; Strong & Volkoff, 2010). 
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The rest of the paper is organized as follows: first, I provide a brief overview of literature related to 
usability and generic software design. Then, the lab as a research and practical intervention is concep-
tualized before some key empirical findings and experiences are outlined. Finally, the lab as an ap-
proach and how it may contribute in addressing the usability and local relevance of generic software is 
discussed.  

2 Related Research 

The topic of this paper is positioned somewhat between the concerns of two overall streams of re-
search-related information systems and design. First, literature related to generic software design and 
implementation, primarily within the field of IS are typically interested in large-scale system devel-
opment, standardization, customization, and the issue of software-organization misfits (e.g., 
Rothenberger & Srite, 2009; Sestoft & Vaucouleur, 2008; Strong & Volkoff, 2010). Design in this 
perspective often emphasizes how organizational and technological change can be balanced to achieve 
the best efficiency and economic gains of generic software adoption. Often, ‘best practice’ design on 
the level of generic software development, and minimizing software customization while ensuring 
end-user acceptance for organizational change during implementation is a rule of thumb (Davenport, 
1998).  Second, an extensive body of use-oriented research within both Human-Computer Interaction 
(HCI) and design-oriented IS literature emphasizes how the design of technology should be based on 
the end-users needs and practices (Ehn, 2008; Kujala, 2003; Norman, 2013; Rosson & Carroll, 2009). 
Within this stream of research, what makes usable and relevant for end-users, and how to design for 
these desirable traits has been discussed extensively. However, the context of generic software design 
and implementation, or large-scale software products and infrastructures are rarely considered 
(Edwards, Newman, & Poole, 2010; Monteiro, Pollock, Hanseth, & Williams, 2013).  

Mainly discussed within the latter strand of research, the concept of usability refers to how well an 
artifact works with a specific set of users within a specific context of use. The concept has a long tradi-
tion within the field of HCI, where it often has been quantified through facets such as learnability, 
memorability, and user satisfaction (Tractinsky, 2018). In this paper, I employ usability as a descrip-
tive concept referring to the alignment between software’ user interfaces and the users' mental models 
and established practices (Norman, 2013; Rosson & Carroll, 2009; Strong & Volkoff, 2010). Similar-
ly, the term local relevance is used to refer to features or functionality that are perceived as useful and 
valuable to the activities and work of specific sets of end-users. A major driver for the implementation 
of generic software, such as ERP systems, is to change and standardize practice to make organizations 
more efficient (Strong & Volkoff, 2010). Although change is of interest, from a use-oriented perspec-
tive, these changes need to be sensitive to the practices, tools, and activities that already exists within 
the organization, to avoid systems perceived as irrelevant, uncoordinated workarounds, loss of desired 
efficiency gains and reduced worker satisfaction (Mousavidin & Silva, 2017; Soh, Kien, & Tay-Yap, 
2000). To achieve such a fit, designers need knowledge on the end-users’ established activities and use 
of technology (Rosson & Carroll, 2009). However, methods developed to support use-oriented design 
has been criticized for only considering small-scale software development and bespoke software de-
sign (Edwards et al., 2010; Monteiro et al., 2013). In contrast to bespoke or ‘from-scratch’ software 
development specific for a single organization and use-case, design of generic software products is 
about considering a market of several organizations, users, and contexts. Design can be described as a 
process of generification, where the shared traits between various implementations are considered, and 
particularities are filtered out (Pollock & Williams, 2009). Designers can thus often not be sensitive to 
specific user practices. Often, usability and local relevance suffer (e.g., Atashi, Khajouei, Azizi, & 
Dadashi, 2016; Kaipio et al., 2017; Topi et al., 2005). 

As the sensitivity to the specifics within each organization promoted in use-oriented approaches can-
not be addressed directly on the generic level of design, some, including my own prior work argue that 
the level of generic software implementation should be regarded as a design process in its own right, 
where generic components, functionality and user interfaces are shaped towards the local particulari-
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ties of a single organization (Dittrich, 2014; Li & Nielsen, 2019b; Pries-Heje & Dittrich, 2009). This 
process is however described as difficult due to limited technical flexibility constraining desired 
changes in user interfaces (Li, 2019b; David Martin et al., 2007), due to the maintenance implications 
associated with software customization (Dittrich & Vaucouleur, 2008; Light, 2001; Pollock & Corn-
ford, 2002), due to a lack of design methods appropriate for implementation-level design (Dittrich, 
2014; Li & Nielsen, 2019b), and managers perception of software implementation as a rapid process 
requiring limited emphasis on design-activities (Krabbel & Wetzel, 1998). To facilitate design on the 
level of implementation, the generic-level designers must provide localization features in the software, 
and possibly, resources such as design methods in which implementation-level designers can leverage 
upon during localization. Addressing usability and local relevance of generic software will thus re-
quire a joint effort between generic and implementation-level designers (Li & Nielsen, 2019b). Gener-
ic-level design has to consider both design of user interfaces and features to the end-users through 
generification, and design of a set of socio-technical components or a design-infrastructure that sup-
ports the process of implementation-level design. The infrastructure could include localization features 
in the adaptable generic software such as configuration, customization, and extension of user interfac-
es and functionality (Li & Nielsen, 2019a; Light, 2001; Sestoft & Vaucouleur, 2008). Further, other 
artifacts that support design processes, and soft resources such as documentation and appropriate ‘best 
practice’ design methods that are aligned with the localization features embedded in the software may 
be relevant (Baxter & Sommerville, 2011; Li & Nielsen, 2019b). During implementation, these re-
sources will be leveraged to shape the software sufficiently to achieve a usable software for the end-
users.  

2.1 Design labs 

Existing research has established that functional and non-functional misfits are a prominent challenge 
in generic software, and that design to address it is difficult, both on the level of generic development 
and implementation. Design-approaches that are suited for strengthening implementation-level design-
ers’ capability of addressing usability and relevance during the implementation of generic software is, 
however, lacking (Dittrich, 2014; Sommerville, 2008). In regards to traditional means of designing for 
usability and local relevance, the well-established method of usability laboratories emphasize careful 
user testing of user interfaces in controlled environments, often after a working software has been de-
signed (Nielsen, 1994). The approach is not well suited for the multi-level, and multi-organizational 
environment of generic software. Traditional usability laboratories have also been criticized as consid-
ering technologies fit with existing practice and context of use too late in the design process. For in-
stance, Bødker & Buur (2002, p. 155) argue that with technologies that are highly intertwined with 
established routines, tools, and contextual factors, “inviting users to evaluate the design of user inter-
faces of a single instrument in a lab setting does not make much sense." Based on this, and inspired by 
the tradition of Participatory Design, the authors conceptualize what they refer to as a design collabor-
atorium, as both a place and process for collaborative design between different stakeholders. Three 
aspects characterize the approach: 1) a meeting ground, which is both a process and place where de-
sign unfold, 2) participants that take part in the activities, and 3) design artifacts that mediate existing 
practices and new alternatives between the participants. Based on a similar rationale, several research-
ers have attempted to conceptualize different types of ‘design labs’ that aim to address usability in a 
more process-holistic fashion, through continuous interaction between developers, designers, end-
users and other project stakeholders throughout the software development process, including ‘living 
labs’, highly influenced by rationales and methods of Participatory Design (Kanstrup, 2017). For in-
stance, Binder & Brandt’s (2008, p. 121) Design:Lab, described as "a platform for a collaborative in-
quiry that is based on design experiments." Albeit, these approaches are based on the assumptions of 
traditional bespoke software development and are not considering the multi-leveled nature of generic 
software design, where one level (i.e. generic-level design) needs to facilitate further context-specific 
design during implementation. ‘Meta-design’ or ‘design for further design’ (Ehn, 2008) has been dis-
cussed in the literature related to end-user-driven IS tailoring and end-user development, and concep-
tualize how designers build environment or ‘spaces’ that allow further shaping of technology on dif-
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ferent levels and points in time (Fischer, 2008). Research in this area is exclusively interested in de-
sign driven by end-users during ‘use-time’, which differs from the context of generic software imple-
mentation and its particular concerns related to time and resource constraints, upgrade issues and 
maintenance (Sestoft & Vaucouleur, 2008; Soh et al., 2000). Knowledge developed within this stream, 
and particularly the concept of ‘meta-design’ could anyhow be relevant in understanding the multi-
level type of design that unfolds in generic software projects (Bertram et al., 2012; Dittrich, 2014; 
Mousavidin & Silva, 2017; Sommerville, 2008). 

3 Case: HISP and the DHIS2 software 

The empirical case of this paper follows a generic health information software, called District Health 
Information Software 2 (DHIS2). The software is developed through the ongoing Action Research 
project Health Information Systems Programme (HISP), spanning over two decades of research on 
different aspects of health information systems development and implementation in developing coun-
tries (Braa, Monteiro, & Sahay, 2004). The University of Oslo is a major actor in this network, and 
several Ph.D. and master students are working on practical and theoretical problems in collaboration 
with local practitioners in different implementation efforts. The DHIS2 software was originally devel-
oped in close collaboration with end-users and other stakeholders from the public health system in 
South Africa in the nineties, to support routine health data reporting and use at the district level. With 
relative success in providing an integrated and usable system there, it has gradually been adopted in 
other counties and is today used on a national scale in 67 countries worldwide. Today, the software 
thus has to support significant variety in organizational and cultural contexts. Its flexibility for locali-
zation during implementation has also supported its implementation in an increasing number of new 
health sub-domains such as logistics management, decease surveillance, and patient follow-up. This 
means that the generic-level designers, referred to as ‘the DHIS2 core developers', situated in Oslo, 
Norway has to work through a process of generification when designing functionality and user inter-
faces (Gizaw, Bygstad, & Nielsen, 2017). Around the DHIS2 software, the HISP network emphasizes 
local competence building through the ‘DHIS2 Academies’, which are regional learning events, orga-
nized by different implementation groups established in several countries. These groups include HISP 
South Africa, India, Bangladesh, Vietnam, Indonesia, Nigeria, Tanzania, and many more. The topics 
of the academies vary from basic use of the DHIS2 software to advanced customization and extension 
development. Together, the technical features for localization of the software, (i.e., configuration, cus-
tomization, and extension (through the development of third-party apps)), and the social competence-
building, communication, sharing, and learning resources form the design-infrastructure of and around 
the software. This provides a basis for the implementation-level design taken on by the local HISP 
groups and other implementing entities to shape the software according to specific local requirements. 

The significant variation in use-cases and contexts for the DHIS2 has made usability an increasing 
challenge across implementations. I have been involved in the HISP network with research and prac-
tice for about four years, including activities at the generic level of design, and implementation activi-
ties in Uganda and India. My interest in usability triggered the establishment of a PhD-project focus-
ing on how the generic DHIS2 software serving such variety in organizational contexts could be made 
usable and relevant to end-users with very different conceptual understandings and established prac-
tices. The planned research activities were to be involved in implementation processes to understand 
how the software is shaped towards local requirements and needs, and challenges related to this. After 
following an initiative attempting to address usability in an implementation in India it became evident 
that the ability to deal with the usability problems and specific functional needs encountered was high-
ly affected by the adaptability of the software and other resources in the design infrastructure of and 
around the DHIS2 software. Thus, a relation to the generic level of design, and the shaping of the de-
sign-infrastructure supporting implementation-level activities would be relevant to address usability, 
as the design on the two levels is highly interdependent. Further, several implementation projects, es-
pecially in India, had expressed a need for more emphasis on usability in their ongoing implementa-
tion projects. This presented an opportunity to establish what is now called “the DHIS2 design lab”, 
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where several researchers are involved in activities on both the level of implementation and generic 
development. This represents the generic software design lab conceptualized in this paper. In essence, 
the lab consists of a group of people sharing a common overall goal of strengthened usability, com-
municating using digital tools, and meeting on a frequent basis for discussions around experiences, 
challenges, ideas, and (possible) interventions.  

4 The Lab as Method 

The lab as a research approach is based on Action Design Research (ADR) (Sein et al., 2011). Explor-
ing how usability can be addressed in the multi-level environment requires the ability to understand 
challenges by engaging in implementation-projects while participating in interventions both locally 
and in the design-infrastructure of DHIS2. As the DHIS2 software is a central component of the re-
search, interventions will often revolve around this technical artifact. However, usability design is also 
an organizational process, where human and organizational aims, capacities, design methods, and in-
stitutional arrangements are at play. Thus, organizational interventions would necessarily be part of 
the process. Action Design Research is a methodology that supports these two kinds of interventions, 
in the words of (Sein et al., 2011, p. 40) by “(1) addressing a problem situation encountered in a spe-
cific organizational setting by intervening and evaluating, and (2) constructing and evaluating an IT 
artifact that addresses the class of problems typified by the encountered situation.”  

ADR is a cyclical process where problems are defined based on a diagnosis of an organizational set-
ting. Although being grounded in a practical problem, it must also be related to a more general class of 
problems, making it relatable to research. Based on the problem of focus, cycles of ‘building, interven-
tion, and evaluation’ follows where ‘theory-ingrained’ artifacts and interventions are made and evalu-
ated. Parallel to these activities, there is an ongoing process of reflection and learning, conceptually 
moving “from building a solution for a particular instance to applying that learning to a broader 
class of problems” (Sein et al., 2011, p. 44). This involves a constant negotiation of the practical and 
theoretical framing of the problem. The ADR process provides the foundation of the process of the 
design lab. 

4.1 Structure of the lab 

The lab has been and is an evolving phenomenon where participants, arenas for communication, and 
activities and methods are continuously changing based on our experiences. This and the following 
sections will attempt to capture the current state of affairs, starting with what makes up the ‘lab’, and 
the process we are following.  

4.1.1 The Participants 

There are two types of participants in the lab. First, the ‘formal’ participants include me as a PhD-
researcher and nine master students with a background in computer science and interaction design 
from the University of Oslo. My role as a PhD-researcher is twofold; 1) to be actively engaged in ac-
tivities at the generic and implementation level, and in interventions attempting to strengthen usability, 
and 2) to coordinate the lab-activities and the master students work, each with their own project relat-
ed to the overall goal of the lab. Second, the lab includes more ‘informal’ participants, depending on 
the concrete projects we are involved in, such as generic and implementation-level designers and de-
velopers, and participants from implementing organizations such as project managers, support person-
nel, and end-users. 

4.1.2 Relations to the generic and implementation-level design 

The formal participants make the lab an entity somewhat independent from both the DHIS2 ‘core de-
velopers’ as generic level designers, and the groups of implementation-level designers such as HISP 
India. However, the formal participants are highly involved within implementation projects, collabo-
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rating closely with the implementation-level designers. For the generic level, we attempt to find a bal-
ance between involvement and autonomy, where our learnings and interventions can inform and be 
informed by the activities of the ‘core’ developers and designers, while remaining flexible to make our 
own decisions, experimental interventions, and extend the design-infrastructure without too many re-
strictions from other generic-level concerns. 

4.1.3 The meeting grounds 

To adopt Bødker & Buur’s (2002) notion of meeting ground as the common place of interaction within 
the lab, the meeting grounds of our design-lab are regular meetings, workshops, focus groups at the 
University of Oslo and during collective field-trips to implementation projects (e.g., in India), and dig-
ital communication tools (Slack, Jira). On a regular basis, the formal participants meet to discuss em-
pirical experiences and interventions on a practical and theoretical level. Typically, such meetings are 
topic-centered, revolving around the different sub-problems each participant is working on. Further, 
interactions with the informal members happen through a variety of channels, from attending meet-
ings, dedicated topic discussions, Skype, participating in design and development activities, group or 
one-on-one interviews, and all sorts of other interactions unfolding during the design cycles described 
in the following section. 

4.2 The process 

The process we are following in the design lab can be described as cycles of four elements: 
1. Accumulation of empirical experiences: an understanding of the phenomenon of focus that grad-

ually develops through cycles of investigation, participation, and interventions within the organi-
zational environment, the DHIS2 software, and the design-infrastructure.  

2. Problem definition: an overall problem and relevant sub-problems are derived and continuously 
renegotiated based on the empirical experiences. Problems can be small and concrete, or high-
level, in which several ‘sub-cycles’ are ongoing to explore different dimensions.  

3. Investigation, ideation, and intervention: the process of building empirical knowledge is driven 
by investigation, ideation, and intervention. Problems and phenomenon are investigated in-depth, 
or potential interventions to address the defined problems are discussed and explored. In our ap-
proach, we use the term intervention in a broad sense, not limited to concrete material changes or 
large and well-planned organizational changes, but involving all types of interactions where the 
researcher’s actions have noteworthy effects on how things play out in process and result related 
to the problem of focus. Investigation, ideation, and intervention are thus in many ways’ insepara-
ble, as highly participative investigation and ideation within a project may ultimately affect the 
course of action and is, therefore, an intervention in itself. In the words of (Walsham Walsham, 
1995, p. 77), “even if researchers view themselves as outside observers, they are in some sense 
conducting action research by influencing what is happening in the domain of action”. Interven-
tion in our process does as such represent a point of contact with the client infrastructure, be it or-
ganizational or technical, which to our knowledge have noteworthy effects related to the problem 
of interest. 

4. Evaluation: The more or less extensive interventions are continuously evaluated, further building 
the empirical experiences that form the basis for new cycles of re-formulated problem areas, sub-
problems, and new ideas and interventions.  

All stages of the process are informed by theory and related research or a “framework of ideas” 
(Baskerville & Wood-Harper, 1996, p. 239), both as a sensitizing device when making sense of and 
analyzing empirical experiences, and more explicitly in the process of framing problems, and generat-
ing ideas for and conducting interventions and evaluation. Further, the growing base of empirical ex-
periences is continuously analyzed systematically to produce knowledge to feed back to research. The 
lab is as such constantly framing knowledge in terms of an instance domain (concrete experiences dur-
ing implementation) and an abstract domain (class of problems relatable to the world of research) 
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(Gregor, Müller, & Seidel, 2013; Lee, Pries-Heje, & Baskerville, 2011). It can also be seen as a her-
meneutic approach, where the understanding of the overall problem and related sub-phenomenon un-
fold in a mutual informing process (Klein & Myers, 1999). More systematically, the empirical experi-
ences are often structured through thematic analysis (Braun & Clarke, 2006) by coding field-notes, 
creating themes and concepts, and reflecting on their relationship and relating them to the abstract do-
main of theory and existing research. Further, the regular meetings between the formal members of the 
design lab provide a fruitful environment for reflection (Daudelin, 1996) and to drive the process of 
abstraction and de-abstraction to conceptualize important phenomenon experienced. Figure 1 illus-
trates the process.  

A central element of the process is the base of empirical experiences related to the problem area. Each 
cycle of sub-problem definition, ideation, intervention, and evaluation feeds back to the empirical ex-
periences, which sheds new light on the problem area, potentially solving one sub-problem and reveal-
ing new ones. Each sub-project and participant within the lab have their own base of empirical experi-
ences related to their overall problem. Further, the design lab as a collaborative entity shares a com-
bined set of empirical experiences, built and shaped through the various meeting grounds, and formal-
ized in writings and interventions in the design-infrastructure. Experiences often result in new prob-
lems to be explored and addressed through organizational or artifact-oriented interventions. 

 

 
 

Figure 1.  The process of accumulating empirical experiences in the design lab 

 

5 Empirical Experiences and Findings 

In this section, I will briefly introduce some of the activities the DHIS2 design lab has been involved 
in the last year, and the learnings it has yielded. This represents some of the empirical experiences 
built through the approach of the lab. The experiences are related to the two levels of design; generic 
and implementation, where direct involvement in implementation-level design inform activities on the 
generic level which may result in interventions in the design-infrastructure. Vice versa, the learnings 
through activities on the generic level shapes our involvement in the implementations. Two overall 
implementation projects are first introduced before some of the design infrastructure-related interven-
tions are described.  

5.1 Key projects 

The HISP India group has been our main implementation-level ‘partner’ which we have been working 
with during this period. The HISP India group consists of about 40 software developers and imple-
menters with thorough competence and experience with implementing the DHIS2 software. Their 
main office is located in Noida, outside of New Delhi, and they are engaged in a variety of implemen-
tation projects, both in India and neighboring countries. Most of these revolve around the implementa-
tion and maintenance of the DHIS2 software within public and private health organizations. 
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5.1.1 The UPHMIS project 

One of the large projects of HISP India is the implementation and continuous maintenance of the state-
wide routine health data reporting system named ‘the UPHMIS portal’ in Uttar Pradesh. A state with 
an estimated population of over 200 million. The portal is based on the DHIS2 software and has been 
implemented over the last four years. I got involved in the project as usability and user experience 
have become an explicit goal of the current phase of the project. This has been motivated by a variety 
of usability problems related to the UI-design of the portal, reported by end-users and managers, mak-
ing the system hard to learn and use. As expressed by a technical project manager in the state; “we 
train the same users over and over on the same aspects”. This resonated well with my research focus, 
and it was agreed that I would participate in the process of addressing these usability-related problems 
together with the ‘UPHMIS-team’ within HISP India. The process started with a diagnostic phase 
where we together discussed the problems in detail, and how these could be addressed in the DHIS2 
software. It quickly became apparent that the usability problems were hard to address on the level of 
implementation due to the limited ability to shape the generic user interfaces of DHIS2 according to 
local needs. Through rounds of discussions, we developed a preliminary plan for how to approach 
eight key usability problems related to user interfaces, including inappropriate terminologies, incon-
sistent design, and difficult navigation. Further, a more fundamental problem of informing design de-
cisions based on end-users’ practices and needs was articulated. A period with contractual negotiations 
between HISP India and the implementing organization followed. Meanwhile, I engaged a set of four 
master students at the University of Oslo, where each was assigned one or two problems of focus. Two 
visits to India followed, where the master students spent one month together with HISP India to ex-
plore their respective problems together. The process unfolded as several rounds of discussions with 
implementers, client managers, and end-users, and ideas for technical solutions were explored. The 
process is ongoing, and the students are collaborating with HISP India while being in Norway. A 
longer trip to India is planned in the fall. In these processes, several sub-problems are continuously 
defined which we return to after a brief introduction of the second implementation project.   

5.1.2 The AMR project 

During my engagement with HISP India on the UPHMIS project, a new project was taken on by the 
HISP India team, where the DHIS2 software will be implemented as an antimicrobial resistance 
(AMR) reporting system. Initially for a set of large hospitals in Delhi, but the plan is to scale to sup-
port the whole country, and also support data reporting and use in domains other than health such as 
agriculture and veterinary. From the start, a prominent goal has been to develop what many project-
actors refer to as a ‘user-friendly’ system. The case is highly relevant to the lab’s focus on usability as 
the generic DHIS2 here will meet a highly generic implementation case, including several organiza-
tions and domains. Further, the initial hospitals already have a reporting system that has been designed 
in close collaboration with end-users within the hospitals, and which is regarded as highly usable. Due 
to the software’s limited ability to scale, DHIS2 is seen as a better candidate when moving forward, 
but its generic nature could potentially make the new system less usable than the existing. Two master 
students and formal members of the design lab are working closely with HISP India on design and 
development.  

5.2 Generic-level involvement 

While being deeply involved in the ongoing implementation projects, the master students and I repre-
sent the formal participants of the DHIS2 design lab. Through frequent discussions of empirical expe-
riences, problems, ideas, and evaluations of interventions we try to generalize our findings to 1) dis-
cuss how to best approach problems within the implementations, and 2) to inform interventions on the 
generic level by strengthening the design infrastructure. Three concrete examples here follow:  
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5.2.1 The design system and the ‘drag-and-drop’ design-environment 

Experiences from our collaboration with HISP India showed that a major obstacle to achieving usabil-
ity was the limited design-flexibility in the DHIS2 software. In addition to configuration features, the 
DHIS2 allows for the development of third-party apps with significant design-flexibility. This does, 
however, require substantial time, resources and competence, and implementers thus tend to avoid 
this. A significant concern in the lab is now to create resources that will lower the hurdle of creating 
such third-party apps. One concrete intervention is a “design system," a library of UI components, 
which quickly can be combined and rearranged to speed up the process of development during imple-
mentation. The intervention is informed by existing research on end-user development and compo-
nent-based tailorability (e.g., Wulf, Pipek, & Won, 2008). By creating sets of standardized compo-
nents, the approach is also relevant as a solution to the issue of design consistency within the UPHMIS 
project. Thus, the master student working with the design-system is using learnings from problem-
solving within the UPHMIS project in developing the design-system to be part of the design-
infrastructure. Further, one master student in the AMR-project utilizes and extends the design-system 
while designing and developing user interfaces within the implementation. Activities and interventions 
on the level of implementation are thus linked to interventions on the generic level, experiences from 
each informing the other.  

Based on the same problem of design-flexibility versus ease of development and the experiences and 
interventions on the design-system, a new master student has recently started exploring how the com-
ponent library can be used together with modern JavaScript-frameworks to create a drag-and-drop user 
interface design-environment for data entry applications. The new addition to the design-infrastructure 
has the potential of lowering the hurdle associated with app development significantly. The example 
illustrates how the evolving base of empirical experiences give rise to new sub-problems and ideas for 
interventions, which are taken on as new design-challenges by the participants in the lab.  

5.2.2 Dashboard widgets 

In a similar multi-level fashion, a master student engaged in the UPHMIS-project is exploring how so-
called ‘dashboard widgets’ can make the portal easier to navigate and make relevant and useful infor-
mation more visible to groups of end-users. The ‘DHIS2 dashboard’ provides a space where end-users 
or implementation-level designers on their behalf can add shortcuts and maps, graphs, and tables of 
the information most relevant to their work. The ‘widget’ functionality affords the design of more cus-
tom dashboard components using JavaScript and HTML. The dashboard widgets thus provide a flexi-
ble space to meet end-user needs on the level of implementation. The design-space is explored by de-
signing widgets based on different groups of users of the UPHMIS portal by applying different meth-
ods and techniques to learn about their practices and needs. The learnings are, in turn, discussed in the 
design lab to inform documentation and best-practices in the design-infrastructure to make the widget 
functionality more usable to implementation-level designers in other projects. Problem definitions, 
ideation, and interventions are informed by several strands of research, such as ‘meta-design’ (Fischer, 
Fogli, & Piccinno, 2017), scenario-based design (Rosson & Carroll, 2009), and ‘participatory custom-
ization’ (Kimaro & Titlestad, 2008). The learnings will also be used in our involvement in the AMR 
project, where dashboard widgets are planned to play a major role in making the system ‘user-
friendly’.  

5.2.3 Design methods and institutional arrangements supporting design-processes 

What we learn in terms of process is a major aspect of the lab. This includes the approach we are ex-
ploring in the AMR-project, where we attempt to address usability through activity-specific apps, 
which we coin as platform appliances with varying degrees of contextual genericness (Li, 2019a). 
This involves methods for understanding end-users’ activities, to mirror these within the technology. 
Further, one master student focuses on concrete methods and techniques that are suitable for investi-
gating users’ practices and needs in the UPHMIS-project. Her findings feed into our overall experi-
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ences, which over time will be used to formulate suggested implementation methods for DHIS2, added 
to the design-infrastructure as learning resources and advice for best practice.  

6 Discussion 

The aim of this paper is to conceptualize the activities of the DHIS2 design lab as a generic software 
design lab, and how the approach relates to the aim of addressing usability and local relevance of ge-
neric enterprise software and to outline its characteristics as a research-driven intervention-based ap-
proach. While the structure and process of the lab has been outlined in chapter 4, and concrete activi-
ties exemplified in chapter 5, this chapter will discuss the lab’s role in addressing usability and local 
relevance, directly related to the research question put forth in the introduction. Also, five key charac-
teristics of the approach are summarized.   

The overall goal of the DHIS2 design lab is to strengthen the usability and local relevance of the ge-
neric software DHIS2 for end-users, while systematically analyzing our activities and results to con-
tribute to research. It has similarities to other ‘design lab’ approaches such as Bødker & Buur’s (2002) 
design collaboratorium, and the Design:Lab of Binder & Brandt (2008) where the aim is to design for 
usability throughout design processes rather than limited to summative evaluations. However, the 
DHIS2 design lab differs by being concerned and involved with design on two levels. While the main 
targeted beneficiaries of focus are end-users through more usable user interfaces and locally relevant 
features in the technology of their workplace, a major part of our work concerns ‘design for design’, or 
‘meta-design’ (Ehn, 2008; Li & Nielsen, 2019b). That is, to provide a usable socio-technical design 
infrastructure to the implementers of the software, with the rationale that this will increase their ability 
to localize the software towards the needs within the use-case at hand. The lab thus attempts to facili-
tate the ‘joint effort’ we and others have earlier argued to be required to address usability in generic 
software (Dittrich, 2014; Li & Nielsen, 2019b), and to better support design within a process of ‘con-
figuration by construction’ (Sommerville, 2008) or ‘deferred design’ (Dittrich, 2014). In contrast to 
generification as a process of aligning use-requirements from different organizations discussed in prior 
research on generic software (Gizaw et al., 2017; Pollock & Williams, 2009), the generification pro-
cess of the design lab is aimed at requirements for implementation-level design. Concretely, the learn-
ings within the lab thus far have concerned three major aspects, highly relevant to the problems out-
lined and discussed by related literature: 
1. Exploring and strengthening the material design-space or localization features of generic software. 

That is, the configuration, customization, and extension-features utilized during implementation 
(Li, 2019b; David Martin et al., 2007; Sestoft & Vaucouleur, 2008; Sommerville, 2008), while 
limiting their negative impact on software maintenance and making them sensitive to time and re-
source constraints (Light, 2001; Pollock & Cornford, 2002).   

2. Exploring and defining appropriate implementation-level design methods, where main aspects 
include techniques that are sensitive to the social, cultural and economic nature of implementation 
projects, and the alignment between methods and the design-space of the generic software (Baxter 
& Sommerville, 2011; Dittrich et al., 2009).  

3. Establishing facilitating institutional arrangements where these methods can take place within im-
plementation projects, (Pries-Heje & Dittrich, 2009), and also how to facilitate the ‘joint effort’ 
spanning implementation and generic-level design to strengthen the design infrastructure of the 
software (experiences from the organizing of the design lab itself) (Dittrich, 2014; Pollock & Wil-
liams, 2008) 

In the process of understanding and addressing these issues, knowledge is accumulating within each 
lab-participant’s base of empirical experiences, the labs collective base, the informal participants' 
knowledge, and in the design-infrastructure of the software. Formalized knowledge, related to a class 
of problems within the abstract domain is, in turn, contributing to research. The research and design 
processes for the overall lab, participants own projects, and sub-problems within the different levels 
can be described as cycles of the process presented in section 3.4. The lab is thus part of three dynamic 
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environments and seeks to learn from and contribute to all. First, it works as an engine to learn from 
attempts to address functional and non-functional misfits (Strong & Volkoff, 2010), usability design 
obstacles (Li, 2019b) and experimental interventions within the implementation-level design process-
es. Second, learnings inform the engagement in the generic-level design, much through interventions 
in the design-infrastructure. By utilizing these resources, and through the knowledge and ideas of the 
lab’s participants, generic-level learnings feed into the activities on the level of implementation. Third, 
theory and research inform the whole process on both levels from methods, problem definitions, inter-
ventions, and evaluations, and the empirical experiences from both levels of intervention are analyzed, 
conceptualized, and reported as research. Figure 2 summarizes these environments and their relation to 
the lab.  

 

 
 

Figure 2.  The Generic Software Design Lab ‘DHIS2 design lab’ as engaged in three dynamic 
environments 

 

As a summary, the generic software design lab has five core characteristics. First, it is part of three 
dynamic environments. The lab is involved in and seeks to contribute to both generic and implementa-
tion-level design, and is driven by and contributing to related theory and research. Second, the accu-
mulation of empirical experiences is central. Empirical experiences related to a problem is accumulat-
ing based on cycles of investigation, ideation, intervention, and evaluation. The lab represents a shared 
collective of empirical experiences conveyed through various meeting grounds. Third, accumulation 
happens through problem-driven, recursive, and interrelated cycles of intervention. As empirical expe-
riences evolve, problems are continually reformulated. Each sub-problem gives rise to sub-cycles that 
feed into the empirical experiences. Cycles may be interrelated across problems, formal participants, 
and generic and implementation-level design. The lab learns through participation and interventions 
within generic and implementation-level design. Interventions include all researcher’s actions that 
have noteworthy effects on how things play out in process and result related to the problem(s) of fo-
cus. Fourth, the activities revolve around the design infrastructure. Cycles are often either based on 
utilization of the current design-infrastructure or making interventions in it. Utilization and interven-
tion are mutually informing each other. Finally, while the lab’s aim is to drive problem-focused and 
research-driven investigations and interventions, it is also an intervention in its own right by being 
established within the organization of study. Contributions to research thus relate both to the interven-
tions unfolding within the lab, and learnings from organizing the lab itself (e.g., this paper). 
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7 Conclusion 

Based on initial experiences from an ongoing Action Design Research project, this paper has concep-
tualized a generic software design lab as an approach to address usability and local relevance for end-
users in a generic packaged enterprise software. Designing for usability and local relevant features in 
generic software is difficult, due to its multi-contextual scope of implementation, and addressing usa-
bility during implementation-level design require a usable design-infrastructure to support the locali-
zation of the software towards local needs. The design lab attempts to strengthen implementation-level 
design through interventions in the design infrastructure. The process we follow entails four major 
elements; accumulation of empirical experiences; problem definition; investigation, ideation & inter-
vention; and evaluation. A central element is the accumulated base of empirical experiences, which 
provides a basis for continuous cycles that further extends the empirical experiences, and feed into 
interventions in the design-infrastructure of the software. The role of the lab is to work as an engine 
for understanding opportunities and obstacles within the implementation-level design, to strengthen 
the design-infrastructure accordingly while contributing to research and theory.  

The approach presented is based on the preliminary experiences of establishing the DHIS2 design lab, 
involvement in two major implementation-level projects, and about four more or less concrete design-
infrastructure interventions the last year. Its further evolution will yield more extensive learnings that 
can help to build the conceptualization of the approach further, possibly including the development of 
design-principles regarding both the lab as approach, and concrete design infrastructure interventions. 
However, the preliminary experiences presented in this paper may serve as valuable input for re-
searchers and practitioners concerned with generic software design. For researchers, the paper pro-
vides interesting experiences on how to investigate and explore methods and techniques for the design 
of and around generic software. For practitioners, the approach and experiences are relevant to manag-
ers and designers engaged in generic software development either at the generic or implementation 
level of design.  
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