
28TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2019 TOULON, FRANCE)  

Marrying Big Data with Smart Data in Sensor Stream Processing 

Paula-Georgiana Zalhan 

Babeș-Bolyai University of Cluj-Napoca 

Cluj-Napoca, Romania paula.zalhan@econ.ubbcluj.ro  
 

Gheorghe Cosmin Silaghi 

Babeș-Bolyai University of Cluj-Napoca 

Cluj-Napoca, Romania gheorghe.silaghi@econ.ubbcluj.ro 
 

Robert Andrei Buchmann 

Babeș-Bolyai University of Cluj-Napoca 

Cluj-Napoca, Romania robert.buchmann@econ.ubbcluj.ro 
 

 

Abstract 

Widespread deployments of spatially distributed sensors are continuously generating data 

that require advanced analytical processing and interpretation by machines. Devising 

machine-interpretable descriptions of sensor data is a key issue in building a semantic 

stream processing engine. This paper proposes a semantic sensor stream processing 

pipeline using Apache Kafka to publish and subscribe semantic data streams in a scalable 

way. We use the Kafka Consumer API to annotate the sensor data using the Semantic 

Sensor Network ontology, then store the annotated output in an RDF triplestore for further 

reasoning or semantic integration with legacy information systems. We follow a Design 

Science approach addressing a Smart Airport scenario with geolocated audio sensors to 

evaluate the viability of the proposed pipeline under various Kafka-based configurations. 

Our experimental evaluations show that the multi-broker Kafka cluster setup supports read 

scalability thus facilitating the parallelization of the semantic enrichment of the sensor data.  

Keywords: Semantic Stream Processing, Sensor data, Apache Kafka, Semantic Sensor 

Network ontology. 

 

1. Introduction 

Although Big Data has been the dominant buzzword in recent years, its research streams 

are gradually converging with those focusing on data quality and semantic enrichment, 

typically relying on graph databases with reasoning support - also marketed as "Smart 

Data" to suggest complementarity to "Big Data". Indeed, numerous events during 2018 

branded this year as "the Year of the Graph" [28, 42] while white papers such as Bloor 

reports regard graph databases as the "fastest growing sector in the database market" [21]. 

This technological hype is not limited to rethinking traditional data models; it also 

drives the concept of a "semantic layer" over Big Data and enterprise information [8]. This 

raises a key requirement for Information Systems development to marry quantity-driven 

with quality-driven techniques in streamlined architectures. Sensor stream processing 

provides relevant application cases for this requirement and is under the scrutiny of our 

work. This paper is part of a larger effort addressing research challenges that derive from 

this convergence, approached through the methodological lens of Design Science [43]. 

The motivating design problem context is to support a Smart Airport with automatic 

speech and sound recognition - i.e., to detect suspicious sonorous manifestations with the 

help of geolocated audio sensors distributed across the airport premises. We are currently 

focusing in setting up the architectural core that streamlines the sensor data collection, 

semantic annotation and reasoning with the help of a tool pipeline that includes: the Apache 

Kafka distributed streaming platform [2], the GraphDB semantic database server [20] and 

the Semantic Sensor Network (SSN) ontology [39]. We position our work in the larger 
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paradigm of edge computing, as we are trying to assess the viability of the semantic sensor 

stream processing pipeline. 

One key resource of this work is the SSN ontology (plus auxiliary terms from other 

vocabularies) - we employ it to annotate sensor data input in order to further subject it to 

linking and semantic processing (e.g., semantic queries, reasoning and integration). 

Knowledge representation frameworks such as RDF [36] facilitate a semantic layer that 

can help with the sensor-driven automation of decision making and incident management. 

Our goal is to facilitate the sensor data analysis by providing a novel semantic stream 

processing pipeline which includes data collection, semantic annotation, RDF data storage 

and query processing. This implies more granular tasks such as: 

 To collect sensor data that comes from heterogeneous and dynamic sources; 

 To distribute the processing of incoming data using parallel processing; 

 To annotate the sensor data stream using the SSN ontology in order to enable the 

detection of certain patterns via reasoning and to achieve semantic interoperability 

with information systems that rely on the processed streams. 

The structure of the paper is as follows: Section 2 comments on previous works related 

to semantic processing of data streams. In Section 3 we describe the used methodology. 

Section 4 presents the proposed semantic stream processing pipeline. Section 5 presents a 

use case scenario for the proposed system. In Section 6 we discuss experimental results 

regarding the performance of the system. Section 7 concludes the paper and provides an 

outlook to future work. 

 

2. Related works 

The data streams generated in Internet of Things (IoT) environments introduced several 

challenges related to their heterogeneous and highly dynamic nature. This opened a new 

research trend in the Semantic Web community, called RDF Stream Processing (RSP) or 

Linked Data Stream Processing [25], dealing with dynamically changing data that can be 

modelled by means of the RDF model. In the last decade, RSP engines have been built to 

model data streams using RDF and to apply continuous SPARQL query processing over 

the resulted RDF streams. Centralized RSP systems like C-SPARQL [7], CQELS [24], and 

SPARQLstream [12] allow querying RDF streams using extensions of SPARQL [41]. Due to 

the fact that these RSP engines provide different semantics, efforts are being spent towards 

a unifying and comprehensive query model that generalizes solutions such as C-SPARQL 

and CQELS. A unifying query model is proposed in [15] that formally defines the 

semantics of a RSP system using a SPARQL-extended query language called RSP-QL. 

However, these RSP systems are not capable of handling massive amounts of data streams, 

as they do not benefit from task parallelism and the scalability offered by a cluster 

computing infrastructure. To remedy these limitations and improve the performance of 

existing RSP systems, distributed RDF streaming systems were designed to enable 

concurrent queries over the incoming data. For example, the CQELS Cloud system [26] 

uses Apache Storm [5]; Strider [37] uses Apache Spark [4] to parallelize the continuous 

execution of queries over RDF data streams in the Cloud. 

Several middleware solutions were proposed to transform unstructured streaming data 

into RDF streams reusing the Semantic Web tools stack. For example, the DataTurbine 

engine introduced in [18] is a streaming data middleware delivering data from sensors to 

the Data Center for later analysis following publish-subscribe model. In [27] a Linked 

Stream Middleware (LSM) platform transforms raw sensory data into RDF streams using 

W3C’s Semantic Sensor Networks Incubator Group (SSN-XG) [40] ontology. The LSM 

system uses the RabbitMQ [34] publish-subscribe messaging platform as Message Bus and 

Virtuoso [32] as triple storage. Another middleware solution called Ztreamy [17] has been 

developed for large scale publishing of semantically annotated data streams on the Web. 

A recent framework called SEASOR [30] includes features from both centralized and 

distributed RSP engines providing semantic annotation of the summarized sensor data 

streams using the SSN ontology.  

Our proposed solution for semantic processing of sensor data uses another distributed 
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messaging system called Apache Kafka, because it has better throughput, built-in 

partitioning for parallel data consumption than most messaging system have, which makes 

it suitable to build low-latency processing pipelines. Another aspect that differentiates our 

solution from other existing middleware solutions is the combined approach for semantic 

annotation mixing the SSN ontology with other vocabularies (e.g., Schema.org [38]). 

Moreover, the resulting sensor data graph is semantically integrated with the legacy 

database to support the development of a Hybrid Semantic System for Incident 

Management. 

Stream Reasoning [16] started to take off in the research community in order to extend 

traditional stream processing engines with logical, rule-based capabilities. For example, 

LARS framework was proposed by [8] to formally express and analyze rich stream 

reasoning primitives under Answer Set Programming foundations. Another system called 

Streaming MASSIF [10] that uses Cascade Reasoning approach was introduced to perform 

expressive reasoning and complex event processing over large amounts of heterogeneous 

IoT data. Also, a similar approach based on stream reasoning models and techniques to 

process semantically-enriched data streams for supporting decision making in a Smart City 

was discussed in [14]. A similar effort is highlighted in [13] where authors focus on 

supervised stream learning from semantics of live traffic data using Description Logic 

reasoning. 

 

3. Methodology 

We are following the iterative treatment development cycle of Design Science, currently 

focusing on the core mechanisms and architecture that, at the stage hereby reported 

(Technological Readiness Level of 3), is deployed under laboratory conditions – therefore 

reported experiments will focus on relative system performance of the core pipeline.  

The motivating application case raises a requirement to automate reasoning upon 

sensor data collected from a smart airport, enabled by a semantic layer that integrates 

sensor descriptions over the legacy Information System of the airport. Benefits can include 

prevention of critical events, a more efficient management of crowds and responsiveness 

to incidents. We aim to generalize this problem to a methodology and architecture for 

deploying semantic edge computing in problems specific to the management of natural 

disasters emergency interventions. The current paper focuses on the distributed semantic 

annotation pipeline that will become the foundation for the reasoning and decision-making 

components. Some early stage reasoning use cases will also be suggested. 

 

4. Solution Overview: a Semantic Stream Processing Pipeline 

Implementing an effective semantic stream processing pipeline architecture requires to 

address several aspects including data generation, stream processing, data storage and 

analysis. The main components of the proposed Semantic Stream Processing (SSP) 

pipeline are presented in Figure 1. This pipeline is based on Apache Kafka to collect and 

process the streaming data, GraphDB to store the annotated data streams and the SPARQL 

query language to analyze the resulting graph. In the remainder of this section, we briefly 

explain each of these components. 

Data streams can be obtained from various sensor sources such as temperature, traffic, 

and location sensors. We focus on geolocated audio sensors to support a Smart Airport 

scenario (the future works section will also suggest a generalization opportunity reflected 

in the annotation schema). 

The continuous sensor data gathered from heterogeneous data sources is collected and 

processed by a distributed data ingestion system for later semantic integration. Multiple 

tools can be used as data ingestion systems in a stream processing system: Apache Kafka, 

Apache Nifi [3], and Apache Flume [1]. In the current project, Apache Kafka is employed 

due to its characteristics that make it suitable to handle large-scale data - the biggest 

benefits are the ability to scale the load as data is ingested into the system and the 

replication mechanism guarding against data loss during system failures [29]. Kafka runs 
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as a cluster which connects multiple message producers and message consumers to one or 

more servers, called brokers. Internally, Kafka uses Apache Zookeeper [6] to store 

metadata about the Kafka cluster, such as information about topics, brokers and consumers. 

The overall distribution mechanism is based on the publisher-subscriber pattern offered 

by Kafka core APIs. In our proposed SSP pipeline, the incoming data is collected and 

published into "topics" using the Kafka Producer API. To provide machine-readable and 

machine-interpretable descriptions of the ingested data, the Kafka Consumer API 

subscribes to the existing topics and annotates the stream of records using semantic 

technology, with a preferred frequency. The corresponding stream of records is turned into 

Smart Data annotated with the SSN ontology. This ontology focuses on describing physical 

sensor networks, such as sensors, observations that result from sensing, and deployments 

in which sensors are used. Key concepts are sensor, observation, actuation and sampling, 

concepts that were adopted from Sensor, Observation, Sample, and Actuator (SOSA) 

ontology [22]. As a combination of all precursor sensor ontologies, SSN becomes a de 

facto standard in semantic modelling of sensor data, information related to sensor 

capabilities and sensor deployment configurations. The data stream values enriched by 

semantics are persisted into a semantic graph database called GraphDB for reasoning, later 

analysis or integration with a legacy information system (e.g., a notification system).  

 

 
Fig. 1. Proposed semantic sensor stream processing pipeline 

 

5. Scenario Setup and Design Decisions 

The motivating context of our design problem is a Smart Airport infrastructure which 

includes geolocated audio sensors connected to automatic speech recognition (ASR) 

technology for the purpose of monitoring suspicious conversations of passengers to alert 

security teams and invoke rapid actions in case critical patterns are detected. The speech 

recognition component (extracting prominent word sequences uttered in a crowd) is out of 

scope for this paper, as we focus on the semantic integration architecture and parallelization 

of the semantic annotation effort. We use previous project [44] experience regarding the 

building of an ASR system and the development of such a component is not in the scope 

in this paper (available voice services are being investigated). 

To simulate the data streaming from the geolocated audio sensors deployed in a smart 

airport, we used Producer and Consumer APIs that support custom implementations to 

write and read streams of data in the Kafka cluster. We have created producer tasks that 

send JSON messages to the Kafka cluster, published into the AudioSpeech topic which 

contains data-streams from the audio sensor. The stream of records from this topic has the 

following core schema:  

 sensor_id: UUID, 

 sensor_type: String in audio sensor, 

 station_no: int, 

 event_value: String, 

 event_time: Timestamp. 
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The sensor_id field represents the Universal Unique Identifier (UUID) to uniquely 

identify the deployed audio sensors from the smart airport ecosystem. Raspberry Pi stations 

identified by a specific station_no are deployed at each airport floor and host several audio 

sensors. The event_value field of the AudioSpeech topic contains information related to 

the sound level of the uttered sentence of a specific passenger and the output of the ASR 

system. The stream of records from the AudioSpeech topic are published with timestamps 

marking the time when the acoustic data captured by the microphone has been processed 

and transformed into sentences by the ASR system. 

To process the produced stream of records that were previously published, we have 

created consumer tasks that subscribe to the AudioSpeech topic, read the published stream 

record, annotate the raw sensor data from the stream of records using a schema derived 

from the SSN ontology and, lastly, store the resulting RDF descriptions into the semantic 

database. With SSN, we provide descriptions regarding to individual sensing devices, the 

relationship with their corresponding platform, their observation values and implied 

procedures, features of interest, and properties that were observed. 

 

 
Fig. 2. Description of an audio sensor observation 

 

The semantic model of a raw audio sensor stream originally written in JSON format is 

shown in Figure 2. The observation value gathered from the AS23 audio sensor is stored 

in the event_value field and comprises the following information in this order: the sound 

level measured in decibels, the identifier of the spoken utterance, and the sequence of 

words uttered by a passenger at a specific time in the airport. In the corresponding 

annotated data stream, we describe the observation made by an audio sensor and explicitly 

link the property being analyzed (the acoustic data) with the feature of interest (the airport 

sector where the audio observation was made). Due to the fact that some aspects such as 

detailed measure feature and units [23], are not tackled by the existing SSN ontology, we 

construct the RDF statements by hybridizing the SSN ontology with other schemas such 

as geospatial vocabularies - GeoSPARQL [19] - to model the location of the sensors in 

airport, and the Quantities, Units, Dimensions and Data Types Ontology (QUDT) [33] to 

model quantitative measurements. The resulted RDF descriptions are published into 

GraphDB for later analysis and querying. 

Once the annotated data streams are persisted in the triplestore, we apply SPARQL-

based reasoning to categorize the audio sensor observations into four main classes: 

LowerCritical, LowerNonCritical, UpperNonCritical and UpperCritical based on the 

sound level expressed in decibels and stored in the audio sensor observation result.  In this 

way, we specify the severity ranges of audio sensor values in order to take rapid actions in 

case of abnormal operating conditions of the system.  

In the following query we generate RDF statements by defining a rule according to 

which if the result value of an observation exceeds a specified threshold then the sensor 

observation is considered critical. We describe a rule-based query where all the observation 

results that contain a sound level value between 110 and 170 decibels are upper critical 

observations. This can be extended to rules that consider the presence of certain keywords 
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in the spoken utterance strings, or more advanced text processing rules based on 

GraphDB's full text indexing (Lucene) features. 

 
insert 

{ 

    ?observation a :UpperCritical 

} 

where 

{ 

    ?observation sosa:hasResult/qudt-1-1:numericValue ?value 

    filter ((?value > 110) && (?value < 170)) 

} 

 

To find the latitude and longitude coordinates of a deployed audio sensor that captured 

a specific sentence of words of a passenger, we query the existing RDF database by 

following the chain of properties from the specific sentence to the value of the location 

coordinates as it can be seen in the second query. This query can be useful to detect the 

place where a suspicious sentence was uttered or an abnormal sound with increased decibel 

level (such as the sound of a gunshot) has sensed. 

 
select ?coordinates 

where 

{ 

    :WordSequence12 sosa:madeBySensor/geo:hasGeometry/geo:asWKT ? 

} 

 

 Figure 3 indicates the path of chaining properties for a more complex query where the 

system notifies the security operators responsible with the sector where a critical 

observation was made by sending them a message on their telephone.  

 

 
Fig. 3. Complex query to alert the security operator if a critical observation was sensed 

 

In order to accomplish our goal we use the airport legacy information system that stores 

information about the employees and their working areas. We semantically lift this 
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traditional database to connect it with the graph that describes the sensor data - in this 

transformation process we use some classes and properties from different vocabularies: 

"s:EmployeeRole" class provided by the Schema.org [38] vocabulary to specify employee 

relationships or the "s:telephone" property to store the telephone number of a specific 

security operator. We also use the "rdfs:member" super-property of the RDF Schema [35] 

vocabulary to specify various membership relations (the membership of security operator 

instances to a team, or the decomposition of an airport terminal into sectors). 

Geolocation information is also attached to the audio sensor descriptions for the 

purpose of future generalization (we plan to also transfer the proposal to generalized 

emergency interventions for natural disasters, where the granularity of geocoordinates and 

dynamic location sensors will become relevant for reasoning based on the GeoSPARQL 

standard). 

 

6. Performance Evaluation and Results 

The performance of the deployed SSP pipeline depends heavily on the software and 

hardware settings. Hence, several tests were conducted to investigate how the system 

performs with different configuration settings. All the tests were carried out on an Ubuntu 

16.04.4 LTS x64-based PC with Intel(R) Core(TM) i7-7500U processor, 2.70 GHz CPU, 

8 GB of RAM with Java version 1.8 and Java HotSpot(TM) 64-Bit Server VM. Confluent 

streaming platform version 4.0.0 was deployed with Apache Kafka version 1.0.0 and 

Apache Zookeeper version 3.4.10, which were the latest versions available at the time of 

building the SSP system. For RDF parsing of the JSON streams was used RDFLlib 4.2.2 

package with SPARQL 1.1 implementation. To store the annotated streams the GraphDB 

8.7 version was used. 

 

6.1. Experiment design 

In this section, we describe the Kafka configuration setup of the proposed SSP system.  To 

meet the requirements of a real-time stream processing, the SSP system considers a sliding 

window to process the continuous sensor data. The window was defined to maintain a 

limited number of annotated streams into the triplestore. We evaluate the performance of 

the system by conducting two different Kafka-based scenarios. The following 

configurations were set up to decide which the most suitable Kafka-based scenario is for 

achieving the semantic modelling task. 

 Kafka configuration 1: This is the minimum configuration consisting of a single 

node, with one Zookeeper instance and one broker instance, as it can be seen in 

Figure 4 (a). In this scenario, multiple simulated producers send data streams to the 

unique broker, which can handle thousands of incoming data seamlessly. These 

data streams are written to AudioSpeech topic that contains stream of records 

generated from audio sensors. We created this Kafka topic with a single partition 

and one replica factor. There is one consumer per topic that processes the data 

streams previously published. 

 Kafka configuration 2: The Kafka cluster configuration consists of a single node 

with multiple brokers, managed by a single instance of Zookeeper, as it can be seen 

in Figure 4 (b). To balance the incoming load, the topic is broken down into 

multiple partitions containing sequences of messages that will be delivered 

asynchronously to the consumers to ensure parallelism. The consumer instances 

are grouped into consumer groups, one for each topic. In this configuration setup, 

the multi-subscriber topics may have zero, one, or multiple consumer instances 

who can access the data written to them. 

In both scenarios, the producers run in their own thread and simultaneously publish 

data streams to the Kafka topic during a specific period. The timing of the produced data 

streams follows a Poisson process with a data rate that varies depending on the experiment. 

The Kafka cluster retains all the published stream of records, without consideration of their 

consumption. In all tests, a replication factor of one is used because the fault tolerance 
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measurement is out of scope in this paper. These configurations of the Kafka cluster have 

been tested to have not only an overview of the possibilities, the number of sensors sources 

and the amount of data streams that the system can handle, but also to monitor the number 

of RDF triples that the consumer instances generate over time. 

 

 
Fig. 4. Different Kafka-cluster configurations 

 

To this end, the first experiment consisted in testing how many producers could be 

supported to write stream of records in one-broker versus multiple-brokers Kafka cluster 

setup. Another test was considered to analyze the consumer capability of reading and 

annotating the stream of data published to the Kafka cluster. Lastly, we evaluate the 

multiple brokers’ Kafka-based cluster in terms of the number of generated RDF triples by 

increasing the execution time of the consumer instances. 

 

6.2. Result analysis 

The results shown in this paper regarding the second Kafka configuration are based on a 

three-broker Kafka cluster setup. We have varied the number of producers from 10 to 100 

and measured the number of published and consumed messages in both Kafka-based 

configurations, during an execution of 10 minutes time. 

 

 
Fig. 5. The number of producers versus the number of published messages in both Kafka-based scenarios 

 

We can see that in the chart of Figure 5 that the amount of published messages in a 

Kafka cluster consisting of a unique node with one broker instance, drops sharply when 

the number of producers increases from 80 to 100 producers, while the drop is smoother 

from 20 to 70 producers. This is caused by the limited network capacity and server write 

throughput of a single broker Kafka-based setup. In contrast, in the second Kafka-based 
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scenario, the Kafka cluster manages to cope with ingesting high volumes of data by 

distributing the write load over the three brokers. 

 

 
Fig. 6. The number of producers versus the number of consumed messages in both Kafka cluster setups 

 

Besides the low capability of writing the sensor data into the specific topic, the Kafka 

cluster consisting of one node with one broker also has problems in consuming the 

previously published data. As there is only one consumer instance, the number of 

consumed and processed messages from the topic decreases starting with 70 producers. On 

a single node with three-broker Kafka-based cluster, there are multiple consumer instances 

(within the consumer group) that concurrently read the messages from the topic. The results 

presented in the chart from Figure 6 reveal that increasing the number of consumers ensures 

the parallelization of the semantic enrichment of the sensor data. The chart shows that 

adding more consumers to read and annotate the data streams improves the processing task. 

 

 
Fig. 7. The number of RDF triples versus the execution time in the multi-broker Kafka cluster setup 

 

Figure 7 shows the performance of the proposed system by analyzing the number of 

RDF triples generated over time by consumer instances on a single node, three-broker 

Kafka cluster setup. We evaluate the system’s performance using the streams published by 

80 and 90 producers, respectively. The number of resulted RDF triples varies from 0.064 

to 0.423 million of triples when testing our system. We observe that increasing the 

execution time from 10 to 50 minutes, the number of annotated data streams also increases. 

 

7. Conclusions 

This work at hand took a Design Science approach to develop a semantic pipeline for 

sensor stream processing. Experiments focus on relative performance and their results 
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show that the Kafka cluster consisting of multiple broker instances manages to cope with 

an increasing number of sensors by supporting write and read scalability of the streams. 

The concurrent reads of the data consumers also facilitates the parallelization of the 

semantic enrichment of the sensor data. Additional criteria are under consideration as this 

treatment iterates according to the DSR design and engineering cycle, having in mind the 

complex tableau of criteria that was systematized by [31]. A current limitation is that the 

reported experiments do not include the speech-to-text recognition effort, as this 

component is not to be developed in our project but reused (such components will be the 

subject to a comparison and selection process that was left out of this paper's scope). 

Instead, the focus of our future work is to converge these ideas with the earlier results 

of [11] where parts of the machine-readable semantics are extracted from diagrammatic 

enterprise models. For this, a domain-specific modeling language (aligned with the SSN 

ontology) is necessary to capture a structure and visual overview of the airport premises 

and sensor network layout, thus facilitating decision support for business stakeholders 

familiar with their enterprise architecture semantics. 

Also, we aim to generalize the proposal beyond the current smart airport scenario - we 

target emergency interventions and incident management during natural disasters, where 

dynamic geolocation sensors become more relevant considering the coverage and 

granularity of geocoordinates that can open additional opportunities for reasoning based 

on geo-comparison functions (e.g., GeoSPARQL). Further experiments will try to identify 

in such contexts where it is preferable to execute the semantic annotation in a high-

performance architecture for edge computing. 

 

References  

1. Apache Flume, https://ume.apache.org/. Accessed June 13, 2019 

2. Apache Kafka, https://kafka.apache.org/. Accessed June 13, 2019 

3. Apache Nifi, https://nifi.apache.org/. Accessed June 13, 2019 

4. Apache Spark, https://spark.apache.org/. Accessed June 13, 2019 

5. Apache Storm, storm.apache.org/. Accessed June 13, 2019 

6. Apache Zookeeper, https://zookeeper.apache.org/. Accessed June 13, 2019 

7. Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment for C-

SPARQL queries. In: Proceedings of the 13th International Conference on Extending 

Database Technology, pp. 441-452. ACM (2010) 

8. Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: LARS: A logic-based framework for 

analyzing reasoning over streams. In: AAAI'15 Proceedings of the 29th AAAI 

Conference on Artificial Intelligence, pp. 1431–1438, AAAI Press (2015)  

9. Blumauer, A.: Introducing Graph-based Semantic Layers in Enterprises, https://semantic-

web.com/2016/08/15/introducing-a-graph-based-semantic-layer-in-enterprises/. Accessed 

February 28, 2019 

10. Bonte, P., Tommasini, R., Della Valle, E., De Turck, F., Ongenae, F.: Streaming 

MASSIF: Cascading Reasoning for Efficient Processing of IoT Data Streams. Sensors. 

18(11), 3832 (2018) 

11. Buchmann, R.A., Karagiannis, D.: Domain-specific diagrammatic modelling : a source of 

machine-readable semantics for the Internet of Things. Cluster Comput. 20(1), 895–908 

(2017) 

12. Calbimonte, J.-P., Corcho, O., Gray, A.J.: Enabling ontology-based access to streaming 

data sources. In: Proceedings of the 9th International Semantic Web Conference, pp. 96-

111, Springer, Berlin, Heidelberg (2010) 

13. Chen, J., Lécué, F., Pan, J. and Chen, H.: Learning from ontology streams with semantic 

concept drift. In: Proceedings of 26th International Joint Conference on Artificial 

Intelligence, pp. 957-963, Sierra C (2017) 

14. D’Aniello, G., Gaeta, M., Orciuoli, F.: An approach based on semantic stream reasoning 

to support decision processes in smart cities. Telematics and Informatics. 35(1), 68-81 

(2018) 



ISD2019 FRANCE 

15. Dell'Aglio, D., Della Valle, E., Calbimonte, J.P., Corcho, O.: RSP-QL semantics: A 

unifying query model to explain heterogeneity of RDF stream processing systems. 

Semantic Web and Information Systems. 10(4), 17-44 (2014) 

16. Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning: A 

survey and outlook. Data Science. 1(1-2), 59-83 (2017) 

17. Fisteus, J.A., García, N.F., Fernández, L.S., Fuentes-Lorenzo, D.: Ztreamy : A 

middleware for publishing semantic streams on the Web. Web Semant. Sci. Serv. Agents 

World Wide Web. 25(C), 16–23 (2014) 

18. Fountain, T., Tilak, S., Shin, P., Nekrasov, M.: The open source dataturbine initiative: 

empowering the scientific community with streaming data middleware. The Bulletin of 

the Ecological Society of America 93(3), 242-252 (2012) 

19. GeoSPARQL, https://www.opengeospatial.org/standards/geosparql. Accessed June 14, 

2019 

20. GraphDB, http://graphdb.ontotext.com/. Accessed June 13, 2019 

21. Howard, P.: Graph and RDF Databases 2015, https://www.bloorresearch.com/research/ 

/graph-rdf-databases-2015/. Accessed June 13, 2019 

22. Janowicz, K., Haller, A., Cox, S.J., Le Phuoc, D., Lefrançois, M.: SOSA: A lightweight 

ontology for sensors, observations, samples, and actuators. J. of Web Semantics (2018) 

23. Lai, C., Pintus, A., Serra, A.: Using the Web of Data in Semantic Sensor Networks. In: 

Barolli, L., Terzo, O. (eds.) Complex, Intelligent, and Software Intensive Systems. CISIS 

2017. Advances in Intelligent Systems and Computing, vol. 611, pp. 106-116. Springer, 

Cham (2018) 

24. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive 

approach for unified processing of linked streams and linked data. In: Proceedings of 10th 

International Semantic Web Conference, pp. 370-388. Springer, Berlin, Heidelberg 

(2011)  

25. Le-Phuoc, D., Xavier Parreira, J., Hauswirth, M.: Linked Stream Data Processing. In: 

Eiter, T., Krennwallner, T. (eds.) Reasoning Web. Semantic Technologies for Advanced 

Query Answering. Reasoning Web 2012, Lecture Notes in Computer Science, vol. 7487, 

pp. 245-289, Springer, Berlin, Heidelberg (2012) 

26. Le-Phuoc, D., Nguyen Mau Quoc, H., Le Van, C., Hauswirth, M.: Elastic and Scalable 

Processing of Linked Stream Data in the Cloud. In: Alani H. et al. (eds.) The Semantic  

Web-ISWC 2013. ISWC 2013. Lecture Notes in Computer Science, vol. 8218, pp. 280-

297, Springer, Berlin, Heidelberg (2013) 

27. Le-Phuoc, D., Nguyen-Mau, H.Q., Parreira, J.X. and Hauswirth, M.: A middleware 

framework for scalable management of linked streams. Web Semant. Sci. Serv. Agents 

World Wide Web. 16(C), 42-51 (2012) 

28. Linked Data Orchestration, https://linkeddataorchestration.com/the-year-of-the-graph/. 

Accessed June 13, 2019 

29. Narkhede, N., Shapira, G., Palino, T.: Kafka: The Definitive Guide: Real-time Data and 

Stream Processing at Scale.  O'Reilly Media, Inc., (2017) 

30. Pacha, S., Ramalingam, S., Sethukarasi, R.: Semantic annotation of summarized sensor 

data stream for effective query processing. J. Supercomput. 1-23 (2017) 

31. Prat, N., Comyn-Wattiau, I., Akoka, J.: Artifact evaluation in information systems design 

science research a holistic view. In: Proceedings of the 19th Pacific Asia Conference on 

Information Systems (PACIS 2014), pp. 23. (2014) 

32. OpenLink Virtuoso, https://virtuoso.openlinksw.com/. Accessed June 13, 2019 

33. QUDT, http://www.qudt.org/. Accessed June 14, 2019 

34. RabbitMQ, https://www.rabbitmq.com/. Accessed June 13, 2019 

35. RDF Schema 1.1, https://www.w3.org/TR/rdf-schema/. Accessed June 14, 2019 

36. Resource Description Framework (RDF), https://www.w3.org/RDF/. Accessed June 13, 

2019 

37. Ren, X., Cur, O.: Strider: A hybrid adaptive distributed RDF stream processing engine. 

In: International Semantic Web Conference, pp. 559-576, Springer (2017) 

38. Schema.org, https://schema.org/. Accessed June 13, 2019 



ZALHAN ET AL.                                                                                                                 MARRYING BIG DATA WITH SMART DATA...  

39. Semantic Sensor Network Ontology, https://www.w3.org/TR/vocab-ssn/. Accessed June 

13, 2019 

40. Semantic Sensor Network XG, http://www.w3.org/2005/Incubator/ssn/. Accessed June 

13, 2019 

41. SPARQL 1.1 Query Language, https://www.w3.org/TR/sparql11-query/. Accessed June 

13, 2019\ 

42. Varangaonkar, A.: 2018 is the year of graph databases. Here's why. 

https://hub.packtpub.com/2018-year-of-graph-databases/. Accessed June 13, 2019 

43. Wieringa, R. J.: Design Science Methodology for Information Systems and Software 

Engineering, Springer-Verlag, Berlin, Heidelberg (2014) 

44. Zalhan, P. -G., Stan, A., Teodorescu, L.-R., Saupe, A.-B., Duma, M.: A Kaldi-based ASR 

Solution for the Romanian Judicial System. In: Proceedings of the 15th International 

Conference on Informatics in Economy (IE 2016) Education Research & Business 

Technologies, 2016, pp. 191-197, Cluj-Napoca (2016) 


