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Abstract

To develop next generation multi-modal computer-aided design systems, it is important to evalu-
ate the relationships between the user dependent factors and the combined performance of man
and machine. The purpose of this research is to investigate if users’ cognitive activity would
increase with the use of multi-modal input, speech and gestures by analysing EEG signals. Ex-
periments are conducted, using traditional (keyboard and mouse) and multi-modal (speech and
gesture) inputs. We used Normalized transfer entropy as a connectivity measure to find the
information flow patterns. We constructed binary and weighted Functional Brain Networks to
explore distinct and varied brain regions quantitatively. We found significant differences in cog-
nitive activity between the traditional and multi-modal inputs. Our statistical analysis results
state that the user’s cognitive activity increase when a multi-modal input is used. The findings
have implications for the development of multi-modal interfaces for 3D modelling.
Keywords: Multi-modal interface system, transfer entropy, functional brain networks, graph
theory, EEG, 3D modelling.

1. Introduction
The advancements in virtual and augmented reality have presented the users the opportunity
to use the multi-modal input rather than the traditional mouse and keyboard input. The multi-
modal input is a vital part of smart phones, VR headsets, and game boxes as well as Computer-
aided design (CAD), Computer-aided manufacturing (CAM) and Computer Aided Engineering
(CAE) as a preferred option to design 3D objects. Multimodal inputs can be speech, touch,
facial expressions, gestures, and handwriting [33]. The availability of multiple inputs improves
the usability of Human-Computer Interaction (HCI) systems.

In this paper, we have analyse the cognitive activity and information flow patterns when
participants are using the traditional unimodal versus multi-modal input to draw 3D objects.
We have used transfer entropy (TE) of the EEG signals to analyze the connectivity between
electrodes and then used the TE matrix to generate both binary and weighted functional brain
networks (FBNs). We have used the graph theory methods to study characteristics the FBNs.

In this paper, we have answered the following research questions:

1. What are the differences in cognitive activity when using a multimodal system compared
to the unimodal system?

2. Are there any differences in information flow patterns and cognitive activity in HCI using
speech and gestures?

The remaining document is organized as follows: Section 2 contains the related work. The
methodology of the experiment has been given in Section 3. Results and discussions are part of
Section 4 and Section 5 that conclude the paper.
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2. Related Work
The use of small-world properties of complex network metrics to understand brain networks has
gained a rapid interest. The small-world properties have been found in games, control systems,
and neural networks. The results from various studies reviewed in this paper indicate that the
Functional Brain Networks (FBNs) constructed from neuroimaging data such as EEG, MEG,
and fMRI has demonstrated small-world properties [24, 18]. A detailed analysis of the use of
graph theory to understand cognitive activities was conducted by Bullmore and Sporns [7] and a
systematical method to construct FBN from raw EEG data was proposed. Rubinov and Sporns
reviewed applications of complex network measures along with the comparison of structural
and functional brain networks providing an open-access toolbox for MATLAB to calculate the
complex network measures.

Langer et al. [16] investigated the relationship between the intelligence and FBNs con-
structed from the EEG data and found a strong correlation between intelligence, clustering co-
efficient, and characteristic path length for the diagnosis of psychological disorders. Rubinov et
al. [21] used weighted FBNs constructed from EEG data to see the differences in clinical and
healthy samples during resting state and found significant differences in clustering coefficient,
characteristic path length, and degree centrality similar to Jalili and Knyazeva [14]. De Haan et
al. [10] examined the Alzheimer’s Disease and dementia using EEG data and found significant
loss of small-world network properties in alpha, beta and gamma band similar to ADHD and de-
pression analysis which showed significant variations in small-world properties when compared
to healthy persons in [1, 17].

In music perception, Fallani et al. [11] found that simple foot movement can alter connec-
tivity patterns dramatically. By using graph theoretical measure, Wu et al. [32] showed that
during music perception the clustering coefficient was larger, and the characteristic path length
was smaller. They further demonstrated that the small-world network properties were related to
the perception of music not sound. Transfer entropy was used to construct FBNs from EEG data
[28]. Three different states were evaluated: resting, driving and driving with audio distraction.
The results showed significant differences in connectivity density, motif, clustering coefficient
and degree distribution across all three states. In a web search-based task analysis through FBN,
maximum connectivity was observed in query formulation task [27].

(a) Participant using keyboard and mouse to draw
3D object

(b) Participant using speech and gesture to draw 3D
object

Figure 1. Experimental setup with real time conditions

Graph-based methods have been applied by researchers to successfully study complex brain
networks in recent years [28] and more specifically using both directional and undirected func-
tional brain networks (FBN) [7, 29]. In research, directional FBN is preferred because it pro-
vides more prominent topological features by estimating the direction of information transfer
between nodes (EEG electrodes) and thereby enabling more detailed analysis [19]. To construct
an FBN using an EEG, a connectivity measure is used that can estimate the value of informa-
tion transferred between nodes (electrodes). There are many linear and non-linear connectivity
measures that have been used in the literature to construct the FBN such as mutual information,
Entropy, correlations, and Granger causality [23]. Linear connectivity measures usually fail to
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(a) User 2 (competent) (completed experiment in small span of time)

(b) User 12 (novice) (completed experiment in large span of time)

Figure 2. NTE connectivity matrices for two users during rest, keyboard and gesture drawing states

identify the non-linear behavior of the brain. Therefore, to analyze a highly non-linear EEG
signal, non-linear measures are adopted by the researchers for the construction of FBNs [25].

2.1. Functional Brain Networks and Graph Theoretical Analysis

Transfer Entropy (TE) is also a popular measure to quantify information between two non-linear
vectors. It can also determine the direction of information transfer between two variables [6] and
therefore, is ideal for investigating information flow. TE uses the past activity of both variables
to estimate the amount of activity of a system irrespective of interaction model. This property
of TE allows the researchers to apply it to various applications such as identifying information
transfer between auditory cortical data [13], localization of epileptic patients focus [8], the effect
of heart rate on breath rate [22], and information flow patterns in various driving states [26]. In
the research literature, TE has not been used to study user dependent differences. In this paper,
we have used the Normalized Transfer Entropy (NTE) for calculating the connectivity matrix.
Normalized transfer entropy (NTE) is calculated by dividing the difference of transfer entropy
matrix (TE) from a shuffled version of that TE matrix by conditional entropy. The subtraction of
shuffled TE overcomes the noise/bias of TE generated due to the finite and non-stationary data
[30, 15, 5].

Functional Brain Networks (FBNs) are used to capture the information flow dynamics be-
tween EEG electrodes in relation to human brain [31]. EEG is a common tool to measure the
brain activity as it is inexpensive, non-invasive and have a high temporal resolution. EEG has
been used in many applications ranging from medical diagnostics, cognition to brain-computer
interfaces [3]. The graph theory measures such as connectivity density, motif count, node
strength, and clustering coefficient are used to estimate the cognitive activity of the user as
these measures describe the strength of the network. The mean information flow is calculated
by averaging the information passing through each electrode using the NTE matrix.

3. Methodology

3.1. A Multi-modal interface system

We have developed a multi-modal interface prototype (xDe-SIGN) that allows users to design
objects in 3D, using AutoCAD commands as well as speech and gesture [2, 4]. The system used
a microphone to collect speech input and a Leap motion sensor to collect gesture input in real
time. Usually, in modeling software, there are two possible ways to manipulate the camera view:
either using a mouse or the orbit. The orbit is the easiest way to move the camera by clicking
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directly on the cube. With speech, a user can move the camera using classical directions such
as ’move camera vertically and horizontally’ and ’zoom in and out’. Using gestures, the camera
can be activated or deactivated: when the system detects a closed hand followed by an open
hand, it activates or deactivates the camera.

To implement the design concept, a dll plugin for AutoCAD containing 4 main classes:
MySpeech, LeapListener, MyMain, and MyDrawAutocad have been created. MySpeech starts
the speech recognition function and sends an event when the speech is recognized. LeapListener
first initializes the gesture recognizer and defines all the gestures to be recognized and sends an
event when a gesture is recognized. MyMain receives the speech and gesture events, interprets
them and sends the right command to AutoCAD. MyDrawAutoCad contains all the functions
to draw or manipulate the object or the camera. For more information regarding the system see
[2, 4]. Using the system participants achieved a task completion rate of above 90% with the
upgrades but the precision is low depending on participants.

In this research, we analyzed the cognitive activity of the participants through EEG signals
while using this multi-modal interface system. We have used a connectivity measure to estimate
the information flow between electrodes and then used FBNs and graph theory-based methods
to study the behavior. We apply TE to the analysis of information flow patterns of novice
and competent user users. We have used normalized TE values to construct both binary and
weighted directional FBNs. After constructing an FBN, we have applied graph theory measures
and statistical analysis to quantify the information flow patterns.

3.2. Experimental Setup and Data Acquisition

The experiment was to design a 3D table with three parts: a base, a pillar, and a top in AutoCAD
with two sets of inputs i.e. keyboard mouse and speech and gesture using xDeSIGN. In most
EEG studies the number of participants varies from 5-20 [28, 20], in this study we used 12
participants. All of them were computer-science students at Macquarie University. The ages
of the participants range from 21 to 30 years. Four of the participants were competent users
of AutoCAD and 8 were novices. The experiment was approved (Approval no. 5201700784)
by the Faculty of Science and Engineering Human Research Ethics Sub-Committee, Macquarie
University.

Each subject was given a tutorial of 10 minutes before the experiment. A video log has
been maintained for each subject and EEG signals were recorded. For the acquisition of EEG
signals, we used an off-the-shelf research edition of the Emotiv EEG headset, which has 14
channels and record signals at a sampling rate of 128 Hz. The EPOC headset has 14 channels
belongs to various brain regions: frontal and front-central: AF3, AF4, F3, F4, F7, F8, FC5,
FC6; temporal: T7, T8; and the occipital and occipital-parietal: O1, O2, P7, P8. The electrode
placement is based on the international 10-20 system. Emotiv Headset has limited electrodes
with no electrodes in the central lobe (Pz, Cz, Fz). The manufacturer states that the signals from
the neighboring electrodes are good enough to perform experiments and researchers have proved
the capability of the headset in many applications [9]. The subjects were given an open-ended
task in order to depict the real-world setting, which results in complex cognitive processing and
analysis strategies. A picture of the experimental setup is shown in Fig. 1.

3.3. Experimental procedures

The process can be divided into 5 experimental procedures:
1. Information about the experiment was given to each subject along with the consent form.
2. The EEG headset was placed on the head of the subject and the experimenter made sure

that all channels were in good contact with the skull. The subjects were asked to rest for
two minutes with their eyes open, with hands on their laps, and after that, the subjects
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were asked to start drawing using keyboard and mouse. This was called Resting state.
3. After the completion of the modeling task with keyboard and mouse, the participants were

given instructions about the multi-modal interaction system.
4. After completing the task with speech and gesture inputs, subjects were asked to fill in a

questionnaire about the experiment.
5. EEG data were filtered and for convenience, we named the first task (keyboard and mouse

drawing) "Keyboard" and the second task (speech and gesture drawing) "Gesture" draw-
ing state.

3.4. EEG Signal Pre-Processing

The EEG data of all the participants were used for the analysis. The preprocessing was done in
MATLAB 2017b using the EEGLAB toolbox [12]. The baseline was removed from the EEG
signal and low-pass filtering at a cut-off frequency of 45 Hz was performed using a linear-phase
FIR filter. EEG signals were then high-pass filtered at a cut-off frequency of 0.1 Hz and notch
filtered at 50 and 60 Hz using a linear phase FIR filter. The order of the filter in all cases was 300.
After filtering the data, Independent Component Analysis (ICA) decomposition was performed
to detect and remove artifacts such as eye blinking and muscle movements. A minimum of
5-8 channels is required to perform ICA [34]. Once the data was clean enough, we extracted
two-second epoch averaged data from resting, drawing and manipulation tasks by performing
back-to-back epoching with a 0.5-sec difference between epochs. The users 1, 2, 4 and 10 were
competent users in AutoCAD.

3.5. Functional Brain Network

The pre-processed EEG signals were used in the construction of NTE connectivity matrices,
where each cell denotes the NTE value from one electrode to another. The normalization was
done by subtracting a noise matrix (averaged shuffled TE matrix) from the Transfer Entropy
(TE) matrix. The NTE matrices were used to create both binary and weighted directed FBN.
To analyze the results, we used the graph analysis measure such as the Connectivity density,
clustering coefficient, and node strength.

4. Results and Discussion
As all the participants were new to the use of MMIS. The order of the tasks were not randomized
since there was no advantage of changing effect observed in the second task (gesture state).
There was no significant correlation found between competency levels and task completion
time. One-way ANOVA and t-test were used to demonstrate the differences between various
EEG indices such as clustering coefficient, mean information flow, etc.

4.1. Analysis of directed binary FBNs

The section shows the results of the analysis performed on binary directed FBNs constructed
using the connectivity matrix calculated by NTE. The Fig 2 showed the NTE connectivity ma-
trices for two users during various states. As shown in Fig. 2, the brain connectivity increased
progressively as the cognitive activity increased from rest state to keyboard and gesture draw-
ing states. Fig. 3 shows the connectivity density for all 12 users. The connectivity density is
higher in keyboard and gesture drawing states than the baseline resting state, inferring more
connections between electrodes to accommodate more active information flow. This means that
the brain recruits a higher number of neurons to facilitate high cognitive activity processes in
keyboard and gesture drawing states.

If we compare the keyboard and gesture connectivity density, an increase in connectivity



BAIG ET AL. CONNECTIVITY ANALYSIS OF FUNCTIONAL BRAIN NETWORKS . . .

Figure 3. Comparison of connected density for all users during rest, keyboard and gesture drawing
states

density was seen except for user 10 (competent user) and 12. The increase in connectivity den-
sity in gesture drawing state from the keyboard drawing state is probably due to the execution
of a number of simultaneous processes (motor cognition, visual processing, designing). Fig.

Figure 4. Multiple comparison test of connectivity density group mean for 12 users during rest,
keyboard and gesture drawing states

4 shows the statistical significance of the connectivity density of all the users during the three
states. The lines extended out from the mean shows the confidence intervals which means that
the group means are significantly different because there was no overlap. The clustering coeffi-
cient was calculated from the binary directed FBNs across the electrodes for all participants and
the results of two participants (User 6 and 12) have been shown in Fig. 5. It can be seen that the
clustering coefficient value increases for almost all the electrodes during the cognitive activity
compared to the rest state. This shows that each electrode is communicating effectively with
its neighboring electrodes to form clusters which represent an increase in local efficiency of the
information transfer between electrodes. The clustering coefficient values also showed that the
electrodes from right side frontal lobe and left side occipital and parietal lobes are communicat-
ing more with the nearest neighbors. Table 1 shows the statistical significances of the differences
between means of clustering coefficient across electrodes during keyboard and gesture drawing
states for all participants computed using two-tailed t-test at α = 0.05. The highlighted entries
in the tables represent the competent users of AutoCAD. The results show that the mean dif-
ference is significantly different in keyboard and gesture drawing states for almost all the users
except for user 1, 2, and 4 (competent users) represented in blue in Table 1. The mean difference
is significant for all the users in rest and keyboard and rest and gesture drawing states.

We have also calculated the degree centrality for all participants from the NTE matrix. De-
gree centrality shows the importance of a node in the network. Fig. 6 shows the topographic
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Figure 5. Clustering coefficient across electrodes for during rest, keyboard and gesture drawing
states of two users

Table 1. Statistical validation of clustering coefficient values for all user during keyboard and ges-
ture drawing states

Users Mean Diff. 95% CI P
User 1 0.0744 -0.0110 0.1597 0.0824
User 2 -0.0180 -0.0609 0.0250 0.3828
User 3 0.0655 0.0396 0.0913 0.0001
User 4 0.0173 -0.0425 0.0771 0.5421
User 5 0.1728 0.0575 0.2881 0.0065
User 6 0.0189 -0.0364 0.0741 0.0474
User 7 0.1855 0.1280 0.2431 0.0000
User 8 0.1403 0.0591 0.2214 0.0025
User 9 0.3033 0.2722 0.3344 0.0000
User 10 0.1395 0.1036 0.1753 0.0000
User 11 0.2020 0.1652 0.2388 0.0000
User 12 -0.0512 -0.1061 0.0037 0.050

map of degree centrality data of 2 samples including novice and competent users in 2D circular
view of all brain states. The topographical map was customized such that the color map scales
from minimum degree centrality value to maximum degree centrality value to visualize subtle
changes. The blue color represents the minimum value and the red represents the maximum
value of degree centrality. The user in the drawing state shows greater engagement than the
resting state. The major focus is seen in the frontal area of the brain. Both drawing with key-
board/mouse and speech/gesture requires intense visual attention which shows elicited central
and frontal areas in the brain. Some competent users of AutoCAD show a small variation in de-
gree centrality across electrodes in keyboard and gesture drawing state compared to other users.
Table 2 shows the results of t-test at α = 0.05 (two-tailed) between means of average degree

Table 2. Statistical validation of mean degree centrality across electrodes for all participants during
rest, keyboard, and gesture drawing states

States Mean Diff. 95% CI P
Keyboard Rest 1.5000 0.4778 2.5222 0.0080
Gesture Rest 2.9762 1.9589 3.9935 0.0000
Gesture Keyboard 1.4762 0.5625 2.3899 0.0045

centrality across electrodes in all three states for all users and the results show that the mean
difference is significantly different across all cognitive states. The maximum mean difference



BAIG ET AL. CONNECTIVITY ANALYSIS OF FUNCTIONAL BRAIN NETWORKS . . .

(a) User 9 (Novice) (b) User 10 (competent user user)

Figure 6. Sample degree centrality topographical plot of two uses during rest, keyboard and gesture
drawing states

was observed in gesture drawing and rest states.

Table 3. Electrodes with maximum variance in keyboard and gesture drawing states using LDA

Graph Measure Electrodes

Clustering coefficient AF4 O2 P8 T8 FC6
Degree Centrality F7 FC5 T7 O2 P8

Linear Discriminant Analysis (LDA) was used to find the electrodes that showed the maxi-
mum variance between keyboard and gesture drawing task. The results shown in Table 3 state
that for the clustering coefficient the maximum variation has been seen in the electrodes that are
on the right side of the hemisphere compared to the left hemisphere electrodes. It can also be in-
terpreted as the electrodes on right-hemisphere form clusters more often than the left hemisphere
electrodes. In the case of degree centrality, the maximum difference was seen in the frontal left
hemisphere (F7, FC5, T7) and back right hemisphere (O2, P8). This indicates that the receiving
and transmitting of information are from these electrodes more than the other electrodes.

4.2. Analysis of directed weighted FBNs

We have used the weighted FBNs to find the mean information flow and node strength for all
the users. Fig. 7 shows the multiple comparison test of the average node strength of all the users
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Figure 7. Multiple comparison test of node strength group mean for 12 users during rest, keyboard
and gesture drawing states

across all electrodes in three states. The results clearly show that the node strength in gesture
drawing state is more than the keyboard drawing and rest state and the results are statistically
significant as seen in Fig. 7. The electrodes in the frontal lobes send and receive more infor-
mation while drawing with gestures compared to the keyboard state. The total information flow
from each electrode to all the other electrodes has been calculated by the row-wise summation
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of the NTE connectivity matrix. Fig. 8 shows one-way analysis of variance (ANOVA) results
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Figure 8. Multiple comparison test of node strength group mean for 12 users during rest, keyboard
and gesture drawing states

on the mean information flow across electrodes for all participants. The mean information flow
increased from approximately 0.005 to 0.02 when the user was using multi-modal inputs instead
of keyboard and mouse for drawing. Table 4 shows the statistical significance of the differences

Table 4. Statistical validation of total information flow for all users during rest, keyboard and gesture
drawing states. (MD = mean difference, CI = confidence interval

Users
Keyboard-Rest Gesture-Rest Gesture-Keyboard

MD 95% CI MD 95% CI MD 95% CI

User 1 0.0217 0.0092 0.0341 0.0674 0.0471 0.0877 0.0457 0.0174 0.0740
User 2 0.0076 -0.0019 0.0170 0.0149 0.0017 0.0281 0.0073 -0.0060 0.0206
User 3 0.0059 -0.0015 0.0133 0.0255 0.0154 0.0356 0.0196 0.0065 0.0327
User 4 0.0402 0.0328 0.0476 0.0369 0.0279 0.0459 -0.0033 -0.0118 0.0053
User 5 0.0379 0.0143 0.0615 0.0387 0.0157 0.0618 0.0009 -0.0276 0.0293
User 6 0.0153 0.0012 0.0294 0.0570 0.0374 0.0767 0.0417 0.0259 0.0576
User 7 0.0130 0.0025 0.0235 0.1064 0.0738 0.1389 0.0933 0.0618 0.1249
User 8 0.0139 -0.0019 0.0297 0.0370 0.0170 0.0571 0.0231 -0.0015 0.0477
User 9 -0.0005 -0.0148 0.0139 0.0397 0.0245 0.0549 0.0402 0.0207 0.0596
User 10 0.0385 0.0195 0.0575 0.0632 0.0345 0.0920 0.0248 -0.0118 0.0613
User 11 0.0447 0.0360 0.0534 0.0738 0.0555 0.0920 0.0291 0.0089 0.0492
User 12 0.0693 0.0527 0.0860 0.1425 0.1170 0.1680 0.0731 0.0474 0.0989

in means of total information flow for all users using t-test with α = 0.05 (two-tailed). The
bold values of mean difference showed that the difference was not statistically significant i.e.
p > 0.05. In case of gesture and keyboard drawing analysis, the users 2, 4, 10 (competent users)
and 5’s mean information flow difference was not significant. The possible reason can be that
the user 2, 4 and 10 have some previous knowledge of AutoCAD but this can’t be generalized
as other users did not show the same trend. We also applied LDA to information flow and node
strength values to find out the electrodes that provide maximum variance during keyboard and
gesture drawing states and the results are shown in Table 5. In the case of node strength, the
electrodes in the frontal lobes were sending and receiving more information than other elec-
trodes. The electrodes in the frontal right hemisphere of the brains (F4, F8, AF4) have shown
more variation in node strength compared to other electrodes. The frontal and parietal lobes
electrodes mean information flow variations are more than the other regions when using gesture
drawing states. We have also tried to find the correlations between the participants experiment
completion time and mean information flow patterns using LDA and found that the information
flow from right hemisphere was more compared to left-hemisphere specifically in the frontal
and central cortex for participants who completed the experiment within 3 minutes.
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Table 5. Node strength and mean information flow electrodes with maximum variance in keyboard
and gesture drawing states

Graph Measure Electrodes

Node strength FC5 T7 F4 F8 AF4
Mean Information Flow FC5 P7 P8 FC6 F8

The results show that the cognitive activity of the users increased in the gesture drawing
state. The increase in the activity could be related to other underlying perceptual and motor
functions and it could possibly imply the differences in motor processes between two tasks.
The significant differences in the frontal cortex activities also point toward the increase in the
motor activities in the second task. However, the increase was less for some competent (user 2,
4, 10) and novice (user 5) users. This may indicate that with a little training the users will be
able to demonstrate the same cognitive activity level as they show in keyboard drawing state.
The novice’s efficiency can be increased if we can simulate frontal and central lobes of the brain
more often than the other lobes. One way to achieve this is to ask the users to use their short-term
memory by displaying some hints or other related information for the experiment.

5. Conclusion
In this paper, NTE has been applied to construct functional brain networks from EEG signals
to study the user’s cognitive activity in rest, traditional input (keyboard and mouse) and multi-
modal input (speech and gesture). After pre-processing of the EEG signal, we have extracted
averaged 2 seconds epochs to construct the connectivity matrix using normalized transfer en-
tropy. The averaging of epochs was done to remove the noise from the signals and to extract
more global properties of the drawing phenomena. Functional brain networks were constructed
using the NTE matrix. Graph theory-based measures were used to analyze the FBNs. Both
binary and weighted FBNs were used to study different cognitive states. The results show that
the cognitive activity of the user increased when they were using multi-modal input for drawing
3D objects in AutoCAD. The connectivity density, clustering coefficient, and degree centrality
results demonstrate that the information transfer between electrodes increased in gesture draw-
ing state from keyboard drawing state. The mean information flow and node strength showed
that the maximum variation in sending and receiving information was seen in frontal and central
lobes because drawing with multi-modal input requires intense attention and motor cognition. 3
out of 4 competent user users showed that the variation in cognitive activity was less when they
moved from keyboard to gesture drawing state.

The limitation of this work includes no counterbalancing of the experimental conditions,
small number of users, unbalance dataset, and low number of EEG electrodes. In future work,
we will expand this analysis to study the information flow within the hemispheres and various
brain regions characteristics. The future analysis will also focus on finding the source and sink
brain regions of information flow and how to detect user competency to design adaptive CAD
systems.
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