
28TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2019 TOULON, FRANCE)

Industrial Involvement in Information System Education: Lessons

Learned from a Software Quality Course

Stanislav Chren

Faculty of Informatics/Masaryk University

Brno, Czech Republic chren@mail.muni.cz

Bruno Rossi

Faculty of Informatics/Masaryk University

Brno, Czech Republic brossi@mail.muni.cz

Barbora Buhnova

Faculty of Informatics/Masaryk University

Brno, Czech Republic buhnova@fi.mun.cz

Mouzhi Ge

Faculty of Informatics/Masaryk University

Brno, Czech Republic mouzhi.ge@muni.cz

Tomas Pitner

Faculty of Informatics/Masaryk University

Brno, Czech Republic tomp@fi.muni.cz

Abstract

As Information System (IS) development is closely related to industry and real-world

applications, industrial involvement is a critical element in IS education. This paper

studies one typical IS course - a Software Quality course, and reflects our experience with

involving a mix of industrial experts in building a practical IS course that would increase

students’ competences in critical thinking about the consequences of the design and

quality engineering decisions that they are making during software development. In the
course design, the industrial experts are involved in lecturing, hands-on-exercise seminars

and final student evaluation. We find that students are showing active course participation

with our designed industrial involvement. Furthermore, we summarize lessons learned

from the industry involvement, as well as the reflections on the value perceived by the

industrial experts involved in the IS education.

Keywords: Industrial involvement, software quality course, information system

education, teaching information systems

1. Introduction

Information System (IS) education is developed under the discipline of computing [20]. It

has been explicitly recognized that computing knowledge in IS education is mainly
developed by computer science, software engineering, and computer engineering [20],

where software engineering plays a foundational role in IS development. Therefore,

software engineering, as well as its sub-disciplines such as software quality or software

architecture, has been considered as a set of critical courses in IS education. However,
with the rapid development of the software techniques, university education may lag

behind the industry in software development. Thus, Topi [19] proposes to build an

industry advisory board for IS education, which serves as a communication channel
between software companies and IS educational resources such as university courses.

CHREN ET AL. INDUSTRIAL INVOLVEMENT IN IS EDUCATION

This idea is widely implemented, e.g. Industrial Board at the Faculty of Information
Technology, Brno University of Technology, or Association of Industrial Partners at the

Faculty of Informatics, Masaryk University, Czech Republic. Currently, the Study

Program Boards at Czech Universities engage representatives from industry to form link
between (some of) their study programs with industrial practice.

Effective learning in IS can be represented by the value of the course content to the

students. The value can be further explained by the knowledge obtained during the
university education or by the practical usage after the education. Thus, in order to teach

software engineering courses in IS, we consider that the perception of the course value to

university students can be significantly increased when a balanced mix of both industrial

and academic views on the matter is included in the course. One paramount challenge for
software engineering courses is the need to have practical involvement of students [13],

[16]. Without such involvement, it can be difficult for students to grasp all the

implications and complexities of real-world projects. Some experts even propose to
postpone frontal theoretical lectures, to support problem-solving learning, from which

relevant theory can be explained afterwards, like in the Extreme Apprenticeship approach

[11].
The intuition of achieving the effective learning in IS education is to drive the

lectures by different viewpoints from various industrial experts, in combination with

representatives from academia, and trigger discussion on how diverse the topic can be in

practice. The goal of such approach is to engage students in critical thinking about
software quality from many different perspectives, and hence allow them to predict the

consequences of their design decisions. The development of such critical thinking is

formulated by our industrial partners as the key skill that distinguishes senior engineers
from junior developers. Therefore, within the software engineering courses, it is valuable

to blend industrial partners to promote the learning of this skill.

In this paper, we select an essential software engineering course, Software Quality, to

illustrate the industrial involvement in IS education. We report the learned lessons and
experience with maximising such viewpoint balance in developing and teaching a

university course on Software Quality, because during discussions with our industrial

partners we became to understand that this domain is being governed by many different
perspectives that should all be understood and balanced during software development.

This is confirmed also by the Software Engineering Body of Knowledge, which defines

software quality as a pervasive aspect in software engineering, covering also many other
areas such as testing, and maintenance [1].

To further enhance the practical skillset of the students, the lectures were

accompanied with hands-on-exercise seminars (two hours per week during the whole

semester, i.e. 14 weeks), which were offered in two programming languages (Java and
C#) and two flavours (academic and industrial—where the industrial version of the

seminars was driven and taught solely by industrial experts, while the academic version

was governed by our internal team that included industrial experts only during some
lessons).

The remainder of this paper is structured as follows. After related work review in

Section 2, Section 3 describes the course content design and our strategy to industrial
involvement. The reflections on the course from the industrial perspective are

summarised in Section 4, and the conclusion, limitation and future works are presented in

Section 5

2. Related Work

There are a number of studies that describe experiences with teaching practical software
engineering courses. Very often these courses teach general software engineering

practices and principles. Some of these studies recognize the importance of software

quality [10], [15]. However, software quality is not their primary focus, i.e. they teach

methods which lead to the improvement of software quality, such as team collaboration
[18] or testing [7] but they lack comprehensive overview of the complex in the software

ISD2019 FRANCE

quality domain.
There are also several papers devoted to specialised software quality courses [12], [7].

Although these courses are practical, they mostly do not rely on the collaboration with

industrial partners. Gotel et al. [5] incorporated the work on real open source projects into
the practical parts of the course, but the direct feedback from the industry to the course

curriculum is not considered. The industrial involvement in teaching software

engineering brings benefits to all interested parties and has been integrated into many
courses [8], [14]. There are various approaches on how to involve industry in terms of

courses’ content. There are courses which involve projects that simulate the industrial

environment and assignments but are not done in close cooperation with an industrial

partner [6]. Then there are courses, which enable students to work on projects and
assignments provided by companies [14].

However, there is a lack of studies that would detail courses in which the industry is

directly involved in the course organisation. From the software quality domain, Jaccheri
[9] describes a software quality course where the local companies participated in the

lecturing process. While this work is in some aspects similar to ours, in our case, the

content and design of the course are more industry-driven. That means, our course is
fully intertwined with the industry. For example, the selection of lecture topics and

content of the practical seminar sessions are designed jointly by the practitioners and

university professors. Some practical seminars (the whole semester of 2 hours per week,

14 weeks in row) are conducted and led entirely by the industrial partners. Table 1
summarizes the types of industry involvement according to related works.

Table 1. Teaching methods with industry in software engineering

Reference Teaching methods

[18] Team collaboration

[7] Software testing driven

[12] Industrial context illustration

[5] Real-world open source project

[14] Assignments provided by companies

[9] Companies participate in the lectures

[8] Industry as course involvers

 This paper Topic design involving industry and practical seminar by industry

3. Software Quality Course Design

One of the key challenges in defining the course was to select the sub-topics in the IS

domain that could be relevant both from the theoretical (lectures) and practical (hands-
on-exercise seminar groups) point of view. As this is a software quality course, we take

into consideration that some existing courses in the study curricula already introduce the

students to several concepts in the software quality area. For example, while no specific
software testing course exists at our faculty, most of the concepts are spread across

several courses. We also took into consideration the experiences gathered from designing

and managing the Software Engineering course at the Faculty of Informatics of Masaryk
University, in which recently we looked at the quality over years of UML models

produced by students [2]. In the initial run of the Software Quality course, we defined the

following areas:

 Describing the concept of Software Quality and the different attributes. This was

an introduction for the course, so that the main concepts do not need to be

repeated;

 Clean Code, SOLID principles, bad code smells and code refactoring. This was a

relevant part of the hands-on-exercise seminar groups to introduce students to the

importance of the principles and application of refactoring;

CHREN ET AL. INDUSTRIAL INVOLVEMENT IN IS EDUCATION

 The role of software architecture. This was a topic promoted strongly by the

industrial partners, willing to give their point of view on software architecture and

its relevance for software quality;

 Principles of testing. We focused on giving all students the basis to follow the

testing part of the course, by providing them with definitions and principles for the

application of the testing process. We also focused on the suggestions relevant to

testing object oriented software;

 Automated testing and testability. Concepts such as continuous integration and

automated testing were considered important to give the students instruments that

they could use during the seminar sessions;

 Focus on quality attributes and their conflicts. This lecture focused on the interplay

of performance, scalability, reliability, testability, maintainability quality concerns

and tactics to address them;

 Testing in Agile development. This lecture focused on giving an overview of

testing methodologies within agile development processes;

 Performance engineering and performance testing. Based on the expertise of

industrial experts, the lecture focused on giving details of the implications of

performance testing and different frameworks that can be used to monitor and

improve such quality characteristic;

 Challenges of quality management in cloud applications. Based on the current

relevance of cloud applications, the lecture focused on looking at quality

attributes for cloud-based software architectures;

 The software quality management process. This lecture was giving the final point

on all previous lectures by reviewing different process quality management

standards (e.g. ISO/IEC 25000:2014, ISO/IEC 15504 (SPICE), CMMI, various

other maturity models);

While these topics do not cover all information relevant to software quality, they are

those that were considered the most relevant by the team of both industrial and academic
experts, after considering constraints on topics covered in other courses.

The practical sessions were given within hands-on-exercise seminars focused on Java

and C#. Java seminars were held by an academic team, while C seminars, by industry
experts to different students divided in groups. The two seminar types—while

maintaining relation with the course’s main topics—were different in terms of syllabus,

with Java seminars mimicking more the content of the lectures, while the C# seminars

added a few more topics to take advantage of the expert knowledge present in the team
that taught it, mainly on product quality and relevant processes.

The Java seminars instead covered more tools to support the topics (Maven, Git,

Junit), Clean Code, SOLID principles, refactoring, TDD with JUnit and Mockito, test
plans, issues and Selenium, performance testing and profiling, static code analysis, code

reviews, and continuous integration. Furthermore, the Java and C# groups differ in the

format of the seminar sessions. The C# groups focus more on the practical
demonstrations and hands-on tutorials from industrial experts. In total, there are 12

seminar sessions, each lasting 100 minutes. The Java groups put more emphasis towards

independent work of students working on practical assignments in which they can

exercise the seminar topics. To be able to finish also more complex tasks, the Java
seminar sessions last 200 minutes and there are only 6 sessions during the semester.

Although the attendance at the seminar sessions is required, the attendance at the

lectures is not mandatory. In order to motivate the students to attend the lectures, the
lecturers were encouraged to engage students in active participation and were allowed to

ISD2019 FRANCE

distribute bonus points among the present students for their participation in the
discussions or for completing exercises at the lecture.

On top of that, students are required to complete three large homework assignments

consisting of several mandatory and optional tasks. The first assignment is focusing on
refactoring, in which students are asked to refactor a legacy code of a simple game.

Moreover, students are asked to follow the Clean code and SOLID principles. The second

assignment focuses on testing and students need to implement specified tests using
Mockito library and various Junit extensions. The third assignment is focusing on the

static code analysis with the Checkstyle tool. The goal is to implement a custom check

that could detect specified code smells.

At the end of the course, we organised a final colloquium event followed by the
written test. During the colloquium, the students were divided into groups, where each

group was led by an industrial expert who was responsible for one of the lectures. The

groups were assigned with a software quality related topic for discussion. The students
were discussing the selected topic, moderated by the industrial partner. The outcome of

the discussion was then presented to other groups – where each student from the

discussion group was asked for one insight that was most surprising for them. In the next
year we consider adding voting for the best insight by the students.

The final grade depended on the total point score accumulated during the course run.

The points were awarded for the assignments solved at the seminar sessions, for the

activity during the lectures and for the final written test. Currently, the course is offered
to the maximum of 70 students. In the future runs, we plan to increase the capacity up to

100 students. Whole course is taught in English.

Over the past decade, Brno, where Masaryk University is located, has grown into a
technological hub with very high presence of both established technological leaders

(Honeywell, Siemens, IBM, Red Hat, and others) and successful start-ups (Y Soft,

Kentico Software, Flowmon Networks, and many more), with very strong link to local

universities (with over 85,000 students overall in the city of 400,000). Thanks to these
conditions, Masaryk University has a number of established platforms to underline the

industrial cooperation, where the most relevant platform for the Faculty of Informatics is

the Association of Industrial Partners (AIP), which gathers 32 selected companies with
the highest potential of mutually beneficial intensive cooperation.

These were the companies, from which a working group has been established to

contribute to the design of the Software Quality course discussed in this paper. Within the
first phase, the goals of the course have been established, which were then reflected by

our internal team in the design of the course syllabus. The industrial experts were then

invited to prepare and give selected lectures and seminars, with the aim to establish 50:50

balance among academia and industry within both lectures and seminars, which has been
achieved. Overall, experts from five companies were involved. The brief profiles of the

companies is shown in Table 2.

4. Lessons Learned and Reflections from Industry Involvement

At the end of the software quality course, we submitted a questionnaire to the industrial

partners. The main goal was to evaluate the industrial involvement in teaching software
quality from the industrial practitioners who provide both frontal lectures and practical

seminars. The industrial involvement is studied from six aspects, which are the software

quality definition, software quality attributes, involvement motivation, teaching
reflection, student’s required skills, student’s missing skills. Each of the aspects is

formulated by a question and thus there is a total of six questions. The selection of the six

aspects is based the agreement from the five faculty members who are or were teaching
the software quality course. The study is conducted in the form of a semi-structured

interview to the course industry participants.

CHREN ET AL. INDUSTRIAL INVOLVEMENT IN IS EDUCATION

Table 2. Industrial partner profiles

Name Employees Field Course topic Participation

Company 1 250+ HW and SW for 2D/3D printing SW architecture, Clean code

& SOLID principles,

Refactoring

Lectures,

seminars

Company 2 300+ Network management and

monitoring

Automated testing Lecture

Company 3 9000+ Industrial technologies, Energy,

Healthcare

Quality and testing in agile Lecture

Company 4 700+ Operating system, Enterprise SW Performance testing Lecture,

seminar

Company 5 4000+ Aerospace systems, CPS Static code analysis Lecture

As Question 2, 5, and 6 can be detailed to concrete constructs, a quantitative survey is

also combined with the interview. Since we suppose that the interview results from

industry can reveal more constructive conclusion than students, the interviewee are the
industrial experts from the five companies who are involved in the lectures or practical

seminars of the software quality course. There are seven interviewees in total.

 Q1. What is the definition of software quality for each industrial participant?

Rationale: there is no univocal definition of software quality, the goal of this

question was to get a view about what software quality means for each of the

participants, to understand differences about the assumptions in the answers to

the other questions.

 Q2. What are the most important software quality attributes according to the

industrial participants? Rationale: as there is no unique definition of software

quality, each industrial participant can have a different consideration about the

most important attributes that need to be considered when dealing with software

quality.

 Q3. What are the motivations for industrial participants to take part in the software

quality course? Rationale: we wanted to know about the reasons industrial

participants take into account to take part to the teaching process of the software

quality course.

 Q4. What are the lessons learned for industrial participants from taking part in the

software quality course? Rationale: understanding what are the main takeaways

by the industrial participants. What are key learning experiences that industrial

participants made by taking part to the course.

 Q5. What are the skills that industrial participants consider relevant for students

in the area of software quality? Rationale: this question was essential to

understand what are considered as important skills to be exercised in a software

quality course.

 Q6. What are the skills that the students lack in the area of software quality?

Rationale: similar to the previous question, also this one evaluates the perception

of industrial partners about the skills needed. In this case, we are interested in

knowing which skills the participants consider as lacking from the side of the

students.

Overall, we got response from all five companies with seven respondents involved in
either lecturing, laboratories and/or material preparation. The answers are summarized as

follows.

ISD2019 FRANCE

Q1. What is software quality from your point of view? We collected several points of
view about question one from the industrial participants. For some of them, quality is all

about the people, some others refer to the ISO/IEC 25010 standard about software quality

to use as a reference framework for all that is needed in terms of software quality (either
product or process). Others take a more "business needs" point of view, in the sense that

quality should be focused on the final customers and value provided. They emphasize the

fact that the "customer gets the best experience while using the software", "...(final goal
should be to build) maintainable software satisfying business needs" , or "(develop) a

product that does it well in the eyes of all stakeholders on various quality scales" .

However, many of the industrial participants focus more at the product quality level,

underlining the importance of "high maintainability and low number of bugs" and "bug
free and maintainable software (satisfying business needs)". It can be seen that for IS and

Software Engineering education, the practitioners may consider the courses from

different views, some of which can be quite different from the academic view. For
example, the ISO/IEC 25010 standard about software quality can be gradually integrated

into IS courses, giving a point of view that can be supported by industrial practices.

Q2. What attributes of software quality are the most important to you? It seems to be
an agreement that reliability is the most important quality for the participants over

security and performance that come in the second place. Maintainability and scalability

come next, while testability seems less important (Fig. 1). Respondents also indicate

other attributes as potentially relevant, such as profitability, portability, user experience.
The results reflect both the structure of the course and the seminar groups. In this course,

security was not covered as it was already discussed in other courses, so there would

have been too much overlap with their contents. Considering the number of responses,
the overall importance of the individual quality attributes was well balanced. This

confirms that we were able to involve experts with different preferences of quality

perspectives, which was one of the keys for involving these practitioners. It indicates that

in IS education, different industrial experts may have different focus and practical
concerns. This can be because of their working environments and teaching preferences.

From our experience, it is valuable to involve industrial experts with a range of different

expertise to offer a more comprehensive teaching experience to students.

Figure 1. Attributes of software quality that are the most important

Q3. What motivated you to participate in the course? The main answer from

industrial participants was to share practical experience, followed by getting in touch

with students to understand their interests. Building personal experience in teaching and
promotion of the company were less relevant. Even less relevant were to build the

perception in the students about what it means to cover a specific role in the quality

process, and to share working opportunities with students. We observe that we have

CHREN ET AL. INDUSTRIAL INVOLVEMENT IN IS EDUCATION

bilateral benefits for the industrial involvement. On the one hand, the practitioners would
like to share their experience with students, on the other hand, the practitioners may also

involve the students in their companies. For IS education, it can be seen that from the

industrial perspective, involving in university education is highly motivating. The
industrial participants can play an active role in the IS education, instead of becoming

just guest lecturers. This can create a sort of feedback loop, in which their involvement

gives rise to new topics more in synchronization with industrial needs.
Q4. Are there any lessons learned from your involvement in the course? Industrial

participants reported about many aspects that were learned by taking part to the course.

"Talking more about practical examples that are the most interesting for students" , or

"...to always have a backup plan", plus to note "...how many views we have on the SOLID
and some programming techniques" were some of the main points. Others reported that

"software development uses many different tools, it is not possible to show all of them

during one course" and that "practical, experience-based examples and simple ways to
try something are always better than a theory". The results indicate that it can be easier

to use practical examples to approach the students in IS education, though, of course,

theory must still be present to support the teaching outcome from the course. The main
point is that the practical examples can be obtained from industries, to make them as

realistic as possible in the context of the future working environment of students. In this

sense, one comment was that examples seen during the course are too limited and typical

represent "green field" projects, while students face different challenges in industry by
having to deal with large and legacy systems that need to be updated and mainta ined. For

some IS/Software Engineering course such as IT management, it mostly starts from

theories and then applications, and some management framework might not even be used
in practice. We propose that practical examples from industrial experts can be introduced

at the beginning of the courses to motivate the students and allow students to see the real-

world use cases. Afterwards, the students can proactively think about the application

scenario of the theoretical frameworks – seeing them better located in the practical
context. Of course, there is a long debate whether practice should follow theory, vice-

versa, or alternative ways of involving students [4, 17]. The industrial participants seem

to indicate that for a Software Quality course, a more practical focus is the key to give
students a better learning outcome. Furthermore, regarding what benefits the

collaboration brought, many respondents reported that it "increased the awareness of

students about the company". This aspect was not considered as one of the main goals by
the external industrial collaborators, but it was one result that was appreciated by the

management of the companies involved.

Q5. What skills/knowledge are essential for the students to have in terms of software

quality? Industrial participants voted on a scale from 0 (not relevant) to 5 (highly
relevant) based on a list of 16 skills taken from the course’s content. Ordered by the

median of the answered values (Table 3), we can report that Continuous Integration /

Delivery was considered the most essential skill for students, followed by refactoring and
automated testing. We consider the answer by industrial participants was due to the

importance of these aspects in nowadays software development context, as they are a

main part of the DevOps movement for the automation of software development and
delivery [3], a key aspect of modern software development practices.

The less relevant aspects were the "software quality management process", "risk-

based testing", "conflicts between quality attributes", "static code analysis", "cloud

quality management". While the less interest on some of these aspects can be justified
due to the more management point of view, we found surprising the low position of static

code analysis, usually an activity that is quite relevant in the teaching part of the course,

but might be less relevant for the industrial participants.
Due the importance of this question, we have further plotted the variation of the

essential skills in software quality in Figure 2. In this specific course, the required

essential skills from industrial view can vary in a large scale (variation is from 1 to 5). In

a university education, academics may plan to design a comprehensive syllabus and give
the students a better overview of the taught topics. For industry, it is mostly deliverable-

ISD2019 FRANCE

driven, thus, essential skills from industrial view are usually prioritized. In the IS
education, we may take into account that what skills industry considers important can

influence the focus of the industrial lectures. It is however also important to let the

students to have wide view on certain IS topic and deep understanding on some aspects
of this IS topic.

Table 3. What skills/knowledge are essential for the students to have in terms of software quality?

Rank Skill Median Mean

1 Continuous integration/delivery 5.00 4.00

2 Refactoring 4.00 3.00

3 Automated testing 3.00 3.40

4 Clean code / SOLID / GRASP principles 2.00 2.67

5 Software measurement and metrics 2.00 2.20

6 Code reviews 2.00 2.20

7 Test case specification 2.00 2.17

8 Functional testing 2.00 2.17

9 Performance testing 2.00 2.00

10 Acceptance testing 2.00 2.00

11 KISS / YAGNI principles 1.50 2.17

12 Software quality management process 1.00 1.67

13 Risk-based testing 1.00 1.40

14 Conflicts between quality attributes 1.00 1.40

15 Static code analysis 1.00 1.00

16 Cloud quality management 1.00 0.80

Q6. Are there any skills/knowledge that current (post)graduate students lack in terms

of software quality? Industrial participants voted on a scale from 0 (not relevant) to 5

(highly relevant) on the same list of 16 skills taken from the course’s content. This time
they were asked to evaluate the lack of skills of students according to their industrial

experience. Ordered by the median of the answered values (Table 4), automated testing,

clean code / SOLID / GRASP principles, continuous integration / delivery seem to be the

skills that are mostly missing in the area of software quality.

Figure 2. Variation of important attributes in software quality

The results of Q6 are plotted in Figure 3. We can observe that the variation from Q6 is

not as big as results from Q5. Together with result in Figure 3 and 3, it can be interpreted
that the industry clearly knows what they want but they may not deeply understand the

students and their intended education. It reflects that the industry may consider that it is

always good for the students to learn something. However, when the industry considers
the essential skills from the students, they will have a clear priority, which depends on the

concrete IS topics. In IS education, when we intend to involve the industrial opinions in

the curriculum design, it is more effective to survey the direct requirements from industry
rather not what is missing the in the current IS education.

CHREN ET AL. INDUSTRIAL INVOLVEMENT IN IS EDUCATION

Table 4. Are there any skills/knowledge that current post graduate students lack in the software quality?

Rank Skill Median Mean

1 Automated testing 3.00 3.25

2 Clean code / SOLID / GRASP principles 3.00 2.67

3 Continuous integration/delivery 2.50 3.00

4 Test case specification 2.00 2.33

5 Performance testing 2.00 2.25

6 Code reviews 2.00 1.67

7 Refactoring 2.00 1.33

8 Software quality management process 1.00 1.75

9 Acceptance testing 1.00 1.67

10 KISS / YAGNI principles 1.00 1.00

11 Functional testing 1.00 1.00

12 Risk-based testing 1.00 1.00

13 Static code analysis 1.00 1.00

14 Software measurement and metrics 0.50 1.50

15 Conflicts between quality attributes 0.50 1.25

16 Cloud quality management 0.00 0.67

Figure 3. Variation of lack of skills in software quality

Based on the questionnaire and qualitative interpretations, we found that the practitioners

may consider topics the IS courses from various perspectives. It is important to let the

students understand the different industrial thinking. Since different industrial experts
may have different practical foci, it is valuable to involve more industrial experts from

different companies into the IS courses. From the industrial side, they are highly

motivated to get involved in the university courses. The IS education may offer more

opportunities for industrial involvement. Furthermore, we propose practical example is a
good entry point for the students to learn the theoretical knowledge. Also, the real-world

use cases and applications can provoke the student’s learning interests to IS courses.

Finally, when we design the IS courses, it is more effective to ask the requirements from
industry, which can better catch what is important and needed from industry.

4.1. Threats to Validity

There are several threats to validity we need to report for this research article. The first

one is about external validity and generalization of the results. We cannot claim results
hold for any industrial context, but they can be considered as representative of the local

context. The whole sample of industrial participants was based on a set of most

representative companies in the area with the most interested employees in concepts such

as software quality. Sample selection might be considered as a form of selection bias, as

ISD2019 FRANCE

the involved participants are highly interested in the course topics, and not randomly
selected within companies. However, for the goals of the survey, such selection can be

considered as irrelevant, as the scope was the evaluation of the specificity of a software

quality course, so the selection strategy was based on getting industry experts highly
experienced in the topic.

About internal validity, for practical reasons the survey was submitted at the end of

the software quality course. While some questions could only be answered at the end, the
answer to others (like Q1, about the definition of software quality from each participant)

might have been influenced by the respondents’ participation to the course. As such, all

answers to questions have to be considered as ex-post answers after one iteration of the

course.

5. Conclusions

In this paper, we have studied a typical IS course in software engineering: software

quality. This paper has presented our reflections, interpretations and lesson learned on

defining, preparing and teaching a Software Quality course in very close cooperation

with industrial partners, who were involved not only in lecturing (which is a common
strategy), but also in definition of the course syllabus, student’s involvement (in active

participation in lectures and final colloquium event), hands-on-exercise seminars and

final student evaluation. These findings are expected to be not only useful in other IS
courses, but also be a valuable inspiration for other academic teams that would like to

take advantage of the practical software engineering knowledge available within local

industry. Furthermore, since in our study that many anonymous students refer to this
course as the best course they ever attended, we consider this course evaluation result as a

success from the course design, which can also validate the implications of the findings

in this paper

One of the limitations in this work is the representativeness of the samples in
industry. Although we have considered the diversity of the selection of different

companies, the five companies involved in the study are limited to a regional sample.

Further, the interviewees from the companies may not represent the whole opinion from
their companies. Thus, the replies to the questionnaires may miss addressing specific

aspects from comprehensive feedback. As future work, we plan to integrate the industrial

involvement into more IS courses such as IS Management or IT Services Management.

Based on the pilot survey study in this paper, we intend to propose a systematic method
of how to involve industrial partners in different IS courses, where different experiences

can be shared and integrated into the entire IS curriculum.

References

1. Bourque, P., Fairley, R. E., et al.: Guide to the software engineering body of knowledge,

Version 3.0. IEEE Computer Society Press (2014)

2. Chren, S., Buhnova, B., Macak, M., Daubner, L., and Rossi, B.: Mistakes in uml

diagrams: Analysis of student projects in a software engineering course. In Proceedings

of the 41st International Conference on Software Engineering: Software Engineering

Education and Training, Montreal, Canada (2019)

3. Ebert, C., Gallardo, G., Hernantes, J., and Serrano, N.: IEEE Software, 33(3), pp. 94–100

(2016)

4. Gannod, G., Burge, J., and Helmick, M.: Using the inverted classroom to teach software

engineering. In Proceedings of the ACM/IEEE 30th International Conference on

Software Engineering, pp. 777–786. IEEE (2008)

5. Gotel, O., Scharff, C., and Wildenberg, A.: Teaching software quality assurance by

encouraging student contributions to an open source web-based system for the assessment

of programming assignments. In ACM SIGCSE Bulletin, volume 40, pp. 214–218. ACM.

(2008)

6. Hayes, J. H.: Energizing software engineering education through real-world projects as

CHREN ET AL. INDUSTRIAL INVOLVEMENT IN IS EDUCATION

experimental studies. In Proceedings of 15th Conference on Software Engineering

Education and Training, 2002, pp. 192–206 (2002)

7. Hilburn, T. B. and Townhidnejad, M.: Software quality: A curriculum postscript? In

Proceedings of the 31st SIGCSE Technical Symposium on Computer Science Education,

pp. 167–171. ACM (2000).

8. Jaccheri, L. and Morasca, S.: On the importance of dialogue with industry about software

engineering education. In Proceedings of the 2006 International Workshop on Summit on

Software Engineering Education, pp. 5–8. ACM (2006)

9. Jaccheri, M. L.: Software quality and software process improvement course based on

interaction with the local software industry. Computer Applications in Engineering

Education, 9(4), pp. 265–272 (2001)

10. Jazayeri, M.: The education of a software engineer. In Proceedings of the 19 th IEEE

International Conference on Automated Software Engineering, pp .18– 27. IEEE (2004)

11. Keijonen, H., Kurhila, J., and Vihavainen, A.: Carry-on effect in extreme apprenticeship.

In 2013 IEEE Frontiers in Education Conference, pp. 1150–1155. IEEE (2013)

12. LaPorte, C. Y., April, A., and Bencherif, K.: Teaching software quality assurance in an

undergraduate software engineering program. Software Quality Professional, 9(3), (2007)

13. Liebenberg, J., Huisman, M., and Mentz, E.: The relevance of software development

education for students. IEEE Transactions on Education, 58(4), pp. 242–248, (2015)

14. Reichlmay, T. J.: Collaborating with industry: Strategies for an undergraduate software

engineering program. In Proceedings of the 2006 International Workshop on Summit on

Software Engineering Education, pp. 13–16. ACM (2006)

15. Richardson, I., Reid, L., Seidman, S. B., Pattinson, B., and Delaney, Y.: Educating

software engineers of the future: Software quality research through problem-based

learning. In Proceedings of 24th IEEE-CS Conference on Software Engineering

Education and Training, pp. 91–100, (2011)

16. Shaw, M.: Software engineering education: a roadmap. In Proceedings of the conference

on The future of Software Engineering, pp. 371–380. ACM, (2000)

17. Strayer, J. F.: How learning in an inverted classroom influences cooperation, innovation

and task orientation. Learning environments research, 15(2), pp.171–193, (2012)

18. Sussy, B. O., Calvo-Manzano, J. A., Gonzalo, C., and Tomás, S. F.: Teaching team

software process in graduate courses to increase productivity and improve software

quality. In 2008 32nd Annual IEEE International Computer Software and Applications

Conference, pp. 440–446, (2008)

19. Topi, H.: Is education: Proposing an industry advisory board for is education. ACM

Inroads, 9(1), pp.17–18, (2018)

20. Topi, H.: Reflections on the current state and future of information systems education.

Journal of Information Systems Education, 30(1), pp.1–9, (2019)

