
28TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2019 TOULON, FRANCE)

Critical Success Factors of Continuous Practices in a DevOps

Context

Michiel van Belzen

Open University Heerlen, The Netherlands michiel.vanbelzen@ou.nl

Jos Trienekens

Open University Heerlen, The Netherlands jos.trienekens@ou.nl

Rob Kusters

Open University Heerlen, The Netherlands rob.kusters@ou.nl

Abstract

Context: Software companies try to achieve adaptive near to real-time software delivery

and apply continuous practices in a DevOps context. While continuous practices may

create new business opportunities, continuous practices also present new challenges.

Objective: This study aims to aid in adopting continuous practices and performance

improvements by increasing our understanding of these practices in a DevOps context.

Method: By conducting a systematic literature review we identified critical success

factors on continuous practices and grouped the found factors. This led to the construction

of our initial framework. We started to validate the critical success factors in this

framework in a DevOps context by conducting a first pilot interview.

Results: We developed an initial framework of critical success factors and conducted a

pilot interview to make a first step to validate the framework. Some factors were

confirmed and clarified i.e., enriched, on the basis of the retrieved information. In future

work we will strive at further validation of the framework.

Conclusions: We took a first step to validate our framework and retrieved valuable

information, which is promising to take the next steps for further development of the

framework.

Keywords: DevOps, Continuous Integration, Continuous Delivery, Continuous

Deployment, Critical Success Factors.

1. Introduction

To maintain their competitive advantage, software companies need to deliver valuable

product features in short cycles [5], while embracing business changes and pursuing

economic efficiency [33]. In an empirical study that examines how the concept of Value

is perceived in 14 agile software development organizations, the findings reveal that in

general, Delivery Process with respect to time is deemed the most important value

aspect among the participants [1]. Therefore the software development industry

implement continuous practices that enable organizations to frequently and reliably

release new features and products [10, 22, 35]. Well known continuous practices in the

context of software delivery are Continuous Integration, Continuous Delivery and

Continuous Deployment. Continuous Integration comprises i.a., compiling code and

building software packages [12]. Continuous Delivery and Continuous Deployment

enable deployments of software to production at any time [15, 33]. This implies that the

software intensive industry is evolving towards a value-driven and adaptive real-time

business paradigm [15, 16, 33]. For example Continuous Deployment may create new

business opportunities [7]. However it also comes with new challenges e.g., technical

and social challenges, and risks of adopting the Continuous Deployment process [7].

More recent studies (including literature reviews) highlight a number of challenges

VAN BELZEN ET AL. CRITICAL SUCCESS FACTORS OF CONTINUOUS PRACTICES IN A DEVOPS CONTEXT

which need to be overcome if continuous practices are to be successful e.g.,

interchangeably and synonymously used terms without rigorous definition [12, 22, 42],

but also system design problems, build design and release problems, and human and

organizational problems [7, 9, 22]. Based on a systematic literature review Shahin, Ali

Babar and Zhu [35] extracted seven Critical Success Factors (CSFs) of continuous

practices, in an order of importance: testing (effort and time), team awareness and

transparency, good design principles, customer, highly skilled and motivated team,

application domain, and appropriate infrastructure. However, they did not validate these

factors. In addition their definition of a CSF does not conform to the CSF theory and

therefore does not show much rigor. Dikert, Paasivaara and Lassenius [10] call for more

research on how challenges and success factors in agile transformations are experienced

and which ones are considered most important. With this study we aim to know what

the rigorously validated critical success factors of continuous practices are.

In addition to continuous practices, recent studies show that DevOps adoption

improve cycle times (and quality) as well [8, 27]. Although some researchers [27, 45]

suggest a relation between DevOps and continuous practices, there is no well-

established consensus regarding this relation [42]. With this study we aim to aid in

adopting continuous practices by increasing our understanding of continuous practices

in a DevOps context. This is relevant because more rigorous research on continuous

practices (e.g., Continuous Deployment) is needed [33] and no consensus exists in

literature on the definitions of continuous practices [12, 22].

Our main research question is: What are critical success factors of continuous

practices in a DevOps context? The sub questions are: (SQ1) What are continuous

practices? (SQ2) What are critical success factors of continuous practices? (SQ3) How

are these factors addressed in a DevOps context? To obtain an answer to SQ1 we

elaborate on the concepts of continuous practices in chapter 2. And we conducted a

systematic literature review on critical success factors of continuous practices. Based on

the findings we developed the initial framework of critical success factors which enabled

us to give an initial answer to SQ2 (chapter 3). To validate the initial answer to SQ2 we

conducted a first interview (chapter 3). This moment we can not yet answer SQ3.

Therefore we point to future work that will further validate and refine the framework in

chapter 4. This should lead to a full answer to SQ2 and an answer to SQ3. We hope the

framework can serve as a checklist to (1) guide for achieving implementation success of

continuous practices, (2) achieve performance improvements and (3) raise awareness for

those involved. The framework may be used as input for a performance measurement

system [17].

2. Theoretical background

Software development agility is considered as the capability of a development team to

efficiently and effectively respond to and incorporate requirement changes [24].

Continuous practices extent development agility by moving from cyclic to continuous

value delivery [33]. This chapter aims to answer our sub question SQ1 and to prepare

on SQ2. We begin to explore theoretical perspectives and empirical findings of

continuous practices. Continuous practices are expected to shorten the ‘cycle time’ i.e.,

minimalizing the time from the conception of a user story to its production [5].

Continuous Integration, elaborated in Section 2.1 ‘Continuous Integration’, is

considered to be a predecessor and requirement of Continuous Delivery [22, 35]. We

elaborate on Continuous Delivery in Section 2.2 ‘Continuous Delivery’. Some

researchers [12, 22] consider Continuous Deployment as an extension to Continuous

Delivery. In these cases Continuous Deployment (elaborated in Section 2.3 ‘Continuous

Deployment’) is considered as a process in which each change is built, tested and

deployed to production automatically in contrast to Continuous Delivery where each

change requires a manual step to deploy to production [22]. However in both practices

ISD2019 FRANCE

the deployment to production is automated [5].

In Section 2.4 ‘Critical Success Factors’, we explore theories on CSFs, which enables

us to retrieve CSFs on continuous practices to answer SQ2.

2.1. Continuous Integration

Continuous Integration may be defined as a process which comprises inter-connected

steps such as compiling code, running unit and acceptance tests, validating code

coverage, checking compliance with coding standards, and building deployment

packages [12]. The process is typically automatically triggered and is further

characterized by frequency of integration, ceremonies and highly visible artifacts to

help ensure that problems leading to integration failures are solved as quickly as

possible [12], and automated integration flows [39]. The frequency of integration

should be regular enough to ensure quick feedback to developers [12]. Good practice of

Continuous Integration requires all developers to integrate their work to a common code

repository, usually at least daily [13, 22]. After each integration, the system should be

built and tested, to ensure that the system is still functional after each change and that it

is safe for others to build on top of the new changes [22]. This iteration of integrating,

testing source code and solving problems is a ‘feedback loop’. In this way the level of

confidence in the source changes may successively increase as they progress through

the system [39]. However Continuous Integration activities are carried out much more

infrequently in industry practice as the term ‘Continuous Integration’ suggests [39],

especially at an individual level [43]. Larger software size, larger organizational size, a

lower proportion of developers in the organization and bigger software modules

correlate with lower continuity [15]. In addition Ståhl, Mårtensson and Bosch [43]

suggest that from a continuity point of view, direct integration with the mainline is

superior, but that larger organizations are unable or unwilling to work in such a way. In

2013 Ståhl & Bosch found differences in experienced Continuous Integration effects

[40]. In addition they concluded in 2014 based on a literature review, that there was no

consensus on Continuous Integration as a single, homogeneous practice [41]. Therefore

the authors proposed a descriptive model for better documentation of Continuous

Integration variants. Their model contains a number of attributes, grouped into themes,

covering the variation points where Continuous Integration implementations differ.

2.2. Continuous Delivery

Continuous Delivery is considered a software engineering approach [5]. It is composed

of a set of principles, patterns and practices designed to make deployments at any time

[14]. Teams continuously produce valuable software in short cycles, keeping the

software in a certain state till the point a human decides to release, to be able to release

reliably at any time [5, 15, 22]. Or in other words, as Fitzgerald and Stol [12] noticed,

Continuous Delivery refers to the ability to deploy software to an environment.

Important characteristics of Continuous Delivery are: valuable software, short cycles,

releasable at any time, and reliable releases [5]. Other important aspects are fast

feedback loops, work in small batches and automation support to ensure quick and

reliable releases to customers [12, 14, 35]. The aim of Continuous Delivery is reducing

risks and transaction costs while producing valuable software to production [14].

Laukkanen, Itkonen and Lassenius [22] found problems, causes and solutions

when adopting Continuous Delivery. The researchers conclude that problems of system

design are common, critical and the largest problems. In addition they noticed that

system design problems as well as resource and human and organizational problems

have the most effect on other themes. This is acknowledged by Humble [14] who states

that the real obstacles to implementing Continuous Delivery are the inadequate

architecture and a nongenerative culture. To help overcome adoption challenges Chen

[5] presented six strategies: (1) selling Continuous Delivery as a painkiller; (2)

establishing a dedicated team with multi-disciplinary members; (3) Continuous

VAN BELZEN ET AL. CRITICAL SUCCESS FACTORS OF CONTINUOUS PRACTICES IN A DEVOPS CONTEXT

Delivery of Continuous Delivery; (4) starting with the easy but important applications;

(5) visual Continuous Delivery pipeline skeleton; (6) expert drop.

2.3. Continuous Deployment

In contrast to Continuous Delivery, the Continuous Deployment approach aims to

deploy software code immediately to production for customers to use [7, 15, 33]. No

manual steps or decisions between a developer commit and a production deployment

are needed [22]. In this way feedback from users is gained much faster, reducing costs

of detecting defects [14, 22]. According to Humble [14] Continuous Deployment is

mainly limited to cloud- or datacenter- hosted services.

Besides customer feedback, Continuous Deployment requires (1) agile processes at

the team level; (2) integration of the complete R&D organization; (3) parallelization and

automation of processes [33].

2.4. Critical Success Factors

Rockart (1979), one of the researchers who developed the CSF theory, defined a CSF as

the limited number of areas in which satisfying results will ensure successful

competitive performance for the organization [32]. Considering several definitions,

Leidecker and Bruno [25] defined a CSF as those characteristics, conditions, or

variables that when properly sustained, maintained, or managed can have a significant

impact on the success of a firm competing in a particular industry. Shahin, Ali Babar

and Zhu [35] classified a factor as critical for making continuous practices successful,

when the factor was cited in at least 20% of the reviewed studies. However according to

Ram, Corkindale and Wu [31] a factor can only be termed a CSF if attending to this

factor in a satisfactory manner results in performance improvements i.e., identifying a

possibly important factor is not sufficient to constitute a CSF. The authors noticed that

to establish whether a CSF is really critical depends on the extent in which success and

performance may be measured e.g., user satisfaction or successful deployment of

software [31]. Following Ram, Corkindale and Wu [31] the question is whether the

factors that have been identified in the literature as CSFs of continuous practices have

been well enough established empirically as contributing to implementation success

and/or performance outcome. This is important as decision making by management

becomes complex when many factors are to be considered to achieve the desired goal of

continuous value delivery [18]. In this study we define a CSF as a factor which: (1)

should have a verified significant impact on the success of a continuous practice; (2)

results in verified performance improvements; (3) success and performance may be

measured.

Now that we have elaborated on continuous practices and CSF theories, we are able

to answer sub question SQ1 ‘What are continuous practices?’. Based on state of the art

literature we consider Continuous Integration as an automatically triggered process

which automatically integrates highly visible artifacts frequently enough to ensure

quick feedback to developers. Similarly we consider Continuous Delivery as the ability,

supported by automation, to reliably deploy valuable software to a production

environment at any time when a human decides to do so with the aim to reduce risks

and transaction costs. Continuous Deployment is defined almost the same, except the

actual deployment is done automatically instead of triggered by a human.

We explored CSF theories to prepare on SQ2 ‘What are critical success factors of

continuous practices’. Based on literature we found several criteria which we used to

formulate our definition of a CSF as a factor which: (1) should have a verified

significant impact on the success of a continuous practice; (2) results in verified

performance improvements; (3) success and performance may be measured.

3. Towards a Framework of Success Factors of Continuous Practices

ISD2019 FRANCE

To meet the call for more rigorously conducted research [33], we commenced a

Systematic Literature Review (SLR) method which is a methodologically rigorous

review of research results [19]. We choose to conduct a conventional SLR as a means to

aggregate knowledge about our research question [20], because we have a fine grained

research question (we search for CSFs). We structured the results of the SLR into a

preliminary theoretical framework of CSFs. We conducted pilot interviews with experts

in the field of continuous practices active in DevOps teams to validate the framework.

3.1. Research Methodology

Search process

Following the search process according to Kitchenham et al. (2010) [20] we searched

six digital libraries and one broad indexing service: IEEE computer society digital

library, ACM digital library, SpringerLink, Web of Science, Citeseer and SCOPUS.

Searches were based on ‘All fields’ (ACM, SpringerLink and Web of Science),

‘abstract’ (IEEE, Citeseer), ‘Title, abstract and keywords’ (SCOPUS) and the period

between 2001 (the emerge of the agile manifesto) and June 2019. We used the

following search string for every library (in the case of Citeseer we used three separate

search strings: “Continuous Delivery” AND DevOps, “Continuous Deployment” AND

DevOps, “Continuous Integration” AND DevOps) and indexing service: (“Continuous

Delivery” OR “Continuous Deployment” OR “Continuous Integration”) AND DevOps.

We did not include “Critical Success Factor” or “Factor” to the search string, because

we expected to find fewer relevant papers. The number of papers found, was 36 (IEEE),

213 (ACM), 113 (SpringerLink), 17 (Web of Science), 369 (Citeseer) and 177

(SCOPUS). We validated the outcome against the papers found during our exploratory

research and found one additional and relevant paper: Laukkanen et al. (2017) [22].

Study selection & quality assessment

After integrating the results for the different searches (resulting in 909 found papers)

and the removal of duplicates (resulting in 825 papers), we undertook an initial

screening of the remaining papers based on abstract including papers which studied

continuous practices topics (resulting in 82 papers). During the screening we exclude

studies that were obviously irrelevant and not in the English language. Afterwards we

assessed the remaining papers by reading the full text on the basis that they did not

include success/risk/fail factors. After reading the papers, 36 papers did not contain

CSFs leaving 19 papers for data extraction.

Data extraction process

In addition to the elaborated quality assessment above, the following data was extracted

from the remaining papers: theme, name of the factor (i.e., problem or challenge or

action or success factor or barrier or obstacle), citation of the factors’ description and

paper reference. We removed duplicates during the extraction.

3.2. Research Results

We summarized the description (citation) of every factor and grouped the found factors

into themes adopted from Laukkanen et al. [22] and Shahin, Ali Babar and Zhu [35],

which resulted in Table 1 ‘Initial framework’. Some factors could be related to specific

themes similar to Laukkanen et al. [22] and Shahin, Ali Babar and Zhu [35], viz. build

design (factors that were caused by build design decisions), system design (factors that

were caused by system design decisions), integration (factors that arise when the source

code is integrated into the mainline), testing (factors related to software testing), release

(factors occurring when the software is released), resource (factors related to resources),

customer (factors that arise from customer requirements or circumstances). Other

factors are generic or correspond with organizational aspects. We related these factors

to the theme ‘human and organizational’, similar to Laukkanen et al. [22] and Shahin,

Ali Babar and Zhu [35] as well.

VAN BELZEN ET AL. CRITICAL SUCCESS FACTORS OF CONTINUOUS PRACTICES IN A DEVOPS CONTEXT

Table 1 Initial framework

Factor Description Reference

Theme: Build design (factors that were caused by build design decisions).

Complex build Build system, process or scripts are complicated or complex. [22]

Inflexible build The build system cannot be modified flexibly. [22]

Legacy code

considerations

Integration with legacy systems sometimes enforce traditional test processes and/or

strain the legacy system developers (e.g. legacy systems’ architectures are usually not

amenable to Continuous Delivery and the teams working on these legacy systems

usually have ‘legacy’ culture, practices, and mindsets).

[2, 5, 26]

Application architecture (re-) architect applications for Continuous Delivery.

Software components or services, but also every entity (e.g., database and operating

system) that the application depends on, should be a unit of deployment in the

deployment process.

[5, 6, 37]

Fast feedback Developers are not able to receive the feedback from tests quickly. [12, 35]

Theme: System design (factors that were caused by system design decisions).

Database schema

changes

Software changes require changes of database schema. [22, 35]

Dependencies in design

and code

Highly coupled architectures, difficulty to find autonomous requirements for frequent

integrations.

[35]

Internal dependencies Dependencies between parts of the software system. [22]

System modularization The system consists of multiple units e.g., modules or services. [22]

Unsuitable architecture System architecture limits Continuous Delivery. [22]

Vendor lock-in A situation in which a customer using a product or service cannot easily transition to a

competitor's product or service.

[4]

Theme: Integration (factors that arise when the source code is integrated into the mainline).

Broken build Build stays broken for long time or breaks often. [22]

Broken development

flow

Developers get distracted and the flow of development breaks. [22]

Customer environment Lack of access to customer environment, complex and manual configuration, diversity

and complexity of customer sites, difficulty to stimulate production-like environment.

[35]

Dependency at

application level

Organizations need to ensure that there is no integration problem when deploying an

application to production.

[35]

Different development

and production

environments

Different environments cause frustrations due to non-representative testing. [26]

Domain constraints Some domains do not allow or cause difficulties to truly adopt and implement

Continuous Deployment.

[26, 35,

36]

Internal verification loop Needs to be shortened in order to not only develop functionality fast but also deploy it

fast at customer site.

[29]

Large commits Commits containing large amount of changes. [22]

Long-running branches Code is developed in branches that last for long time. [22]

Merging conflicts Third party components, incompatibly among dependent components, lack of

understanding about changed components.

[22]

[35]
Network configuration

and upgrade complexity

Different network configurations at customer site cause upgrade complexity. [29]

Slow integration

approval

Changes are approved slowly to the mainline. [22]

Work blockage Completing work tasks is blocked or prevented by broken build or other integrations in

a queue.

[22]

Theme: Testing (factors related to software testing).

Ambiguous test result Test result is not communicated to developers, is not an explicit pass or fail or it is not

clear what broke the build.

[22]

Complex testing Testing is complex e.g., setting up environment. [22]

Flaky tests Tests that randomly fail sometimes. [22]

Hardware testing Testing with special hardware that is under development or not always available. [22]

Insufficient level of

automated test coverage

Lack of sufficient automated test coverage [36]

Lack of fully automated

user acceptance test

Automation of tests at the end of the development process e.g., (user) acceptance test

and performance test, requires heavy workloads and time.

[36]

Lack of proper test

strategy

Lack of fully automated testing, lack of test-driven development. [35]

Manual and

nonfunctional testing

Additional test procedures required to cover specific tests and nonfunctional tests,

hindering test automation.

[5, 22]

Manual interpretation of

test results

Depends on the extent the regression tests can be automated, organizations can

significantly reduce the overall cycle time.

[36]

Manual quality check Although automation is critical in Continuous Deployment practice, manual tasks are [36]

ISD2019 FRANCE

Factor Description Reference

sometimes unavoidable.

Multi-platform testing Testing with multiple platforms when developers do not have access to all of them. [22]

Poor test quality Instable tests, low test coverage, low quality test data, long running tests, test

dependencies.

[35]

Problematic deployment Deployment of the software is time-consuming or error-prone. [22]

Time-consuming testing Testing takes too much time. The significantly increased frequency of test execution

makes test optimization important and useful.

[5, 22, 28]

UI testing Testing the user interface of the application. [22]

Untestable code Software is in a state that it cannot be tested. [22]

Theme: Release (factors occurring when the software is released).

Customer data

preservation

Preserving customer data between upgrades. [22]

Deployment downtime Downtime cannot be tolerated with frequent releases. [22]

Documentation Keeping the documentation in-sync with the released version. [22, 38]

Feature discovery Users might not discover new features. [22]

Highly bureaucratic

deployment process

Process which has a large number of formal tasks (e.g., getting approvals from various

people) to be performed manually before each release.

[36]

Lack of efficient roll

back mechanism

Lack of having efficient rollback mechanism, forces an organization to decrease the

pace of pushing changes to production.

[36]

Marketing Marketing versionless system. [22]

More deployed bugs Frequent releases cause more deployed bugs. [22]

Third party integration Frequent releases complicate third party integration. [22]

Theme: Human and organizational (factors related to human and organizational aspects).

Changing roles Different roles need to adapt for collaboration. [22]

Coordination and

collaboration challenges

Practicing Continuous Integration, Continuous Delivery, Continuous Deployment

needs more and effective coordination and communication between team members.

[35]

Cost Major upgrade in infrastructure and resources, training and coaching. [35]
Difficulty to change

established

organizational policies

and cultures

Lack of agile and suitable business model, changing log-lived feature branching to

short-live one in an established company.

[35]

Distributed organization Distributed team model, inconsistent perceptions among team members. [35]
Increase of technical

debt

Omitted quality and shortcuts in the development process. [47]

Lack of awareness and

transparency

Lack of understanding about the status of a project increase the number of merge

conflicts.

[35]

Lack of discipline Discipline to commit often, test diligently, monitor the build status and fix problems as

a team.

[22]

Lack of experience Lack of experience practicing Continuous Integration or Continuous Deployment.

Misunderstanding and trying to solve the problem with a prescriptive methodology or a

big expensive all-in-one DevOps technology. Or considering moving faster as

compromising the quality.

[22, 30,

35]

Lack of motivation People need to be motivated to get past early difficulties and effort. [22]

Lack of transparency The need to get an overview of the current status of development projects. [29]

More pressure Increased pressure because software needs to be in always-releasable state. [22, 35]

Organizational structure E.g., separation between divisions causes problems. Siloed lines of business. [22, 30]

Own interests Tension exists between departments due to competing goals. [4]

Own way of working Process sub-optimization [4]

Perceived territories of

control

E.g., system access required for Continuous Delivery is controlled by other parts of the

organization that do not have a principal interest in Continuous Delivery. Sense of

responsibility, which highlights that developers do not show accountability for the

deployment of the software or product.

[4, 30]

Resistance to change Not being facilitated in the change, new way of working not fitting the culture,

unexpected social and technical implications.

[22, 30,

35]
Skepticism and distrust

on continuous practices

Lack of trust on benefits of Continuous Integration, Continuous Delivery, Continuous

Deployment.

[35]

Team coordination Increased need for team coordination. [22, 35]

Team dependencies Cross-team dependencies, ripple effects of changes on multiple teams, dependency

between feature team and module team in embedded system domain.

[35]

Waste in processes Many traditional processes hinder Continuous Deployment e.g., a feature ready for

release must go through a change advisory board.

[4, 11]

Theme: Resource (factors related to resources).

Developer trust and

confidence

Developers must have sufficient proficiency and knowledge of typical Continuous

Deployment.

[26]

Effort Initially setting up Continuous Delivery requires effort. [22]

Insufficient hardware Build and test environments require hardware resources. [7, 22]

VAN BELZEN ET AL. CRITICAL SUCCESS FACTORS OF CONTINUOUS PRACTICES IN A DEVOPS CONTEXT

Factor Description Reference

resources

Infrastructure support The way the infrastructure is managed. Lack of the capability to automatically

provision the required infrastructure. The use of Platform-as-a-Service (PaaS).

[5, 21]

Lack of suitable tools

and technologies

Lack of mature tools for automating tests and reviewing code in Continuous

Integration, frequent changes in tools, security and reliability issues in build and

deployment tools, current tools do not fit to all organizations. Automated DevOps

pipeline security.

[3, 5, 30,

35]

Network latencies Network latencies hinder Continuous Integration. [22]

Theme: Customer (factors that arise from customer requirements or circumstances).

Applications that are not

amenable to Continuous

Deployment

For example monolithic, large applications. [4]

Communication Communication with the customer e.g., establishing trust before collaboration,

choosing the right form of communication strategy, dealing with conflicts and with

different stakeholders.

[46]

Customer environment

(dealing with

regulations)

Lack of carefully studying and exploring customer environments before moving to

Continuous Deployment leads to challenges e.g., dealing with regulations, or enforced

network separation.

[23, 36]

Customer preference Not all customers are happy with frequent release, customer organization policy may

affect practicing Continuous Deployment.

[26, 35]

Customer profile The needs of different user groups might diverge and change in different contexts,

establishing a customer sample group where all possible types of users are represented,

the customer’s level of competence, experience, knowledge and/or reliability.

[46]

Data management The customer-related data collection process and analysis of the data e.g., the internal

verification loop of the collected data has to be short and systematic, feedback should

be coming from the right channel. The analysis process requires high effort e.g., to

work with data with noise in it, eliminate human factors such as subjectivity or

prioritize tasks.

[46]

Demotivated customer Time and pace of deployment to production greatly depends customers’ cultures,

polices and goals. Not all customers are mature enough to accept a continuous release.

[36, 46]

Dependencies with

hardware and other

(legacy) application

Releasing an application on continuous basis requires deploying all dependent

applications in customer site, hardware and network dependencies.

[35]

Deployment considered

as a business decision

Therefore development team members have little control over deployment to

production.

[36]

Experiments and A/B

testing

The customer might not want to be a part of an experiment or they might not welcome

partially developed functionality.

Determining where to start to experiment with the customer.

[46]

Sales and suppliers Intermediaries might not be interested in collecting customer feedback after selling a

product or a service. Therefore user data is not accessible.

[46]

Setting-the-scene Preparing and receiving customer input is time-consuming. [46]

Transparency Limited or no transparency in data, process and feedback demotivates users to provide

feedback. However, too much transparency causes customers to interfere with

developers’ work, failures might be too visible to customers.

[46]

Updates, new features

and products

Customers might not realize or welcome changes. [22, 46]

We chose an inductive approach i.e., carrying out (cross-sectional) semi-structured

interviews and document studies to validate the factors of Table 1 ‘Initial framework’.

This approach contributes to our research goal to increase our understanding of

continuous practices in a DevOps context, because it enables us to achieve depth,

elaboration and soundness [44]. In addition it gives us the possibility to address real and

concrete experiences. We will interview experienced (preferably at least five years of

experience) DevOps team members and corresponding managers, because our initial

framework contains factors on different themes (technical and organizational). The

interviews will be transcribed, shared with the participants for feedback and finally used

for data analysis. To guide the interviews, we developed an interview protocol. The

interview protocol contains the steps to take from the invitation up to and including the

interview and required documents, viz. invitation letter, letter of consent and

questionnaire. The definitions of our concepts, Table 1 ‘Initial framework’, and the

letter of consent are part of the invitation letter. Thus enabling the participants to

prepare themselves. To test our interview protocol we conducted a pilot interview. Thus

we selected an experienced DevOps team lead, who was willing to participate. We sent

ISD2019 FRANCE

the team lead the invitation letter, including the definitions and the initial framework.

The initial framework was used as guidance/structure during the interview, which

worked out very well. We asked the interviewee if a success factor was recognized and

if it could be supported by a real experience. We also asked how the interviewee

estimates the importance/weigh of the factor, if there are any additional success factors

and which factors are related to each other (and why). We reserved 90 minutes to

interview the team lead and discussed all the factors. Some factors took more time than

others. However we did find some interesting results. The factors concerning the

themes of build design, system design and integration were considered as CSFs by the

interviewee, because a low code development platform was used, which enforces

correct builds contributing significant to Continuous Integration. Factors belonging to

the theme of human and organization were not considered as critical, with the exception

of technical debt. Lack of awareness by the product owner on technical debt impede

continuous practices in the long term. Concerning the theme of testing, the level of

automation was considered to be low impeding continuous practices. However some

tests were expected to continue to be manual e.g., a user acceptance test.

Documentation was seen as an important CSF as well, because undocumented features

confuse both developers and users. On the theme of release, third party integration was

impeding continuous practices in the past (at the moment a third party is not needed

anymore) and therefore mentioned as a CSF. And on the theme of customer,

communication was mentioned as a CSF due to the lack of a communication process,

which should support communication between the customer and developers. The

interviewee mentioned the role/responsibility of the product owner several times,

emphasizing that this is an important role. This could affect the factors ‘Customer

preference’ and ‘Customer profile’, which are part of the theme ‘Customer’. It would

appear that in this case these factors weigh more than other discussed factors.

During the interview we realized that some factors appear to be the same e.g.,

coordination and collaboration challenges, distributed organization, organizational

structure, perceived territories of control, team coordination, and team dependencies.

These factors are related to the way an organization is structured. Finally the

interviewee mentioned no additional factors.

To summarize our findings we found an extensive list of factors which we

classified into eight themes adopted from Laukkanen [22] and Shahin, Ali Babar and

Zhu [35], which resulted in our initial framework. Subsequently we conducted a pilot

interview to test our interview protocol and to validate our initial framework. We found

that the discussed factors were recognized and understood by the interviewee. We

learned that some factors were considered as CSF, some appear to be double and some

seem to weigh more than others.

4. Conclusions and Future Work

We conducted an SLR to find CSFs of continuous practices and developed an initial

framework. Subsequently we conducted a pilot interview and found that the discussed

factors were recognized and understood by the interviewee i.e., some factors were

considered as critical. And we learned that several factors appear to be double and some

factors seem to weigh more than others. Considering we extracted the found factors

from studies which have different abstraction levels, duplicates appear to be evident.

Besides that we decided to take more time to discuss the factors more extensive. In

addition we have to expand the initial answer to SQ2 ‘What are critical success factors

of continuous practices?’ and obtain an answer to SQ3 ‘How are these factors addressed

in a DevOps context?’. Therefore future work will be: conducting more interviews,

improving our classification of the found factors using the metaplan-method [34],

reformulating the remaining factors in terms of success factors to address the call for

more rigorous research [33] and the operationalisation of the framework. We hope the

VAN BELZEN ET AL. CRITICAL SUCCESS FACTORS OF CONTINUOUS PRACTICES IN A DEVOPS CONTEXT

framework can serve as a checklist to guide for achieving implementation success of

continuous practices, to achieve performance improvements and raise awareness for

those involved. A performance measurement system may be used to demonstrate that an

organization is following the CSFs, to monitor progress and to drive improvement by

developing adequate measures [17].

We will conduct interviews in different organizations to prove the applicability of

the framework. Additional empirically validated factors will be added and factors which

do not have significant impact on the success of a continuous practice and which do not

result in performance improvements (according our definition of a CSF), will be

removed from our initial framework. This will lead to an improved and refined

theoretical framework.

References

1. Alahyari, H., Berntsson Svensson, R., Gorschek, T.: A study of value in agile software

development organizations. Journal of Systems and Software. 125 271–288 (2017)

2. Albuquerque, A.B., Cruz, V.L.: Implementing DevOps in Legacy Systems. In: Silhavy, R.,

Silhavy, P., and Prokopova, Z. (eds.) Intelligent Systems in Cybernetics and Automation

Control Theory. pp. 143–161. Springer International Publishing, Cham (2019)

3. Bass, L., Holz, R., Rimba, P., Tran, A.B., Zhu, L.: Securing a Deployment Pipeline. In: 2015

IEEE/ACM 3rd International Workshop on Release Engineering. pp. 4–7. IEEE, Florence,

Italy (2015)

4. Chen, L.: Continuous Delivery: Huge Benefits, but Challenges Too. IEEE Software. 32 (2),

50–54 (2015)

5. Chen, L.: Continuous Delivery: Overcoming adoption challenges. Journal of Systems and

Software. 128 72–86 (2017)

6. Chen, L.: Towards Architecting for Continuous Delivery. In: 2015 12th Working IEEE/IFIP

Conference on Software Architecture. pp. 131–134. IEEE, Montreal, QC, Canada (2015)

7. Claps, G.G., Berntsson Svensson, R., Aurum, A.: On the journey to continuous deployment:

Technical and social challenges along the way. Information and Software Technology. 57 21–

31 (2015)

8. Colomo-Palacios, R., Fernandes, E., Soto-Acosta, P., Larrucea, X.: A case analysis of

enabling continuous software deployment through knowledge management. International

Journal of Information Management. 40 186–189 (2018)

9. Debbiche, A., Dienér, M., Berntsson Svensson, R.: Challenges When Adopting Continuous

Integration: A Case Study. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Männistö, T.,

Münch, J., and Raatikainen, M. (eds.) Product-Focused Software Process Improvement. pp.

17–32. Springer International Publishing, Cham (2014)

10. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile

transformations: A systematic literature review. Journal of Systems and Software. 119 87–

108 (2016)

11. Farid, A.B., Helmy, Y.M., Bahloul, M.M.: Enhancing Lean Software Development by using

Devops Practices. ijacsa. 8 (7), (2017)

12. Fitzgerald, B., Stol, K.-J.: Continuous software engineering: A roadmap and agenda. Journal

of Systems and Software. 123 176–189 (2017)

13. Fowler, M., Foemmel, M.: Continuous integration, http://www. thoughtworks.

com/Continuous Integration. pdf, 122, 14., (2006)

14. Humble, J.: Continuous delivery sounds great, but will it work here? Communications of the

ACM. 61 (4), 34–39 (2018)

15. Humble, J., Farley, D.: Continuous delivery: reliable software releases through build, test, and

deployment automation. Addison-Wesley, Upper Saddle River, NJ (2010)

16. Järvinen, J., Huomo, T., Mikkonen, T., Tyrväinen, P.: From Agile Software Development to

Mercury Business. In: Lassenius, C. and Smolander, K. (eds.) Software Business. Towards

Continuous Value Delivery. pp. 58–71. Springer International Publishing, Cham (2014)

17. Kanji, G.K.: Performance measurement system. Total Quality Management. 13 (5), 715–728

(2002)

18. Kannan, D.: Role of multiple stakeholders and the critical success factor theory for the

sustainable supplier selection process. International Journal of Production Economics. 195

ISD2019 FRANCE

391–418 (2018)

19. Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., Linkman, S.:

Systematic literature reviews in software engineering – A systematic literature review.

Information and Software Technology. 51 (1), 7–15 (2009)

20. Kitchenham, B., Pretorius, R., Budgen, D., Pearl Brereton, O., Turner, M., Niazi, M.,

Linkman, S.: Systematic literature reviews in software engineering – A tertiary study.

Information and Software Technology. 52 (8), 792–805 (2010)

21. Krancher, O., Luther, P., Jost, M.: Key Affordances of Platform-as-a-Service: Self-

Organization and Continuous Feedback. Journal of Management Information Systems. 35 (3),

776–812 (2018)

22. Laukkanen, E., Itkonen, J., Lassenius, C.: Problems, causes and solutions when adopting

continuous delivery—A systematic literature review. Information and Software Technology.

82 55–79 (2017)

23. Laukkarinen, T., Kuusinen, K., Mikkonen, T.: DevOps in Regulated Software Development:

Case Medical Devices. In: 2017 IEEE/ACM 39th International Conference on Software

Engineering: New Ideas and Emerging Technologies Results Track (ICSE-NIER). pp. 15–18.

IEEE, Buenos Aires, Argentina (2017)

24. Lee, G., Xia, W.: Toward Agile: An Integrated Analysis of Quantitative and Qualitative Field

Data. MIS Q. 34 (1), 87–114 (2010)

25. Leidecker, J.K., Bruno, A.V.: Identifying and using critical success factors. Long Range

Planning. 17 (1), 23–32 (1984)

26. Leppanen, M., Makinen, S., Pagels, M., Eloranta, V.-P., Itkonen, J., Mantyla, M.V.,

Mannisto, T.: The highways and country roads to continuous deployment. IEEE Software. 32

(2), 64–72 (2015)

27. Lwakatare, L.E., Kuvaja, P., Oivo, M.: Relationship of DevOps to Agile, Lean and

Continuous Deployment. In: Abrahamsson, P., Jedlitschka, A., Nguyen Duc, A., Felderer, M.,

Amasaki, S., and Mikkonen, T. (eds.) Product-Focused Software Process Improvement. pp.

399–415. Springer International Publishing, Cham (2016)

28. Marijan, D., Sen, S.: DevOps Enhancement with Continuous Test Optimization. In: The 30th

International Conference on Software Engineering and Knowledge Engineering. pp. 536–585.

(2018)

29. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the Stairway to Heaven; -- A Mulitiple-Case

Study Exploring Barriers in the Transition from Agile Development towards Continuous

Deployment of Software. In: 2012 38th Euromicro Conference on Software Engineering and

Advanced Applications. pp. 392–399. IEEE, Cesme, Izmir, Turkey (2012)

30. Qumer Gill, A., Loumish, A., Riyat, I., Han, S.: DevOps for information management

systems. VINE Journal of Information and Knowledge Management Systems. 48 (1), 122–

139 (2018)

31. Ram, J., Corkindale, D., Wu, M.-L.: Implementation critical success factors (CSFs) for ERP:

Do they contribute to implementation success and post-implementation performance?

International Journal of Production Economics. 144 (1), 157–174 (2013)

32. Rockart, J.F.: Chief executives define their own data needs. Harvard business review. 57 (2),

81–93 (1979)

33. Rodríguez, P., Haghighatkhah, A., Lwakatare, L.E., Teppola, S., Suomalainen, T., Eskeli, J.,

Karvonen, T., Kuvaja, P., Verner, J.M., Oivo, M.: Continuous deployment of software

intensive products and services: A systematic mapping study. Journal of Systems and

Software. 123 263–291 (2017)

34. Schnelle, E.: The Metaplan-Method communication tools for planning and learning groups.

Metaplan-GmbH, Quickborn (1979)

35. Shahin, M., Ali Babar, M., Zhu, L.: Continuous Integration, Delivery and Deployment: A

Systematic Review on Approaches, Tools, Challenges and Practices. IEEE Access. 5 3909–

3943 (2017)

36. Shahin, M., Babar, M.A., Zahedi, M., Zhu, L.: Beyond Continuous Delivery: An Empirical

Investigation of Continuous Deployment Challenges. In: 2017 ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement (ESEM). pp. 111–120.

IEEE, Toronto, ON (2017)
37. Shahin, M., Babar, M.A., Zhu, L.: The Intersection of Continuous Deployment and

Architecting Process: Practitioners’ Perspectives. In: Proceedings of the 10th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement - ESEM ’16.

VAN BELZEN ET AL. CRITICAL SUCCESS FACTORS OF CONTINUOUS PRACTICES IN A DEVOPS CONTEXT

pp. 1–10. ACM Press, Ciudad Real, Spain (2016)

38. Souza, R., Oliveira, A.: GuideAutomator: Continuous Delivery of End User Documentation.

In: 2017 IEEE/ACM 39th International Conference on Software Engineering: New Ideas and

Emerging Technologies Results Track (ICSE-NIER). pp. 31–34. IEEE, Buenos Aires (2017)

39. Ståhl, D., Bosch, J.: Automated software integration flows in industry: a multiple-case study.

In: Companion Proceedings of the 36th International Conference on Software Engineering -

ICSE Companion 2014. pp. 54–63. ACM Press, Hyderabad, India (2014)

40. Ståhl, D., Bosch, J.: Experienced Benefits of Continuous Integration in Industry Software

Product Development: A Case Study. In: Artificial Intelligence and Applications / 794:

Modelling, Identification and Control / 795: Parallel and Distributed Computing and

Networks / 796: Software Engineering / 792: Web-based Education. ACTAPRESS,

Innsbruck, Austria (2013)

41. Ståhl, D., Bosch, J.: Modeling continuous integration practice differences in industry software

development. Journal of Systems and Software. 87 48–59 (2014)

42. Stahl, D., Martensson, T., Bosch, J.: Continuous practices and devops: beyond the buzz, what

does it all mean? In: 2017 43rd Euromicro Conference on Software Engineering and

Advanced Applications (SEAA). pp. 440–448. IEEE, Vienna (2017)

43. Ståhl, D., Mårtensson, T., Bosch, J.: The continuity of continuous integration: Correlations

and consequences. Journal of Systems and Software. 127 150–167 (2017)

44. Verschuren, P., Doorewaard, H.: Designing a Research Project. Eleven International

Publishing (2010)

45. Wettinger, J., Breitenbücher, U., Falkenthal, M., Leymann, F.: Collaborative gathering and

continuous delivery of DevOps solutions through repositories. Computer Science - Research

and Development. 32 (3–4), 281–290 (2017)

46. Yaman, S.G., Sauvola, T., Riungu-Kalliosaari, L., Hokkanen, L., Kuvaja, P., Oivo, M.,

Männistö, T.: Customer Involvement in Continuous Deployment: A Systematic Literature

Review. In: Daneva, M. and Pastor, O. (eds.) Requirements Engineering: Foundation for

Software Quality. pp. 249–265. Springer International Publishing, Cham (2016)

47. Yli-Huumo, J., Maglyas, A., Smolander, K.: The Sources and Approaches to Management of

Technical Debt: A Case Study of Two Product Lines in a Middle-Size Finnish Software

Company. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Männistö, T., Münch, J., and

Raatikainen, M. (eds.) Product-Focused Software Process Improvement. pp. 93–107. Springer

International Publishing, Cham (2014)

