28™ INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2019 TOULON, FRANCE)

Rigorous Specification of Use Cases with the RSL Language

Alberto Rodrigues da Silva

INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa

Lisboa, Portugal alberto.silva@tecnico.ulisboa.pt

Abstract

RSL language supports the specification of requirements in a systematic, rigorous and
consistent way. RSL includes a large set of constructs to produce requirements specifications
at different level of abstraction, different writing styles and different types of requirements
(e.g., goals, functional requirements, quality requirements, constraints, user stories, and use
cases) and tests. This paper focuses only on the RSL views related with use cases, including
those constructs directly relevant to the specification of data-intensive information systems,
namely: actors, use cases, data entities, state machines, and their respective relationships. The
explanation and discussion is held by an illustrative example that shows how to produce such
specifications. RSL offers an innovative approach that improves the way requirements
specifications are defined and validated. In spite of other proposals, RSL is the first that
integrates a large number of inter-related constructs that can be represented in a consistent and
systematic way.

Keywords: RSL, Requirements Specification, Use Cases, Business Information Systems.
1. Introduction

Information systems involve the integration of multiple elements such as hardware, software
apps, databases, organizational procedures and people to support its operations and processes.
Requirements engineering (RE) is a discipline that provides a shared vision and understanding
of the system under study among the involved stakeholders and throughout its life-cycle
[16,28]. The negative consequences of ignoring these early RE activities are extensively
reported and discussed in the literature [5,30,31].

A system requirements specification (SRS, or just “requirements specification”) is an
important document that helps to structure the concerns of such systems from the RE
perspective. A good SRS offers several benefits as reported in the literature such as [4,
10,11,18,33]: contribute to the establishment of an agreement and business contract between
customers and suppliers; provide a common ground for supporting the project’s budget and
schedule estimation and plan; support the project scope’s validation and verification; and
support all system deployment and future maintenance activities. It is usually recommended
that a SRS shall be defined accordingly to a previously defined SRS template as well as a set
of recommendations on how to customize and use it. A SRS template prescribes a given
document structure with supplementary practical guidelines. In general these templates
recommend the use of various views and constructs (e.g., actors, use cases, user stories) that
might be considered “modular artefacts” in the sense of their definition and reuse. Because
there are many dependencies among these constructs some authors argue that it is important
to minimize or prevent them and some templates give some support in this respect [31]. On
the other hand, and because SRSs are commonly used by both technical and business
stakeholders, they tend to be specified mostly in natural languages to reach an effective
communication level: everyone is able to communicate by means of a natural language
because they are flexible, universal, and humans are proficient at using it to communicate
with. So, natural languages have minimal adoption resistance as a requirements
documentation technique. On the other hand, they exhibit some intrinsic features that
frequently put themselves as the source of many quality problems, such as incorrectness,
inconsistency, incompleteness and ambiguousness [10,11,16,18]. To mitigate such problems
we found practical recommendations for better writing requirements including guidelines
such as [7,16]: the language shall be used in a simple, clear and precise way, and shall follow
a standardized format to give coherence and uniformity to all sentences; the sentences shall be
short, simple and written in an affirmative and active voice style; or the vocabulary shall be

ALBERTO RODRIGUES DA SILVA RIGOROUS SPECIFICATION OF USE CASES WITH THE RSL LANGUAGE

limited. These recommendations are usually better supported by the adoption of controlled
natural languages (CNLs) that define a restricted use of a natural language’s grammar
(syntax) and a set of terms (including the semantics of these terms) to be used in the restricted
grammar [12,16]. The adoption of CNLs has the following advantages: their sentences are
easy to understand since they are similar to sentences in natural language; they are less
ambiguous than expressions in natural language, since they have a simplified grammar and a
predefined vocabulary with a precise semantics; and they may be semantically verifiable and
computational manipulated, since they have a formal grammar and a predefined set of terms.
We have designed a broader and consistent language, called “RSLingo RSL” (or just
“RSL” for brevity), based on the design of former experiments and languages like ProjectIT-
RSL [23,32], RSL-IL [7], RSL-IL4Privacy [2,22], XIS* [17,24], but also inspired on other
proposals, such as Pohl Framework [15], SilabREQ [19] and SilabMDD [20]. RSL is a
controlled natural language that helps the production of both requirement and test
specifications in a systematic, rigorous and consistent way [13,25,27]. RSL includes a rich set
of constructs logically arranged into views according to specific concerns that exist at
different abstraction levels. These constructs are defined as linguistic patterns and represented
textually by mandatory and optional fragments (text snippets). Conceptually RSL is a
process- and tool-independent language, meaning it can be used and be adapted by multiple
users and organizations with different processes/methodologies and supported by multiple
types of software tools. However, in practice, RSL has been implemented with the Xtext
framework (https://eclipse.org/Xtext/) in an Eclipse-based tool called "ITLingo-Studio" so, its
specifications are rigorously defined and can be automatically validated and transformed into
multiple representations and formats. A lightweight tool support is also provided based on a
former RSL Excel template publicly available at github (https://github.com/ITLingo/RSL).
This paper introduces in Section 2 the RSL and its general architecture but focuses the
presentation and discussion on just its constructs most related with use cases approaches, i.e.,
focused on the following constructs: use cases, actors, data entities, state machines, and their
inherent relationships. In Section 3, the explanation of the language is supported by a
fictitious information system, which helps to describe it and to show and discuss both its
textual (in RSL concrete syntax) and graphical (in UML-like) representations. Section 4
presents and discusses the related work by comparing RSL with other languages and
technologies. Finally, Section 5 presents the conclusion and identifies future work.

2. RSL Language and Focus on its Use Case related Constructs

RSL provides several constructs logically classified according to two dimensions (see Table
1): abstraction level and specific concerns they address. The abstraction levels are: business,
application, software and hardware levels. The concerns are: active structure (subjects),
behaviour (actions), passive structure (objects), requirements, tests, other concerns, and
relations & sets. From a syntactical perspective, any construct can be used in any type of
system regardless of its abstraction level. That means, for example, that it is possible to use a
DataEntity construct at Application or SoftwareSystem levels but also at Business or even
HardwareSystem levels. However, the use of a DataEntity at Business level shall be more
general and incomplete in comparison with its use at Application or SoftwareSystem levels,
that shall be more detailed. In addition, while some constructs (e.g., Stakeholder,
ActiveElement, GlossaryTerm) are naturally applied to different types of systems, others are
not so obviously applied (e.g., UseCase and Actor shall be just applied to Applications or
SoftwareSystems).

Figure 1 shows the RSL partial metamodel that involves the definition of views with the
respective constructs and inherent relations. The names of the relations illustrated in Figure 1
suggest their respective semantics: for example the “isA” reflexive relation between Actors
means that actors might have generalization/specialization relations. When not explicitly
expressed the name of a relation means by default that the source construct “uses” or
“depends on” the target construct. For example, as illustrated in Figure 1, the StateMachine
depends on the DataEntity and the UseCase constructs. As said above, this paper focuses only
on use cases and their associated constructs, as suggested informally in Figure 2. So, to guide

ISD2019 FRANCE

the explanation and discussion below we first introduce DataEntities and DataEntityClusters,
second Actors, then UseCases, and finally StateMachines. These construct rules are formally
defined with the Xtext framework [1].

Table 1. Classification of RSL constructs: abstraction levels versus specific concerns

Concerns
LD Behavior Az Require-
— Structure . Structure q Tests Other Relations & Sets
) 5 (Actions) m ments
= (Subjects) (Objects)
<
g Abstract
= | Levels
é Business Stakeholder | ActiveElement | DataEntity Goal |Acceptance GlossaryTerm SystemsRelation
= (Task, Event) QR CriteriaTest Requirements
E Application | Actor DataEntityCluster | Constraint [UseCaseTest | Risk Relation
) StateMachine FR Vulnerability TestsRelation
£ | Software DataEnumeration | UseCase (DataEntityTest SystemElements
< UserStory Stereotype Relation
&' | Hardware StateMachine ActiveFlow
Test IncludeAll
Other IncludeElement | SystemView
SystemTheme
T T eI T, r—----T T - === h, |
| Actors View | | StateMachines View : | DataEntities View | | Requirements View
I I | |
I I
| initiates | : : ! | !
| + L
| participates! : : : ! :
| — — —
| [|]
| 1 * | | | | | |
| | | | | | |
: . : | [| |
| Actor | : StateMachine | DataEntity l | UseCase
| L | o *
| 0.1 | : : : 1 * * | | . .
| 1 | |
m | |
! isA ! | | : : : includes
| | | | | | |
! ! | [magter |
| | | [refefence : |
I I
| | : P detpil i |
| | X | : B E E : :
: : | : | | | |
| \
| ! | 1 : DataEntityCluster i :
: : | 1 | 0.1 | |
bl ____ I L _____ N I o _______
Fig.1. RSL partial metamodel with constructs organized in views.
«EntityCreate» «DataEntityCluster.Simple»
uc_1_1_Createlnvoice ECElnVolcERS bR
—
«User» / \
aU_Operator / \ reference
master /
/
/
/
/
p
«stateMachine» «DataEntity.D... «DataEntity....
sm_e_Invoice e_Invoice e Customer

2.1

Fig.2.UML-like diagram suggesting the relationships between RSL’s elements.

DataEntities and DataEntityClusters

DataEntities represent the structural entities that exist in an information system, commonly
associated to data concepts captured and identified from the domain analysis. These entities
can be later on represented by data structures like tables or collections of some system’s
database. As suggested in Figure 1 this view includes the definition of two key constructs:
DataEntities and DataEntityClusters, which grammars are expressed in Specification 1 and 2.

A DataEntity denotes an individual structural entity that might include the specification of

attributes, foreign keys and other check data constraints. A DataEntity is classified by a type
and an optional subtype. DataEntity type values are "Parameter", "Reference", "Master",
“Document" and "Transaction" based on their functions and the type of data that they serve
[15]. DataEntity subtype values are “Master” and “Detail” meaning, respectively, that the data

ALBERTO RODRIGUES DA SILVA RIGOROUS SPECIFICATION OF USE CASES WITH THE RSL LANGUAGE

entity has its own relevance and identification (e.g., the Invoice entity) or its existence
depends on other entity (e.g., the Invoice-Line entity that depends on the Invoice entity). A
DataEntity can also be defined as read-only (with the isReadOnly property) and encrypted
(with the isEncrypted property). An Attribute denotes a particular structural property of the
respective DataEntity. An attribute has an id, name, type (e.g., Integer, Double, String, Date,
DateTime, Text) and optionally the specification of its multiplicity, default value (i.e., the
value assigned by default in its creation time), values (i.e. a list of possible values, e.g.,
enumeration values), and several constraints defined with the isNotNull, isUnique, isDerived,
isReadOnly and isEncrypted properties.

DataEntity:
‘DataEntity' name=ID (nameAlias=STRING)? ':' type=DataEntityType (':' subType=DataEntitySubType)? ('['

('isA' super=[DataEntity | QualifiedName])?
(isReadOnly="isReadOnly')? (isEncrypted='isEncrypted')?
(attributes+=DataAttribute)+
(primaryKey=PrimaryKey)?
(foreignKeys+=ForeignKey)*
(checks+=Check)* '1')?;

DataAttribute:
‘attribute’ name=ID (nameAlias=STRING)? ':' type=DataType ('['
('multiplicity’ multiplicity=Multiplicity)?
('defaultvalue' defaultValue=STRING)?
('values' values=STRING)?
(isNotNull="'isNotNull')? (isUnique='isUnique')? (isDerived="isDerived')?
(isReadOnly="isReadOnly')? (isEncrypted='isEncrypted')? ']')?;

Spec. 1. Definition of DataEntity and respective Attributes.

On the other hand, a DataEntityCluster construct denotes a cluster of several structural
entities (i.e., DataEntities) that present logical arrangements among themselves. Each data
entity shall have a specific role in that cluster, namely: “master” role identifies the main
DataEntity (e.g. Invoice); “detail” role identifies a partOf or child DataEntity (e.g.,
InvoiceLine); and “reference” role identifies a dependent or usedBy DataEntity (e.g.,
Customer). A DataEntityCluster is a construct particularly relevant to associate to UseCases
(as suggested in Figures 1 and 2). A DataEntityCluster shall refer at least one DataEntity with
the “master” role, and optionally other DataEntities with “detail” and/or “reference” roles. A
DataEntityCluster is classified in a type with three values according the respective level of
complexity: (1) VerySimple, if it refers only one DataEntity with the master role; (2) Simple,
if it refers a master but at least one reference DataEntity; and (3) Complex, if it refers a master
and at least one detail DataEntity.

DataEntityCluster:
'‘DataEntityCluster' name=ID (nameAlias=STRING)? ':' type=DataEntityClusterType ('[
(master=MasterDEntity)
(details+=DetailDEntity)*
(references+=ReferenceDEntity)* ']')?;

Spec. 2. Definition of DataEntityCluster.
2.2 Actors

Spec. 3 shows the grammar for the Actor rule definition. Actors represent the participants of
use cases or user stories. Actors represent end-users and external systems that interact directly
with the system under study, and in some particular situations can represent timers and other
complex conditions that trigger the start of some use cases. Actors may depend only of
Stakeholders, if relevant; that means that if stakeholders have been defined and if some of
them were categorized as “User Direct” or “System External” they can also be defined as
actors.

Actor:
'Actor' name=ID (nameAlias=STRING)? ':' type=ActorType ('['
('isA' super=[Actor | QualifiedName])?
('stakeholder' stakeholder=[Stakeholder | QualifiedName])? ']')?;

Spec. 3. Definition of Actors.

ISD2019 FRANCE

2.3 UseCases

Spec. 4 shows the partial grammar of the UseCase rule definition. Traditionally a use case
means a sequence of actions that one or more actors perform in a system to obtain a particular
result. However, the RSL’s UseCase construct extends this general and vague definition
considering some additional aspects, namely: (1) A use case shall be classified by an
extensive set of use case types corresponding to a well-defined use case patterns commonly
found in information systems, such as EntitiesManage, EntityCreate, EntityUpdate, and many
others; (2) A use case shall be applicable to a data entity or a cluster of data entities
(DataEntityCluster); (3) A use case shall define at least the actor that initiates it, and
optionally other actors that might participate; these actors can be end-users, external systems
or even timers or complex conditions; (4) A use case can define pre and post conditions; (5) A
use case can define several actions that may occur in its context, some of them very common
in information systems such as user actions (e.g., Search, Filter, Create, Read, Update, Delete,
Print, Close, Cancel) and other customized actions (e.g., in the running example, the actions
ConfirmPayment, Approve or Reject invoices); (6) A use case can define “includes” relations
to other use cases; this relation means that the behavior of the included use case is added to
the source use case in a given point of its execution; (7) A use case can define several
extensions points available in its context; this means that it can be extended by other uses
cases in these specific points and based on some “extends” relations; (8) A use case can
extends the behavior of other use case (the target use case) in its specific extension point; (9)
The behavior of a use case can be detailed by a set of scenarios that are also classified as
main, alternative or exception scenario; by definition a use case can only have one main
scenario and several alternative and exception scenarios; (10) A use case scenario is defined
by a set of sequential or parallel steps; (11) A use case step is classified by a set of types and
defined as simple or complex step; steps are triggered by the actor or by the system,
respectively with steps of type (actor) prepares data or calls the system, or (system) executes
an action or returns data.

UseCase:

‘UseCase' name=ID (nameAlias=STRING)? ':' type=UseCaseType ('[’
((isNegative ?= 'isNegative') | (isPositive ?= 'isPositive'))?
((isConcrete ?= 'isConcrete') | (isAbstract ?= 'isAbstract'))?
((isSolution ?= 'isSolution') | (isProblem ?= 'isProblem'))?
('stakeholder' stakeholder=[Stakeholder | QualifiedName])?
('actorInitiates’ actorInitiates=[Actor | QualifiedName])
('actorParticipates' actorParticipates+=RefActor)?
('dataEntity' dataEntity=[DataEntityGeneric | QualifiedName])?

(actions= UCActions)?
(extensionPoints= UCExtensionPoints)?
(includes= UCIncludes)?

(extends+= UCExtends)*

scenarios+=Scenario* ']')?;

Spec. 4. Definition of UseCase.

RSL offers a rigorous way to specify use cases, in particular when compared with UML or
SysML. Its users can adopt different styles in what concerns use cases specification,
depending on their needs and preferences. For example, in an initial phase of a project or in
an agile project, the users might prefer to just specify use cases without many details (such as
without defining scenarios and steps). On the other hand, if users require an extensive level of
specification, their specifications can include the description of scenarios and steps in a
detailed way.

2.4 StateMachines

Spec. 5 shows the partial grammar of the StateMachine rule definition. StateMachines define
the behaviour of DataEntities in their relationships with use cases. A StateMachine is
necessarily assigned to one DataEntity or DataEntityCluster (i.e., a DataEntityGeneric) and
classified as Simple or Complex depending on the number of involved states and transitions
(e.g., a StateMachine with more than three states might be classified as Complex). A
StateMachine includes several states corresponding to the situations that a DataEntity may be
find itself during its life cycle (e.g., states like Created, Pending, Approved, Rejected). In

ALBERTO RODRIGUES DA SILVA RIGOROUS SPECIFICATION OF USE CASES WITH THE RSL LANGUAGE

addition, a state can be marked as initial (is/nitial) or final (isFinal). Several actions can be
defined when a DataEntity enters (onEntry) or exits (onExit) the respective state. Moreover,
several use case’s actions (actions) can occur on the DataEntity when it is in a given state, and
the occurrence of these actions can optionally imply a state transition (nextState).

StateMachine:
‘StateMachine' name=ID (nameAlias=STRING)? ':' type=StateMachineType ('[’
'dataEntity’' entity= [DataEntityGeneric | QualifiedName]
states= States ']')?;

States: {State} states += State*;
State:
'state'name=ID (nameAlias=STRING)?
(isInitial ?= 'isInitial')? (isFinal ?= 'isFinal')?
('onEntry' onEntry= STRING)? ('onExit' onExit= STRING)?
(':"' (transitions+= Transition))? (transitions+= Transition)* ;

Transition: (ucAction= RefUCAction ('nextState' nextstate= [State])?);

RefUCAction: 'useCase' useCase=[UseCase | QualifiedName] ‘'action' action= [UCAction | QualifiedName];

Spec. 5. Definition of DataEntity’s StateMachines.
3. An Illustrative Example

To support the discussion of the RSL language we introduce a fictitious information system
called "Invoice Management Ssystem” (IMS) as it is found in many ERPs. The following text
describes partially a variety of informal requirements (for the sake of simplicity we use the
same example as followed in other papers that described different aspects of the RSL, e.g. as
found in [25,27]):
IMS is a system that allows users to manage customers, products and invoices. A user of the system is someone
that has a user account and is assigned to user roles, such as operator, manager and administrator.

User-administrator shall be responsible for managing users, configuring technical features (e.g., user roles,
export configuration parameters, general enterprise information). System shall allow user-administrator to
register users. During this process the administrator shall specify first and last name of the user, email address,
and username. User password shall be automatically generated by the system and sent to its user email.

User-operator is responsible for managing customers and invoices. User-operator shall create/update
information related to customers and invoices. For each customer the system shall maintain the following
information: name, fiscal id, logo image, address, bank information and additional information such as basic
person contact information. System shall allow user-operator to define some customers as VIP. If a customer is
defined as VIP, for each of her invoice, the system shall allow user-operator to set a predefined discount tax.
That amount of discount can change throughout the time and depends on the current policy of the company. For
each product the system shall maintain the following information: name, description, price, VAT category, and
VAT value. Product must have only one VAT category and maintain the respective current VAT value.
User-operator shall create new invoices (with respective invoice details). However, before sending an invoice to
a customer, the invoice shall be formally approved by the user-manager. Only after such approval, the user-
operator shall issue and send that invoice electronically by e-mail and by regular post. In addition, for each
invoice, the user-operator needs to keep track if it is paid or not.

The System shall automatically alert the user-manager, for all the invoices that were sent to customers but not
yet paid, after 30 days of their respective issue date. In the beginning of each year the System shall archive and
send to the ERP-System all paid invoices of the last year. [...]

3.1 DataEntities and DataEntityClusters
Consider the following snippet adapted from the IMS description:

For each customer the system shall maintain the following information: name, fiscal id, logo image, address,
bank information and additional information such as basic person contact information. System shall allow user-
operator to define some customers as VIP. If a customer is defined as VIP, for each of her invoice, the system
shall allow user-operator to set a predefined discount tax. For each product the system shall maintain the
following information: name, description, price, VAT category, and VAT value [...] User-operator shall create
new invoices (with respective invoice details) [...] In addition, for each invoice, the user-operator needs to keep
track if it is paid or not [...]

Some text fragments are identified and annotated, namely: (i) the data entities (bold text),
e.g., invoice, customer, product; and the data entity attributes (text marked with light blue
(light gray)), e.g., name, fiscal id. Spec. 6 shows a partial rigorous specification of these data
entities in RSL, and Figure 3 illustrates an equivalent UML-like representation. In addition,
on top of these data entities, Spec. 7 shows the specification of DataEntityClusters.

ISD2019 FRANCE

DataEntity e_VAT "VAT Category"” : Reference [..]
DataEntity e_Product "Product" : Master [..]
DataEntity e_Customer "Customer" : Master [..]
DataEntity e_CustomerVIP "CustomerVIP" : Master [..]

DataEntity e_Invoice "Invoice" : Document [
attribute ID "Invoice ID" : Integer [isNotNull isUnique]
attribute customerID "Customer ID" : Integer [isNotNull]
attribute dateCreation "Creation Date" : Date [defaultValue "today" isNotNull]
attribute dateApproval "Approval Date" : Date
attribute datePaid "Payment Date" : Date
attribute dateDeleted "Delete Date" : Date
attribute isApproved "Is Approved" : Boolean [defaultValue "False"]
attribute totalvValueWithoutVAT "Total Value Without VAT" : Decimal(16.2) [isNotNull]
attribute totalvalueWithVAT "Total Value With VAT" : Decimal(16.2) [isNotNull]
foreignKey e_Customer(customerID)]

DataEntity e_InvoiceLine "InvoicelLine" : Document: Detail [
attribute ID "InvoiceLine ID" : Integer [isNotNull isUnique]
attribute invoiceID "Invoice ID" : Integer [isNotNull]
attribute order "InvoicelLine Order" : Integer [isNotNull]
attribute productID "Product ID" : Integer [isNotNull]
attribute valueWithoutVAT "Value Without VAT" : Decimal
attribute valueWithVAT "Value With VAT" : Decimal
primaryKey (ID)
foreignKey e_Invoice(invoiceID)
foreignKey e_Product(productID)
check ck_InvoiceLinel "isUnique(invoiceID+order)"]

Spec. 6. Example of a partial RSL specification of DataEntities.

DataEntityCluster ec_Customer "Customers" : Simple [master e_Customer]
DataEntityCluster ec_Product "Products" : Simple [master e_Product reference e_VAT]
DataEntityCluster ec_Invoice "Invoices (Complex)" : Complex [

master e_Invoice

detail e_InvoiceLine [reference e_Product, e_VAT]

reference e_Customer]

Spec. 7. Example of a partial RSL specification of DataEntityClusters.

«DataEntity.Document» customerlD «DataEntity. Master»
Qo «foreignKey» QUMY
ID - ID
dateCreation - Name
dateApproval - fiscallD
datePaid - phone
dateDeleted
isApproved ZF
- /totalValueWithoutVAT
- /totalValueWithVAT «DataEntity.Master»
e_CustomerVIP
- discountRate

1.*
«DataEntity.Document. Detail» product!D «DataEntity.Master» VATCode «DataEntity.Reference»
iceLi i e_Product e_VAT
e_Invoiceline «foreignKey» - «foreignKey =

i o - ID - VATCode

- order - Name - VATName

- valueWithoutVAT - valueWithoutVAT - VATValue

- valueWithVAT - valueWithVAT

- VATClassValue

Fig. 3. UML-like diagram representing DataEntities.
3.2 Actors

From this analysis we systematically specify the actors of the IMS as suggested in Spec. 8.

Actor aU_TechnicalAdmin "TechnicalAdmin" : User [description "Admin manage Users, VAT, etc."]

Actor aU_Operator "Operator" : User [description "Operator manages Invoices and Customers"]
Actor aU_Manager "Manager" : User [description "Manager approves Invoices, etc."]

Actor aU_Customer "Customer" : User [description "Customer receives Invoices to pay"]
Actor aS_ERP "ERP" : ExternalSystem [description "ERP receives info of paid invoices"]

Actor aT_BeginningOfYear : Timer [description "Beginning of each Year"]
Actor aT_InvoiceNotPaidAfter3ed : Timer [description "Invoices not paid after 3@d of issue"]

Spec. 8. Example of a partial RSL specification of Actors.

ALBERTO RODRIGUES DA SILVA RIGOROUS SPECIFICATION OF USE CASES WITH THE RSL LANGUAGE

33
Consider the following snippet adapted from the IMS description:

Use Cases

The System shall automatically trigger an alert for all the invoices not yvet paid, after 30 days of their respective
issue date. The System shall archive and send to the ERP-System all paid invoices whose creation date is older

Some textual fragments are particularly identified and annotated, namely: (i) the data
entities (with bold text), e.g., invoices, customers, products; (ii) the use cases (with
underlined text), e.g., manage invoices, manage users, issue and send invoice; and (iii) the

«EntityDelete»
«extend»

uc_1_6_Deletelnvoice

«User»

A

aU_Operator
«EntityCreate»

uc_1_1_Createlnvoice /
«extend»
/

«EntityUpdate»

uc_1_2_Updatelnvoice

«EntitiesBrowse»

i uc_3

«User»
aU_Manager

~
«extend»

\
\

«extpnd»

«EntitiesInteropSend...

uc_1_3_Send!

~ _«extend»
~

~
~
~
~

AN

N\
«extendy

«EntityUpdate»

uc_1_5_RegisterPayment

\

«EntityReport»

uc_1_4_Printinvoice

«User»
aU_Customer

«EntitiesReport»

«extend» s it

InvoicesToApprove

«EntityUpdate»

«EntityRead»
uc_3_1_Consultinvoice

uc_3_4_SubmitApproval

«extend»

Fig.4.UML-like diagram representing UseCases.

UseCase uc_1_3_SendInvoices "Send Invoices" :

UseCase uc_1_ManageInvoices "Manage Invoices" :
UseCase uc_1_1_CreateInvoice "Create Invoice" :
UseCase uc_1_2_UpdateInvoice "Update Invoice" :

EntitiesManage [..]
EntityCreate [..]
EntityUpdate [..]

EntitiesInteropSendMessage [

actorInitiates aU_Operator actorParticipates auU_Customer

dataEntity ec_Invoice

actions aSend, aClose

extends uc_1_ManageInvoices onExtensionPoint EPSendInvoices]
UseCase uc_1_4 PrintInvoice "Print Invoice" : EntityReport [..]
UseCase uc_1_5_RegisterPayment "Register Payment" : EntityUpdate [..]
UseCase uc_3_ManageInvoices "Manage Invoices (for Manager)" : EntitiesBrowse [..]
UseCase uc_3_1_ConsultInvoice "Consult Invoice" : EntityRead [

actorInitiates aU_Manager

dataEntity ec_Invoice

actions aFirst, alLast, aPrevious, aNext, aClose

extensionPoints SubmitApproval

extends uc_3_ManageInvoices onExtensionPoint Consult_Invoice]
UseCase uc_3_3_PrintInvoicesToApprove "Print Invoices To Approve" : EntitiesReport [..]
UseCase uc_3_4_SubmitApproval "Submit Invoice Approval" : EntityUpdate [..]

Spec. 9. Example of a partial RSL specification of UseCases.

ISD2019 FRANCE

From this text analysis we identify and then specify the data entities, actors and use cases
systematically. Spec. 9 shows a partial specification of these use cases in RSL, and Figure 4
illustrates the equivalent UML-like representation. Due to space constraints Spec. 9 only
shows the expanded specification of the wuse cases uc 1 3 SendInvoices,
uc 3 1 Consultlnvoice; the others are collapsed or just omitted. The use case
uc 1 3 SendInvoices is typed as EntitiesInteropSendMessage, is started by the actor

alU_Operator and also participated by the aU_Customer that is the target of the send message..
3.4 StateMachine

Finally, Spec. 10 shows the specification of the e Invoice’s behaviour through the definition
of its respective statemachine sm e Invoice, and Figure 5 depicts the equivalent UML
representation for this same example. This statemachine includes six states: Initial, Pending,
Approved, Rejected, Paid and Deleted. Initial is an initial state while Paid and Deleted are
final states. When a data entity is in some state several use case’s actions might occur, some
of them may imply a state transition as defined by the respective “nextState” attribute. For
example, when the invoice is in the state Pending, if the Manager is in the scope of the
uc 3 4 SubmitApproval and approves the invoice (i.e. triggers the action aApprove), then
the invoice changes to the state Approved.

StateMachine sm_e_Invoice "StateMachine_Invoice" : Complex [
dataEntity e_Invoice
description "StateMachine of entity Invoice"
state Initial isInitial onEntry "In creation”
useCase uc_1_1_CreateInvoice action aCreate nextState Pending
state Pending onEntry "e.state= 'Pending'; e.isApproved= False"
useCase uc_4 NotifyInvoicesToApprove action aNotify
useCase uc_3_4_SubmitApproval action aApprove nextState Approved
useCase uc_3_4_SubmitApproval action aReject nextState Rejected
state Approved onEntry "e.state= 'Approved'; e.isApproved= True"
useCase uc_1_3_SendInvoices action aSend
useCase uc_5_AlertInvoicesNotPaid action aNotify
useCase uc_1_5_RegisterPayment action aConfirmPayment nextState Paid
state Rejected onEntry "e.state= 'Rejected'; e.isApproved= False"
useCase uc_1_2_UpdateInvoice action ReSubmit2Approval nextState Pending
state Paid isFinal onEntry "e.state= 'Paid'"
state Deleted isFinal onEntry "e.state= 'Deleted'"]

Spec. 10. Example of a partial RSL specification of a DataEntity’ StateMachine.

uc_1_1_Createlnjoice.aCreate

uc_4_NotifyInvoicesToApprove.aNotify

uc_3_4_Submit_ uc_1_3_SendInvoices.aSend

uc_3_4_Submit_Approval.aReject Rpscoval.aApprove
I

uc_1_5_RegisterPaymentJaConfirmPayment

uc_5_Alertinvoices
NotPaid aNotify

uc_1_6_Delete|nvoice.aDelete

Deleted Paid

Fig.5.UML-like diagram representing a DataEntity’s StateMachine.
4. Related Work

The documentation of system requirements has consisted in creating descriptions of the
application domain, as well as a prescription of what the system should do and other
organizational, legal or technological constraints [16]. In general, these requirements are
specified in natural languages due to their higher expressiveness and ease of use. However,
the usage of these languages also presents drawbacks like ambiguity, inconsistency and
incompleteness [10,11,16,18]. To reduce these problems, natural language specifications are
many times complemented by some sort of other specifications and models that use

ALBERTO RODRIGUES DA SILVA RIGOROUS SPECIFICATION OF USE CASES WITH THE RSL LANGUAGE

controlled, formal or semi-formal modelling languages. These languages provide a set of
constructs (e.g., actor, use case or user stories) that explicitly or implicitly define its abstract
syntax and semantics, and that address different concerns and abstraction levels. In addition,
these languages provide different notations or concrete syntaxes, such as textual, graphical,
tabular, form-based representations [14,26].

Requirements specifications based on natural language are very expressive, easy to be
written and read by humans, but not very precise because are ambiguous and inconsistent by
nature, and hard to be automatically manipulated by computers [9]. Apparently the usage of
formal language methods (like B or Z) could overcome these problems [21]. However, this
would only address part of the problem, as we still need to take care while interpreting the
natural language requirements to create a formal specification, given that engineers often
misinterpret natural language specifications during the design phase. The same occurs with
the attempt to directly create formal requirements specifications, especially when the real
requirements are not discovered and validated at first by the business stakeholders. Thus, the
usage of formal languages involves an additional misinterpretation level due to the typically
complex syntax and mathematical background required [8]. Given that formal methods are
expensive to apply creating formal requirements specifications might have a negative impact
because they require specialized training and are time-consuming [28]. In the attempt of
getting the best from both worlds — the familiarity of natural language and the rigorousness of
formal language —, some approaches have proposed controlled natural languages, which are
engineered to resemble natural languages [12]. However, they are only able to play the role
of natural language to certain extend: while they are easy to read, they are hard to write
without specialized tools [8]. On the other hand, many of these languages are restricted sets of
English and targeted to support general technical documentation, like ACE [9], not so focused
on RE like RSL. A modeling language like UML (and SysML at some extent) is a reasonable
foundation for requirements modeling, but it is incomplete for modeling requirements because
it lacks models that tie requirements to business value and models that present the system
from an end user’s point of view. In addition, its technical roots make it simply too complex
for business stakeholders to adopt because its models are geared towards modeling the
structure of the software architecture. UML is intended to be used to describe the technical
design of a system and is at best retrofitted to model requirements. Differently from RSL,
there are a number of drawbacks associated to the use of UML regarding this purpose. First,
there is not a well-defined way to establish relationships between constructs defined for
different types of diagrams, e.g., between use cases and classes, or between state machines
and use cases: in RSL it is possible to establish such relationships in a rigorous way,
respectively, between use cases and data entities, or between state transitions and use case’s
actions. Second, in UML there is not a standard way to further classify its constructs, e.g., use
cases or actors do not have any further semantics: in RSL every construct has a type which
allows enriching its meaning, e.g., use case types correspond to use case patterns commonly
found in information systems. Third, UML use cases are defined in a high-level way with
only stating the name and the relationships with other use cases and actors. On the other hand,
RSL use cases provide a flexible and precise way to define this type of requirements: if
intended, RSL use cases can be defined as simpler as UML, but in general, it is possible to
add more information in a precise way, namely to express the list of actions that may be
triggered, the extensions points that may be extended by other use cases, or the scenarios with
further detail. RML [3] is one of the largest RE-specific language that gather many constructs
and types of models, e.g., business data diagram or state diagram; data dictionary, system
flow, state diagram. On the contrary to UML or SysML languages, RML also provides other
representations such as tabular (e.g., roles and permissions matrix, state table), and form-
based (e.g., use cases). However, RML is defined implicitly and consequently its
models/specifications are expressive and flexible but less rigorous and precise in comparison
with UML, SysML, SilabREQ, or RSL. Still in comparison with RSL, RML includes
additional low-level constructs and models (e.g., permissions, user-interface flows, reports,
display-action-response) but lacks others more specific to RE, like goals, constraints, or
quality requirements. Furthermore, RSL is defined with a precise grammar with which its

ISD2019 FRANCE

specifications are textually but consistently represented. Modeling languages (like UML and
SysML) or goal-oriented languages (like i*, KAOS or Tropos) are less expressive than
natural language and cannot be regarded as a common language to communicate
requirements, because business stakeholders still require some training to understand them.
Also, despite being easier to be understandable than formal languages, these modeling
languages are regarded as less powerful in terms of analytical capabilities because they often
lack tool support to enforce the implicit semantics of their modeling elements, or might even
intentionally leave some unspecified parts of the language itself, in which case they are
considered as semi-formal. Some authors even argue that the simplicity of these languages
comes precisely from this lack of semantic enforcement: it is easy to create models because
“anything goes”. Furthermore, the usage of graphical languages cause another limitation
when users include too much detail in the model, cluttering it and thus affecting its
readability; or when the size of the models (i.e., the number of model elements involved)
increases too much. Therefore, despite the existence of such graphical approaches, textual
specifications are still regarded by many as the most suitable, fast, and preferred manner to
initiate the requirements development process.

5. Conclusion

A requirements specification describes multiple concerns of a system and supports several
stakeholders. For an effective communication every stakeholder shall communicate in a
common natural language. Although natural languages are the preferred form for
requirements representation, they exhibit some characteristics that contribute for several
requirements quality problems. This paper describes and discusses the RSL language, which
intends to mitigate some of these problems and also to improve the overall productivity of the
RE processes. RSL includes a large set of constructs logically arranged into views according
to the most common RE concerns. Each construct can be defined as a linguistic pattern and
represented by a well-defined RSL’s linguistic style. In spite of this, these constructs can also
be represented by other linguistic styles defined in a project or organization basis accordingly
the needs of its users. These constructs can also be represented graphically such as with UML,
RML or UML-based profiles as we informally showed in this paper. Furthermore, these
constructs can have other representations, like tabular or form-based.

RSL supports requirement engineers to produce requirements specifications at different
levels of detail, with different concerns and different types of requirements, specifically:
goals, functional requirements, quality requirements, constraints, user stories, and use cases.
In addition, RSL provides other constructs (e.g., terms, stakeholders, actors, data entities, or
state machines) that, in spite of not being classified as “requirements” in RSL, are still
important to complement and enrich such specifications. This paper focuses the discussion
just on the RSL’s use case constructs and, it shows that it is possible to rigorously specify use
cases with actors, data entities and state machines, and to establish proper traceability
between these constructs, for example as suggested in Figure 1. In spite of other proposals for
RE-specific templates or linguistic patterns, and as far as we know from the literature review,
RSL is the first that provides such a comprehensive language that integrates a large number of
constructs that can be represented in a consistent and systematic way.

For future work, we plan to disseminate the adoption and practice of RSL in both
academia and industry, to conduct real world case studies, and to research model-driven
techniques [26,29] to automatically validate and transform RSL specifications into technical
documentation and visual models.

Acknowledgements
Work supported by funds under FCT UID/CEC/50021/2019 and 02/SAICT/2017/29360.

References

1. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt Pub. (2016)

2. Caramujo, J., et al.. RSL-IL4Privacy: A Domain-Specific Language for the Specification of
Privacy-Aware Requirements, in Requirements Engineering, Springer, 24(1) (2019)

ALBERTO RODRIGUES DA SILVA RIGOROUS SPECIFICATION OF USE CASES WITH THE RSL LANGUAGE

Chen, A., Beatty, J.: Visual models for software requirements. Microsoft Press (2012)

Cockburn, A.: Writing Effective Use Cases. Addison-Wesley (2001)

Eveleens, L., Verhoef, C.: The Rise and Fall of the Chaos Report Figures, IEEE Software (2010)

Fernandes, J.M., Machado, R. J.: Requirements in engineering projects, Springer (2016)

Ferreira, D., Silva, A. R.: RSL-IL: An Interlingua for Formally Documenting Requirements. In

Proc. of the of 3rd IEEE Workshop on Model Driven Requirements Engineering, IEEE CS (2013)

Foster, H., et al.: Assertion-based Design. Springer (2004)

9. Fuchs, N., Kaljurand, K., Kuhn, T.: Attempto controlled english for knowledge representation. In
Reasoning Web, 104-124, Springer (2008)

10.IEEE: IEEE Std 830-1998, IEEE Recommended Practice for Software Requirements Specifications
(1998)

11. Kovitz, B.: Practical Software Requirements: Manual of Content and Style. Manning (1998)

12.Kuhn, T.: A survey and classification of controlled natural languages. Computational Linguistics,
40(1), 121-170 (2014)

13. Maciel, D., Paiva, A. C. R., Silva, A. R.: From Requirements to Automated Acceptance Tests of
Interactive Apps: An Integrated Model-based Testing Approach. In Proc. of ENASE’2019,
SCITEPRESS (2019).

14. Mernik, M., Heering, J., Sloane, A.: When and how to develop domain-specific languages. ACM
Computing Surveys, 37(4):316-344, (2005)

15. Microsoft, Data entities and Categories of entities, Dynamics 365 White paper, 2017. Accessed
from https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-
entities?toc=/fin-and-ops/toc.json#categories-of-entities

16. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques. Springer (2010)

17.Ribeiro, A., Silva, A. R.: Evaluation of XIS-Mobile, a Domain Specific Language for Mobile
Application Development, Journal of Software Engineering and Applications, SCIRP, 7(11), 906-
919 (2014)

18.Robertson, S. and Robertson, J.: Mastering the Requirements Process, Addison-Wesley (2006)

19. Savic, D., et al.: SilabMDD: A Use Case Model Driven Approach. In Proc. of 5th International
Conference on Information Society and Technology (2015)

20. Savic, D., et al: SilabMDD: A Use Case Model Driven Approach. In Proc. of ICIST 2015 (2015)

21. Schneider, S.: The B-method: an introduction. Palgrave Macmillan (2001)

22.Silva, A. R., et al.: Improving the Specification and Analysis of Privacy Policies: The
RSLingo4Privacy Approach. In Proc. of International Conference on Enterprise Information
Systems, SCITEPRESS (2016)

23.Silva, A. R., Saraiva, J., Ferreira, D., Silva, R., Videira, C.: Integration of RE and MDE Paradigms:
The ProjectIT Approach and Tools. IET Software, IET, 1(6) (2007)

24.Silva, A. R., Saraiva, J., Silva, R., Martins, C.: XIS — UML Profile for eXtreme Modeling
Interactive Systems. In Proc. of MOMPES"2007, IEEE Computer Society (2007)

25.Silva, A. R.: Linguistic Patterns and Linguistic Styles for Requirements Specification (I): An
Application Case with the Rigorous RSL/Business-Level Language. In Proc. of EuroPLOP, ACM
(2017)

26.Silva, A. R.: Model-Driven Engineering: A Survey Supported by a Unified Conceptual Model.
Computer Languages, Systems & Structures, Elsevier, 43 (C), 139-155 (2015)

27.Silva, A.R., Paiva, A.C.R,, Silva V.E.R.: A Test Specification Language for Information Systems
Based on Data Entities, Use Cases and State Machines. In Model-Driven Engineering and Software
Development, Communications in Computer and Information Science, Springer, 991 (2019)

28. Sommerville, I. and Sawyer, P.: Requirements Engineering: A Good Practice Guide. Wiley (1997)

29.Stahl, T., Volter, M.: Model-Driven Software Development. Wiley (2005)

30. Standish Group: Chaos Summary 2009 Report, The 10 Laws of Caos (2009)

31. Verelst, J., et al.: Identifying Combinatorial Effects in Requirements Engineering. In Proceedings of
Third Enterprise Engineering Working Conference (EEWC 2013), Advances in Enterprise
Engineering, LNBIP, Springer (2013)

32.Videira, C., Silva, A. R.: Patterns and metamodel for a natural-language-based requirements
specification language. In Proceedings of CAiSE, (2005)

33. Withall, S.: Software Requirements Patterns. Microsoft Press (2007)

N kW

*®

