
28TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2019 TOULON, FRANCE)

Marrying Big Data with Smart Data in Sensor Stream Processing

Paula-Georgiana Zalhan

Babeș-Bolyai University of Cluj-Napoca

Cluj-Napoca, Romania paula.zalhan@econ.ubbcluj.ro

Gheorghe Cosmin Silaghi

Babeș-Bolyai University of Cluj-Napoca

Cluj-Napoca, Romania gheorghe.silaghi@econ.ubbcluj.ro

Robert Andrei Buchmann

Babeș-Bolyai University of Cluj-Napoca

Cluj-Napoca, Romania robert.buchmann@econ.ubbcluj.ro

Abstract

Widespread deployments of spatially distributed sensors are continuously generating data

that require advanced analytical processing and interpretation by machines. Devising

machine-interpretable descriptions of sensor data is a key issue in building a semantic

stream processing engine. This paper proposes a semantic sensor stream processing

pipeline using Apache Kafka to publish and subscribe semantic data streams in a scalable

way. We use the Kafka Consumer API to annotate the sensor data using the Semantic

Sensor Network ontology, then store the annotated output in an RDF triplestore for further

reasoning or semantic integration with legacy information systems. We follow a Design

Science approach addressing a Smart Airport scenario with geolocated audio sensors to

evaluate the viability of the proposed pipeline under various Kafka-based configurations.

Our experimental evaluations show that the multi-broker Kafka cluster setup supports read

scalability thus facilitating the parallelization of the semantic enrichment of the sensor data.

Keywords: Semantic Stream Processing, Sensor data, Apache Kafka, Semantic Sensor

Network ontology.

1. Introduction

Although Big Data has been the dominant buzzword in recent years, its research streams

are gradually converging with those focusing on data quality and semantic enrichment,

typically relying on graph databases with reasoning support - also marketed as "Smart

Data" to suggest complementarity to "Big Data". Indeed, numerous events during 2018

branded this year as "the Year of the Graph" [28, 42] while white papers such as Bloor

reports regard graph databases as the "fastest growing sector in the database market" [21].

This technological hype is not limited to rethinking traditional data models; it also

drives the concept of a "semantic layer" over Big Data and enterprise information [8]. This

raises a key requirement for Information Systems development to marry quantity-driven

with quality-driven techniques in streamlined architectures. Sensor stream processing

provides relevant application cases for this requirement and is under the scrutiny of our

work. This paper is part of a larger effort addressing research challenges that derive from

this convergence, approached through the methodological lens of Design Science [43].

The motivating design problem context is to support a Smart Airport with automatic

speech and sound recognition - i.e., to detect suspicious sonorous manifestations with the

help of geolocated audio sensors distributed across the airport premises. We are currently

focusing in setting up the architectural core that streamlines the sensor data collection,

semantic annotation and reasoning with the help of a tool pipeline that includes: the Apache

Kafka distributed streaming platform [2], the GraphDB semantic database server [20] and

the Semantic Sensor Network (SSN) ontology [39]. We position our work in the larger

ZALHAN ET AL. MARRYING BIG DATA WITH SMART DATA...

paradigm of edge computing, as we are trying to assess the viability of the semantic sensor

stream processing pipeline.

One key resource of this work is the SSN ontology (plus auxiliary terms from other

vocabularies) - we employ it to annotate sensor data input in order to further subject it to

linking and semantic processing (e.g., semantic queries, reasoning and integration).

Knowledge representation frameworks such as RDF [36] facilitate a semantic layer that

can help with the sensor-driven automation of decision making and incident management.

Our goal is to facilitate the sensor data analysis by providing a novel semantic stream

processing pipeline which includes data collection, semantic annotation, RDF data storage

and query processing. This implies more granular tasks such as:

 To collect sensor data that comes from heterogeneous and dynamic sources;

 To distribute the processing of incoming data using parallel processing;

 To annotate the sensor data stream using the SSN ontology in order to enable the

detection of certain patterns via reasoning and to achieve semantic interoperability

with information systems that rely on the processed streams.

The structure of the paper is as follows: Section 2 comments on previous works related

to semantic processing of data streams. In Section 3 we describe the used methodology.

Section 4 presents the proposed semantic stream processing pipeline. Section 5 presents a

use case scenario for the proposed system. In Section 6 we discuss experimental results

regarding the performance of the system. Section 7 concludes the paper and provides an

outlook to future work.

2. Related works

The data streams generated in Internet of Things (IoT) environments introduced several

challenges related to their heterogeneous and highly dynamic nature. This opened a new

research trend in the Semantic Web community, called RDF Stream Processing (RSP) or

Linked Data Stream Processing [25], dealing with dynamically changing data that can be

modelled by means of the RDF model. In the last decade, RSP engines have been built to

model data streams using RDF and to apply continuous SPARQL query processing over

the resulted RDF streams. Centralized RSP systems like C-SPARQL [7], CQELS [24], and

SPARQLstream [12] allow querying RDF streams using extensions of SPARQL [41]. Due to

the fact that these RSP engines provide different semantics, efforts are being spent towards

a unifying and comprehensive query model that generalizes solutions such as C-SPARQL

and CQELS. A unifying query model is proposed in [15] that formally defines the

semantics of a RSP system using a SPARQL-extended query language called RSP-QL.

However, these RSP systems are not capable of handling massive amounts of data streams,

as they do not benefit from task parallelism and the scalability offered by a cluster

computing infrastructure. To remedy these limitations and improve the performance of

existing RSP systems, distributed RDF streaming systems were designed to enable

concurrent queries over the incoming data. For example, the CQELS Cloud system [26]

uses Apache Storm [5]; Strider [37] uses Apache Spark [4] to parallelize the continuous

execution of queries over RDF data streams in the Cloud.

Several middleware solutions were proposed to transform unstructured streaming data

into RDF streams reusing the Semantic Web tools stack. For example, the DataTurbine

engine introduced in [18] is a streaming data middleware delivering data from sensors to

the Data Center for later analysis following publish-subscribe model. In [27] a Linked

Stream Middleware (LSM) platform transforms raw sensory data into RDF streams using

W3C’s Semantic Sensor Networks Incubator Group (SSN-XG) [40] ontology. The LSM

system uses the RabbitMQ [34] publish-subscribe messaging platform as Message Bus and

Virtuoso [32] as triple storage. Another middleware solution called Ztreamy [17] has been

developed for large scale publishing of semantically annotated data streams on the Web.

A recent framework called SEASOR [30] includes features from both centralized and

distributed RSP engines providing semantic annotation of the summarized sensor data

streams using the SSN ontology.

Our proposed solution for semantic processing of sensor data uses another distributed

ISD2019 FRANCE

messaging system called Apache Kafka, because it has better throughput, built-in

partitioning for parallel data consumption than most messaging system have, which makes

it suitable to build low-latency processing pipelines. Another aspect that differentiates our

solution from other existing middleware solutions is the combined approach for semantic

annotation mixing the SSN ontology with other vocabularies (e.g., Schema.org [38]).

Moreover, the resulting sensor data graph is semantically integrated with the legacy

database to support the development of a Hybrid Semantic System for Incident

Management.

Stream Reasoning [16] started to take off in the research community in order to extend

traditional stream processing engines with logical, rule-based capabilities. For example,

LARS framework was proposed by [8] to formally express and analyze rich stream

reasoning primitives under Answer Set Programming foundations. Another system called

Streaming MASSIF [10] that uses Cascade Reasoning approach was introduced to perform

expressive reasoning and complex event processing over large amounts of heterogeneous

IoT data. Also, a similar approach based on stream reasoning models and techniques to

process semantically-enriched data streams for supporting decision making in a Smart City

was discussed in [14]. A similar effort is highlighted in [13] where authors focus on

supervised stream learning from semantics of live traffic data using Description Logic

reasoning.

3. Methodology

We are following the iterative treatment development cycle of Design Science, currently

focusing on the core mechanisms and architecture that, at the stage hereby reported

(Technological Readiness Level of 3), is deployed under laboratory conditions – therefore

reported experiments will focus on relative system performance of the core pipeline.

The motivating application case raises a requirement to automate reasoning upon

sensor data collected from a smart airport, enabled by a semantic layer that integrates

sensor descriptions over the legacy Information System of the airport. Benefits can include

prevention of critical events, a more efficient management of crowds and responsiveness

to incidents. We aim to generalize this problem to a methodology and architecture for

deploying semantic edge computing in problems specific to the management of natural

disasters emergency interventions. The current paper focuses on the distributed semantic

annotation pipeline that will become the foundation for the reasoning and decision-making

components. Some early stage reasoning use cases will also be suggested.

4. Solution Overview: a Semantic Stream Processing Pipeline

Implementing an effective semantic stream processing pipeline architecture requires to

address several aspects including data generation, stream processing, data storage and

analysis. The main components of the proposed Semantic Stream Processing (SSP)

pipeline are presented in Figure 1. This pipeline is based on Apache Kafka to collect and

process the streaming data, GraphDB to store the annotated data streams and the SPARQL

query language to analyze the resulting graph. In the remainder of this section, we briefly

explain each of these components.

Data streams can be obtained from various sensor sources such as temperature, traffic,

and location sensors. We focus on geolocated audio sensors to support a Smart Airport

scenario (the future works section will also suggest a generalization opportunity reflected

in the annotation schema).

The continuous sensor data gathered from heterogeneous data sources is collected and

processed by a distributed data ingestion system for later semantic integration. Multiple

tools can be used as data ingestion systems in a stream processing system: Apache Kafka,

Apache Nifi [3], and Apache Flume [1]. In the current project, Apache Kafka is employed

due to its characteristics that make it suitable to handle large-scale data - the biggest

benefits are the ability to scale the load as data is ingested into the system and the

replication mechanism guarding against data loss during system failures [29]. Kafka runs

ZALHAN ET AL. MARRYING BIG DATA WITH SMART DATA...

as a cluster which connects multiple message producers and message consumers to one or

more servers, called brokers. Internally, Kafka uses Apache Zookeeper [6] to store

metadata about the Kafka cluster, such as information about topics, brokers and consumers.

The overall distribution mechanism is based on the publisher-subscriber pattern offered

by Kafka core APIs. In our proposed SSP pipeline, the incoming data is collected and

published into "topics" using the Kafka Producer API. To provide machine-readable and

machine-interpretable descriptions of the ingested data, the Kafka Consumer API

subscribes to the existing topics and annotates the stream of records using semantic

technology, with a preferred frequency. The corresponding stream of records is turned into

Smart Data annotated with the SSN ontology. This ontology focuses on describing physical

sensor networks, such as sensors, observations that result from sensing, and deployments

in which sensors are used. Key concepts are sensor, observation, actuation and sampling,

concepts that were adopted from Sensor, Observation, Sample, and Actuator (SOSA)

ontology [22]. As a combination of all precursor sensor ontologies, SSN becomes a de

facto standard in semantic modelling of sensor data, information related to sensor

capabilities and sensor deployment configurations. The data stream values enriched by

semantics are persisted into a semantic graph database called GraphDB for reasoning, later

analysis or integration with a legacy information system (e.g., a notification system).

Fig. 1. Proposed semantic sensor stream processing pipeline

5. Scenario Setup and Design Decisions

The motivating context of our design problem is a Smart Airport infrastructure which

includes geolocated audio sensors connected to automatic speech recognition (ASR)

technology for the purpose of monitoring suspicious conversations of passengers to alert

security teams and invoke rapid actions in case critical patterns are detected. The speech

recognition component (extracting prominent word sequences uttered in a crowd) is out of

scope for this paper, as we focus on the semantic integration architecture and parallelization

of the semantic annotation effort. We use previous project [44] experience regarding the

building of an ASR system and the development of such a component is not in the scope

in this paper (available voice services are being investigated).

To simulate the data streaming from the geolocated audio sensors deployed in a smart

airport, we used Producer and Consumer APIs that support custom implementations to

write and read streams of data in the Kafka cluster. We have created producer tasks that

send JSON messages to the Kafka cluster, published into the AudioSpeech topic which

contains data-streams from the audio sensor. The stream of records from this topic has the

following core schema:

 sensor_id: UUID,

 sensor_type: String in audio sensor,

 station_no: int,

 event_value: String,

 event_time: Timestamp.

ISD2019 FRANCE

The sensor_id field represents the Universal Unique Identifier (UUID) to uniquely

identify the deployed audio sensors from the smart airport ecosystem. Raspberry Pi stations

identified by a specific station_no are deployed at each airport floor and host several audio

sensors. The event_value field of the AudioSpeech topic contains information related to

the sound level of the uttered sentence of a specific passenger and the output of the ASR

system. The stream of records from the AudioSpeech topic are published with timestamps

marking the time when the acoustic data captured by the microphone has been processed

and transformed into sentences by the ASR system.

To process the produced stream of records that were previously published, we have

created consumer tasks that subscribe to the AudioSpeech topic, read the published stream

record, annotate the raw sensor data from the stream of records using a schema derived

from the SSN ontology and, lastly, store the resulting RDF descriptions into the semantic

database. With SSN, we provide descriptions regarding to individual sensing devices, the

relationship with their corresponding platform, their observation values and implied

procedures, features of interest, and properties that were observed.

Fig. 2. Description of an audio sensor observation

The semantic model of a raw audio sensor stream originally written in JSON format is

shown in Figure 2. The observation value gathered from the AS23 audio sensor is stored

in the event_value field and comprises the following information in this order: the sound

level measured in decibels, the identifier of the spoken utterance, and the sequence of

words uttered by a passenger at a specific time in the airport. In the corresponding

annotated data stream, we describe the observation made by an audio sensor and explicitly

link the property being analyzed (the acoustic data) with the feature of interest (the airport

sector where the audio observation was made). Due to the fact that some aspects such as

detailed measure feature and units [23], are not tackled by the existing SSN ontology, we

construct the RDF statements by hybridizing the SSN ontology with other schemas such

as geospatial vocabularies - GeoSPARQL [19] - to model the location of the sensors in

airport, and the Quantities, Units, Dimensions and Data Types Ontology (QUDT) [33] to

model quantitative measurements. The resulted RDF descriptions are published into

GraphDB for later analysis and querying.

Once the annotated data streams are persisted in the triplestore, we apply SPARQL-

based reasoning to categorize the audio sensor observations into four main classes:

LowerCritical, LowerNonCritical, UpperNonCritical and UpperCritical based on the

sound level expressed in decibels and stored in the audio sensor observation result. In this

way, we specify the severity ranges of audio sensor values in order to take rapid actions in

case of abnormal operating conditions of the system.

In the following query we generate RDF statements by defining a rule according to

which if the result value of an observation exceeds a specified threshold then the sensor

observation is considered critical. We describe a rule-based query where all the observation

results that contain a sound level value between 110 and 170 decibels are upper critical

observations. This can be extended to rules that consider the presence of certain keywords

ZALHAN ET AL. MARRYING BIG DATA WITH SMART DATA...

in the spoken utterance strings, or more advanced text processing rules based on

GraphDB's full text indexing (Lucene) features.

insert

{

 ?observation a :UpperCritical

}

where

{

 ?observation sosa:hasResult/qudt-1-1:numericValue ?value

 filter ((?value > 110) && (?value < 170))

}

To find the latitude and longitude coordinates of a deployed audio sensor that captured

a specific sentence of words of a passenger, we query the existing RDF database by

following the chain of properties from the specific sentence to the value of the location

coordinates as it can be seen in the second query. This query can be useful to detect the

place where a suspicious sentence was uttered or an abnormal sound with increased decibel

level (such as the sound of a gunshot) has sensed.

select ?coordinates

where

{

 :WordSequence12 sosa:madeBySensor/geo:hasGeometry/geo:asWKT ?

}

 Figure 3 indicates the path of chaining properties for a more complex query where the

system notifies the security operators responsible with the sector where a critical

observation was made by sending them a message on their telephone.

Fig. 3. Complex query to alert the security operator if a critical observation was sensed

In order to accomplish our goal we use the airport legacy information system that stores

information about the employees and their working areas. We semantically lift this

ISD2019 FRANCE

traditional database to connect it with the graph that describes the sensor data - in this

transformation process we use some classes and properties from different vocabularies:

"s:EmployeeRole" class provided by the Schema.org [38] vocabulary to specify employee

relationships or the "s:telephone" property to store the telephone number of a specific

security operator. We also use the "rdfs:member" super-property of the RDF Schema [35]

vocabulary to specify various membership relations (the membership of security operator

instances to a team, or the decomposition of an airport terminal into sectors).

Geolocation information is also attached to the audio sensor descriptions for the

purpose of future generalization (we plan to also transfer the proposal to generalized

emergency interventions for natural disasters, where the granularity of geocoordinates and

dynamic location sensors will become relevant for reasoning based on the GeoSPARQL

standard).

6. Performance Evaluation and Results

The performance of the deployed SSP pipeline depends heavily on the software and

hardware settings. Hence, several tests were conducted to investigate how the system

performs with different configuration settings. All the tests were carried out on an Ubuntu

16.04.4 LTS x64-based PC with Intel(R) Core(TM) i7-7500U processor, 2.70 GHz CPU,

8 GB of RAM with Java version 1.8 and Java HotSpot(TM) 64-Bit Server VM. Confluent

streaming platform version 4.0.0 was deployed with Apache Kafka version 1.0.0 and

Apache Zookeeper version 3.4.10, which were the latest versions available at the time of

building the SSP system. For RDF parsing of the JSON streams was used RDFLlib 4.2.2

package with SPARQL 1.1 implementation. To store the annotated streams the GraphDB

8.7 version was used.

6.1. Experiment design

In this section, we describe the Kafka configuration setup of the proposed SSP system. To

meet the requirements of a real-time stream processing, the SSP system considers a sliding

window to process the continuous sensor data. The window was defined to maintain a

limited number of annotated streams into the triplestore. We evaluate the performance of

the system by conducting two different Kafka-based scenarios. The following

configurations were set up to decide which the most suitable Kafka-based scenario is for

achieving the semantic modelling task.

 Kafka configuration 1: This is the minimum configuration consisting of a single

node, with one Zookeeper instance and one broker instance, as it can be seen in

Figure 4 (a). In this scenario, multiple simulated producers send data streams to the

unique broker, which can handle thousands of incoming data seamlessly. These

data streams are written to AudioSpeech topic that contains stream of records

generated from audio sensors. We created this Kafka topic with a single partition

and one replica factor. There is one consumer per topic that processes the data

streams previously published.

 Kafka configuration 2: The Kafka cluster configuration consists of a single node

with multiple brokers, managed by a single instance of Zookeeper, as it can be seen

in Figure 4 (b). To balance the incoming load, the topic is broken down into

multiple partitions containing sequences of messages that will be delivered

asynchronously to the consumers to ensure parallelism. The consumer instances

are grouped into consumer groups, one for each topic. In this configuration setup,

the multi-subscriber topics may have zero, one, or multiple consumer instances

who can access the data written to them.

In both scenarios, the producers run in their own thread and simultaneously publish

data streams to the Kafka topic during a specific period. The timing of the produced data

streams follows a Poisson process with a data rate that varies depending on the experiment.

The Kafka cluster retains all the published stream of records, without consideration of their

consumption. In all tests, a replication factor of one is used because the fault tolerance

ZALHAN ET AL. MARRYING BIG DATA WITH SMART DATA...

measurement is out of scope in this paper. These configurations of the Kafka cluster have

been tested to have not only an overview of the possibilities, the number of sensors sources

and the amount of data streams that the system can handle, but also to monitor the number

of RDF triples that the consumer instances generate over time.

Fig. 4. Different Kafka-cluster configurations

To this end, the first experiment consisted in testing how many producers could be

supported to write stream of records in one-broker versus multiple-brokers Kafka cluster

setup. Another test was considered to analyze the consumer capability of reading and

annotating the stream of data published to the Kafka cluster. Lastly, we evaluate the

multiple brokers’ Kafka-based cluster in terms of the number of generated RDF triples by

increasing the execution time of the consumer instances.

6.2. Result analysis

The results shown in this paper regarding the second Kafka configuration are based on a

three-broker Kafka cluster setup. We have varied the number of producers from 10 to 100

and measured the number of published and consumed messages in both Kafka-based

configurations, during an execution of 10 minutes time.

Fig. 5. The number of producers versus the number of published messages in both Kafka-based scenarios

We can see that in the chart of Figure 5 that the amount of published messages in a

Kafka cluster consisting of a unique node with one broker instance, drops sharply when

the number of producers increases from 80 to 100 producers, while the drop is smoother

from 20 to 70 producers. This is caused by the limited network capacity and server write

throughput of a single broker Kafka-based setup. In contrast, in the second Kafka-based

ISD2019 FRANCE

scenario, the Kafka cluster manages to cope with ingesting high volumes of data by

distributing the write load over the three brokers.

Fig. 6. The number of producers versus the number of consumed messages in both Kafka cluster setups

Besides the low capability of writing the sensor data into the specific topic, the Kafka

cluster consisting of one node with one broker also has problems in consuming the

previously published data. As there is only one consumer instance, the number of

consumed and processed messages from the topic decreases starting with 70 producers. On

a single node with three-broker Kafka-based cluster, there are multiple consumer instances

(within the consumer group) that concurrently read the messages from the topic. The results

presented in the chart from Figure 6 reveal that increasing the number of consumers ensures

the parallelization of the semantic enrichment of the sensor data. The chart shows that

adding more consumers to read and annotate the data streams improves the processing task.

Fig. 7. The number of RDF triples versus the execution time in the multi-broker Kafka cluster setup

Figure 7 shows the performance of the proposed system by analyzing the number of

RDF triples generated over time by consumer instances on a single node, three-broker

Kafka cluster setup. We evaluate the system’s performance using the streams published by

80 and 90 producers, respectively. The number of resulted RDF triples varies from 0.064

to 0.423 million of triples when testing our system. We observe that increasing the

execution time from 10 to 50 minutes, the number of annotated data streams also increases.

7. Conclusions

This work at hand took a Design Science approach to develop a semantic pipeline for

sensor stream processing. Experiments focus on relative performance and their results

ZALHAN ET AL. MARRYING BIG DATA WITH SMART DATA...

show that the Kafka cluster consisting of multiple broker instances manages to cope with

an increasing number of sensors by supporting write and read scalability of the streams.

The concurrent reads of the data consumers also facilitates the parallelization of the

semantic enrichment of the sensor data. Additional criteria are under consideration as this

treatment iterates according to the DSR design and engineering cycle, having in mind the

complex tableau of criteria that was systematized by [31]. A current limitation is that the

reported experiments do not include the speech-to-text recognition effort, as this

component is not to be developed in our project but reused (such components will be the

subject to a comparison and selection process that was left out of this paper's scope).

Instead, the focus of our future work is to converge these ideas with the earlier results

of [11] where parts of the machine-readable semantics are extracted from diagrammatic

enterprise models. For this, a domain-specific modeling language (aligned with the SSN

ontology) is necessary to capture a structure and visual overview of the airport premises

and sensor network layout, thus facilitating decision support for business stakeholders

familiar with their enterprise architecture semantics.

Also, we aim to generalize the proposal beyond the current smart airport scenario - we

target emergency interventions and incident management during natural disasters, where

dynamic geolocation sensors become more relevant considering the coverage and

granularity of geocoordinates that can open additional opportunities for reasoning based

on geo-comparison functions (e.g., GeoSPARQL). Further experiments will try to identify

in such contexts where it is preferable to execute the semantic annotation in a high-

performance architecture for edge computing.

References

1. Apache Flume, https://ume.apache.org/. Accessed June 13, 2019

2. Apache Kafka, https://kafka.apache.org/. Accessed June 13, 2019

3. Apache Nifi, https://nifi.apache.org/. Accessed June 13, 2019

4. Apache Spark, https://spark.apache.org/. Accessed June 13, 2019

5. Apache Storm, storm.apache.org/. Accessed June 13, 2019

6. Apache Zookeeper, https://zookeeper.apache.org/. Accessed June 13, 2019

7. Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment for C-

SPARQL queries. In: Proceedings of the 13th International Conference on Extending

Database Technology, pp. 441-452. ACM (2010)

8. Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: LARS: A logic-based framework for

analyzing reasoning over streams. In: AAAI'15 Proceedings of the 29th AAAI

Conference on Artificial Intelligence, pp. 1431–1438, AAAI Press (2015)

9. Blumauer, A.: Introducing Graph-based Semantic Layers in Enterprises, https://semantic-

web.com/2016/08/15/introducing-a-graph-based-semantic-layer-in-enterprises/. Accessed

February 28, 2019

10. Bonte, P., Tommasini, R., Della Valle, E., De Turck, F., Ongenae, F.: Streaming

MASSIF: Cascading Reasoning for Efficient Processing of IoT Data Streams. Sensors.

18(11), 3832 (2018)

11. Buchmann, R.A., Karagiannis, D.: Domain-specific diagrammatic modelling : a source of

machine-readable semantics for the Internet of Things. Cluster Comput. 20(1), 895–908

(2017)

12. Calbimonte, J.-P., Corcho, O., Gray, A.J.: Enabling ontology-based access to streaming

data sources. In: Proceedings of the 9th International Semantic Web Conference, pp. 96-

111, Springer, Berlin, Heidelberg (2010)

13. Chen, J., Lécué, F., Pan, J. and Chen, H.: Learning from ontology streams with semantic

concept drift. In: Proceedings of 26th International Joint Conference on Artificial

Intelligence, pp. 957-963, Sierra C (2017)

14. D’Aniello, G., Gaeta, M., Orciuoli, F.: An approach based on semantic stream reasoning

to support decision processes in smart cities. Telematics and Informatics. 35(1), 68-81

(2018)

ISD2019 FRANCE

15. Dell'Aglio, D., Della Valle, E., Calbimonte, J.P., Corcho, O.: RSP-QL semantics: A

unifying query model to explain heterogeneity of RDF stream processing systems.

Semantic Web and Information Systems. 10(4), 17-44 (2014)

16. Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning: A

survey and outlook. Data Science. 1(1-2), 59-83 (2017)

17. Fisteus, J.A., García, N.F., Fernández, L.S., Fuentes-Lorenzo, D.: Ztreamy : A

middleware for publishing semantic streams on the Web. Web Semant. Sci. Serv. Agents

World Wide Web. 25(C), 16–23 (2014)

18. Fountain, T., Tilak, S., Shin, P., Nekrasov, M.: The open source dataturbine initiative:

empowering the scientific community with streaming data middleware. The Bulletin of

the Ecological Society of America 93(3), 242-252 (2012)

19. GeoSPARQL, https://www.opengeospatial.org/standards/geosparql. Accessed June 14,

2019

20. GraphDB, http://graphdb.ontotext.com/. Accessed June 13, 2019

21. Howard, P.: Graph and RDF Databases 2015, https://www.bloorresearch.com/research/

/graph-rdf-databases-2015/. Accessed June 13, 2019

22. Janowicz, K., Haller, A., Cox, S.J., Le Phuoc, D., Lefrançois, M.: SOSA: A lightweight

ontology for sensors, observations, samples, and actuators. J. of Web Semantics (2018)

23. Lai, C., Pintus, A., Serra, A.: Using the Web of Data in Semantic Sensor Networks. In:

Barolli, L., Terzo, O. (eds.) Complex, Intelligent, and Software Intensive Systems. CISIS

2017. Advances in Intelligent Systems and Computing, vol. 611, pp. 106-116. Springer,

Cham (2018)

24. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive

approach for unified processing of linked streams and linked data. In: Proceedings of 10th

International Semantic Web Conference, pp. 370-388. Springer, Berlin, Heidelberg

(2011)

25. Le-Phuoc, D., Xavier Parreira, J., Hauswirth, M.: Linked Stream Data Processing. In:

Eiter, T., Krennwallner, T. (eds.) Reasoning Web. Semantic Technologies for Advanced

Query Answering. Reasoning Web 2012, Lecture Notes in Computer Science, vol. 7487,

pp. 245-289, Springer, Berlin, Heidelberg (2012)

26. Le-Phuoc, D., Nguyen Mau Quoc, H., Le Van, C., Hauswirth, M.: Elastic and Scalable

Processing of Linked Stream Data in the Cloud. In: Alani H. et al. (eds.) The Semantic

Web-ISWC 2013. ISWC 2013. Lecture Notes in Computer Science, vol. 8218, pp. 280-

297, Springer, Berlin, Heidelberg (2013)

27. Le-Phuoc, D., Nguyen-Mau, H.Q., Parreira, J.X. and Hauswirth, M.: A middleware

framework for scalable management of linked streams. Web Semant. Sci. Serv. Agents

World Wide Web. 16(C), 42-51 (2012)

28. Linked Data Orchestration, https://linkeddataorchestration.com/the-year-of-the-graph/.

Accessed June 13, 2019

29. Narkhede, N., Shapira, G., Palino, T.: Kafka: The Definitive Guide: Real-time Data and

Stream Processing at Scale. O'Reilly Media, Inc., (2017)

30. Pacha, S., Ramalingam, S., Sethukarasi, R.: Semantic annotation of summarized sensor

data stream for effective query processing. J. Supercomput. 1-23 (2017)

31. Prat, N., Comyn-Wattiau, I., Akoka, J.: Artifact evaluation in information systems design

science research a holistic view. In: Proceedings of the 19th Pacific Asia Conference on

Information Systems (PACIS 2014), pp. 23. (2014)

32. OpenLink Virtuoso, https://virtuoso.openlinksw.com/. Accessed June 13, 2019

33. QUDT, http://www.qudt.org/. Accessed June 14, 2019

34. RabbitMQ, https://www.rabbitmq.com/. Accessed June 13, 2019

35. RDF Schema 1.1, https://www.w3.org/TR/rdf-schema/. Accessed June 14, 2019

36. Resource Description Framework (RDF), https://www.w3.org/RDF/. Accessed June 13,

2019

37. Ren, X., Cur, O.: Strider: A hybrid adaptive distributed RDF stream processing engine.

In: International Semantic Web Conference, pp. 559-576, Springer (2017)

38. Schema.org, https://schema.org/. Accessed June 13, 2019

ZALHAN ET AL. MARRYING BIG DATA WITH SMART DATA...

39. Semantic Sensor Network Ontology, https://www.w3.org/TR/vocab-ssn/. Accessed June

13, 2019

40. Semantic Sensor Network XG, http://www.w3.org/2005/Incubator/ssn/. Accessed June

13, 2019

41. SPARQL 1.1 Query Language, https://www.w3.org/TR/sparql11-query/. Accessed June

13, 2019\

42. Varangaonkar, A.: 2018 is the year of graph databases. Here's why.

https://hub.packtpub.com/2018-year-of-graph-databases/. Accessed June 13, 2019

43. Wieringa, R. J.: Design Science Methodology for Information Systems and Software

Engineering, Springer-Verlag, Berlin, Heidelberg (2014)

44. Zalhan, P. -G., Stan, A., Teodorescu, L.-R., Saupe, A.-B., Duma, M.: A Kaldi-based ASR

Solution for the Romanian Judicial System. In: Proceedings of the 15th International

Conference on Informatics in Economy (IE 2016) Education Research & Business

Technologies, 2016, pp. 191-197, Cluj-Napoca (2016)

