
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICIS 2019 Proceedings The Future of Work

Designing with Autonomous Tools: Video Games, Procedural Designing with Autonomous Tools: Video Games, Procedural

Generation, and Creativity Generation, and Creativity

Stefan Seidel
University of Liechtenstein, stefan.seidel@uni.li

Nicholas Berente
University of Notre Dame, nberente@nd.edu

John Gibbs
University of Georgia, jkundert@uga.edu

Follow this and additional works at: https://aisel.aisnet.org/icis2019

Seidel, Stefan; Berente, Nicholas; and Gibbs, John, "Designing with Autonomous Tools: Video Games,
Procedural Generation, and Creativity" (2019). ICIS 2019 Proceedings. 14.
https://aisel.aisnet.org/icis2019/future_of_work/future_work/14

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICIS 2019 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301385081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/icis2019
https://aisel.aisnet.org/icis2019/future_of_work
https://aisel.aisnet.org/icis2019?utm_source=aisel.aisnet.org%2Ficis2019%2Ffuture_of_work%2Ffuture_work%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/icis2019/future_of_work/future_work/14?utm_source=aisel.aisnet.org%2Ficis2019%2Ffuture_of_work%2Ffuture_work%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

 Design & Creativity with Autonomous Tools

 Fortieth International Conference on Information Systems, Munich 2019 1

Designing with Autonomous Tools:

Video Games, Procedural Generation, and
Creativity

Completed Research Paper

Stefan Seidel
University of Liechtenstein

Vaduz, Liechtenstein
stefan.seidel@uni.li

Nicholas Berente
University of Notre Dame

Indiana, USA
nberente@nd.edu

John Gibbs

University of Georgia
Georgia, USA

jkundert@uga.edu

Abstract

Designers are increasingly using autonomous tools to perform complex activity more quickly and in
different ways, often with little or no human intervention. These autonomous tools are changing the
way many designers approach their work, and the creative outcomes of that work. On the one hand,
autonomously generated designs might not provide the same creative user experience as manually de-
signed content, because autonomous tools are fundamentally deterministic in nature. On the other
hand, the potentially creative benefits of using autonomous tools relate to the potential variety—that
may be perceived as unpredictability by the designers—of their output. We report on a study of three
cases of video game development that use procedural generation of content and we theorize about how
organizations manage for creative user experiences when using autonomous tools in videogame pro-
duction. We find that they address the inherent tension between determinism and variety by using a set
of modular design practices that help guide autonomous tools in ways that allow for open-endedness
and creativity. We refer to these practices as “architectural structuring” and “injecting variety” and we
propose that the “level of modularity” as well as the “level of manual design” are critical for creative
outcomes. We generate propositions associated with the two practices.

Keywords: autonomous design tools, design, video game production, creativity

 Design & Creativity with Autonomous Tools

 Fortieth International Conference on Information Systems, Munich 2019 2

Introduction

“I have seen quite a few planets now in the starting galaxy Euclid and they really get boring after a
while because the procedural generation is quite the same all the time.”

- TheLastTraveller, July 21, 2018, on a No Man’s Sky discussion board1

Autonomous algorithms are finding their way into many organizational applications, and knowledge-
intensive processes such as design work are no exception. Autonomous design tools are a class of software
tools that generate and modify design artifacts with little or no user intervention (Seidel, Berente,
Lindberg, Nickerson, & Lyytinen, 2019), and these tools are typically used in conjunction with human
designers (Smelik, Tutenel, de Kraker, & Bidarra, 2010). Autonomous tools are used in a host of applica-
tions, from the design of semi-conductor chips (Brown & Linden, 2011) to large scale buildings and archi-
tecture (Müller, Wonka, Haegler, Ulmer, & Van Gool, 2006). Even books can be generated by autonomous
algorithms.2 One of the most widespread and mature uses of autonomous design tools is in the production
of video games (Grey, 2017; Hendrikx, Meijer, Van Der Velden, & Iosup, 2013; Seidel et al., 2018).

A key promise of autonomous design tools is that they can generate large amounts of content with a cer-
tain level of apparently random variation that leads to design outcomes that humans would not necessari-
ly predict. Given this unpredictability, one might expect such tools to foster creativity. Creative outcomes
are those that are not only purposeful but also novel (Amabile, 1988; Woodman, Sawyer, & Griffin, 1993).
However, there is a fundamental tension with regards to this potential to generate creative outcomes:
while these tools may indeed create unpredictable outcomes from the perspective of the designer, they are
still deterministic, algorithmic tools (i.e., their results are determined by a previously existing situation
such as chosen parameters and other causes). As a result, there is a risk that these tools will generate re-
petitive, perhaps “boring” (Backus, 2017) and non-creative content. Alternatively, the tools might create a
chaos of variety that is wholly unusable for the end product. It is vital for organizations that use autono-
mous design tools to understand the impact of such tools on creativity. Our research question is:

How do designers navigate the tension between determinism and unpredictability when using
autonomous tools for creative purposes?

To begin answering this question, we conducted an exploratory study of video game development that
uses autonomous design tools. Video game development provides an exemplar application of leading-edge
design with autonomous tools. Moreover, we contend that creativity—novelty and purposefulness—is a
key goal in the development of video games as video game developers seek to make—and keep—gamers
interested. Through widespread use of technologies such as procedural generation (Shaker, Togelius, &
Nelson, 2016; Short & Adams, 2017), the video game industry acts as a sort of laboratory for other indus-
tries wishing to understand practices associated with the use of autonomous design tools. Further, anec-
dotal evidence in the video game industry illustrates the tension between unpredictability and determin-
ism in autonomous game design. For example, in the case of a video game called No Man’s Sky, a virtually
unlimited number of worlds are procedurally generated during game play. Early iterations of the game,
however, reportedly suffered from too much uniformity of planets and life forms, due to deterministic
nature of algorithmic content generation, resulting in what players said was “boring” gameplay. The de-
signers needed to adjust their practices to better foster creativity in the procedural generation of content
to avoid boredom, while at the same time not creating such wild variations of landscape, flora, and fauna
that the game became unplayable. The goal of this research is to understand how such designers work
with autonomous tools to manage this creativity.

In a first step, we develop a conceptual framework for analyzing the role and use of autonomous tools in
design processes. In a second step, we use this model to analyze three quite different cases from video
game production. Through our analysis, we identify that designers (1) define architectural constraints
within which autonomous tools operate to guide the tools’ quasi-random unpredictability in accordance
with a particular vision, and (2) deliberately inject variety using both manual and procedural techniques.
We thus identify two key practices when using autonomous design tools—architectural structuring
and injecting variety—and propose that the level of modularity as well as the level of manual
design are critical for creative outcomes. We generate propositions associated with the two practices.

1 https://steamcommunity.com/app/275850/discussions/0/1762482479184633822/, accessed May 1, 2018.
2 https://aktuelles.uni-frankfurt.de/englisch/first-machine-generated-book-published/, accessed May 1, 2018.

 Design & Creativity with Autonomous Tools

 Fortieth International Conference on Information Systems, Munich 2019 3

Our paper contributes to the ongoing stream of work investigating how autonomous tools are contributing
to major changes in the nature of creative work.

Video Game Development and Procedural Generation

Video games are complex software systems whose success much depends on the quality and quantity of
content with which users (gamers) interact (Hendrikx et al., 2013). Video games are highly interactive,
dynamic, and content-intensive (Liapis, Yannakakis, & Togelius, 2014). Many contemporary video games
provide their users with ever larger virtual environments that cannot be developed with reasonable re-
sources, in a reasonable amount of time, through manual processes alone. Such games require the use of
autonomous tools that generate much of the game content (Hendrikx et al., 2013; Seidel et al., 2019;
Seidel et al., 2018). Well-known examples include Star Citizen (Cloud Imperium Games), No Man’s Sky
(Hello Games), Red Dead Redemption 2 (Rockstar Games), and Ghost Recon Wildlands (Ubisoft). In
addition, game design platforms like the popular Unity suite of game creation tools have begun integrat-
ing advanced AI and procedural terrain and level generation into their platforms. Developments in this
area mean that even non-technical developers creating very low budget games can utilize advanced com-
puter-based tools. Approaches that can be subsumed under the notion of autonomous design tools in
video game production include procedural content generation (Hendrikx et al., 2013; Togelius, Kastbjerg,
Schedl, & Yannakakis, 2011; Yannakakis & Togelius, 2015), procedural modeling (Müller et al., 2006;
Watson et al., 2008), and computational creativity (Colton & Wiggins, 2012; Liapis et al., 2014).

Procedural content generation for video games involves the use of software tools to generate game con-
tent, to identify interesting instances from those that were generated, and to select useful instances
(Togelius et al., 2011). Applications include content drafting, on-the-fly generation of content, and the
generation of responsive narratives (Grey, 2017). There is now a large body of knowledge on algorithmic
techniques for procedural generation of video game content. Hendrikx et al. (2011), in their review of pro-
cedural content generation in games, identify five broad categories of methods: (1) pseudo-random num-
ber generation; (2) generative grammars; (3) image filtering; (4) spatial algorithms; and (5) modeling and
simulation of complex systems. These are all tactics for automatically generating textures, features, land-
scapes, and a wide variety of in-game design elements.

The use of procedural content generation allows for producing games at bigger scale with fewer content
designers (Seidel et al., 2018; Smelik, Tutenel, Bidarra, & Benes, 2014; Togelius et al., 2011) and is now an
important strategy for fostering resource efficiency in video game production. Star Citizen, for instance, is
an open world game, providing a game space that can be freely explored by players, where this open
world includes significant procedurally generated pseudo-random content, such as surfaces of planets and
moons, space stations, assets such as asteroids, and even missions/quests. Procedurally generated content
is an integral part of the game, as this content is vital for the game to accomplish its vision and goals
(Grey, 2017).

Game development projects can be decomposed broadly into the stages of pre-production (ideation, story
development, look development, and storyboarding), production (content generation, or asset building,
rigging, motion capture, lighting, texturing, special effects, etc.), and testing. While all these stages may
involve autonomous design tools, autonomous content generation in particular interfaces with human
designers in two ways. First, designers must decide on the tools they use and the specific parameter set-
tings for these tools; second, human designers can (typically) select and sometimes alter the computer-
generated outcome (Seidel, Berente, Martinez, Lindberg, Lyytinen, Nickerson 2018).

The involvement of autonomous tools can take place at different levels. On the one hand, games can in-
corporate autonomous tools to create the game artifact itself. For example, some games rely on procedural
generation for their core content—some of these games even design the playing space procedurally at
runtime. Other games rely on autonomous capabilities for drafting content, where initial versions of the
game space are created through an autonomous tool, but then these drafts are changed by the designer.
Some games use autonomous tools in a modal fashion, where they simply add non-critical elements (like
backgrounds) to the game. Finally, there is a segmented approach, where only certain game elements are
designed using procedural generation (Grey, 2017). What all of these approaches have in common is that
their use is always in relation to designer decisions, ranging from designers selecting and adjusting tools,
to changing the content generated by these tools, to deliberately using autonomous tools to change their
manual design. The outcome of procedural generation is altered by game designers (Hendrikx et al. 2011)

 Design & Creativity with Autonomous Tools

 Fortieth International Conference on Information Systems, Munich 2019 4

in an interactive workflow (Smelik et al., 2010) that typically aims to create a compelling user experience
(Seidel et al 2018).

Method

Understanding the organizational practices around autonomous design tools is a new topic area in the
context of the changing nature of work. We thus used a qualitative method to analyze game development
cases in an exploratory fashion. In this section, we describe (a) the data sources we sampled, (b) the cod-
ing scheme we used, and (c) the coding procedures.

Data Collection

We sampled three cases based on their intense use of autonomous tools. We focused on firsthand ac-
counts of game development that are publicly available, as well as reports on game development process-
es, as our data sources. Video game development is increasingly a public act, since many game developers
publicly reflect on their experiences, sometimes even blogging throughout their development. Further-
more, it is in the strategic interest of video game companies to encourage their developers to communi-
cate with gamers throughout the game development process to garner feedback and manage expectations
throughout the development process (“generate a buzz,” in industry speak). Video games are big business
and development organizations need to avoid major missteps that can cost millions of dollars for a game
franchise. The games we analyzed—Star Citizen, Sunless Sea, and No Man’s Sky—heavily leveraged proce-
dural generation, but in different ways, both in terms of the game type and the size of the project. We thus
sampled intense cases for both similarity (use of procedural approaches to generate content) and differ-
ences (game type, project type). We looked for and included in our analysis data that we expected to pro-
vide (a) information about the general scope and goals of the game and (b) more detailed accounts of how
the games were developed—i.e., the designers’ practices. We also had access to the games themselves.

Table 1 provides an overview of the data sources we used for our analysis.

Table 1. Data Sources

Case Data
Source #

Data Source Type

Star
Citizen

SC1 Chris Roberts on Star Citizen's Procedural Planets, Alpha 3.0, &
CitizenCon
https://www.gamersnexus.net/gg/2613-chris-roberts-on-star-citizen-
procedural-planets-alpha3-citizencon
Author: Steve Burke
Published: September 24, 2016
Last accessed: April 13, 2019

Interview

Star
Citizen

SC2 Star Citizen: Around the Verse - Crafting Procedural Moons
https://www.youtube.com/watch?v=DbEKn6gN4Qk
Published: July 6, 2017
Last accessed: April 18, 2019

Video with multiple
developers

Star
Citizen

SC3 Building Believable Worlds in Star Citizen
https://www.redbull.com/mea-en/making-star-citizens-planets-believable
Author: Mike Stubbsy
Published: April 3, 2017
Last accessed: April 14, 2019

Article reporting on
interview

Sunless
Sea

SUS1 Sunless Skies Pre-Production: Talkin’ Bout Proc Generation
https://www.failbettergames.com/sunless-skies-pre-production-talkin-bout-
proc-generation/
Author: Failbetter Games
Published: November 24, 2016
Last accessed: April 18, 2019

Developer blog

Sunless
Sea

SUS2 Aesthetics in Procedural Generation, book chapter reporting on the expe-
riences from developing a game, in: Procedural Generation in Game Design, CRC
Press
Author: Liam Welton, Failbetter games,

Book chapter writ-
ten by developer

https://www.gamersnexus.net/gg/2613-chris-roberts-on-star-citizen-procedural-planets-alpha3-citizencon
https://www.gamersnexus.net/gg/2613-chris-roberts-on-star-citizen-procedural-planets-alpha3-citizencon
https://www.youtube.com/watch?v=DbEKn6gN4Qk
https://www.redbull.com/mea-en/making-star-citizens-planets-believable

 Design & Creativity with Autonomous Tools

 Fortieth International Conference on Information Systems, Munich 2019 5

Sunless
Sea

SUS3 Of London And The Sunless Sea: Failbetter Interview Pt 2,
Interview with Alexis Kennedy and Paul Arendt of Failbetter Games
https://www.rockpapershotgun.com/2013/09/19/of-london-and-the-sunless-
sea-failbetter-interview-pt-2/
Author: Adam Smith
Published: September 19, 2013
Last accessed: May 01, 2019

Interview

No
Man’s
Sky

NMS1 No Man’s Sky Developer Sean Murray: ‘It was as bad as it can get’
https://www.theguardian.com/games/2018/jul/20/no-mans-sky-next-hello-
games-sean-murray-harassment-interview
Author: Keza MacDonald,
Published: July 20, 2018
Last accessed: April 24, 2019

Article reporting on
interview

No
Man’s
Sky

NMS2 Maths, No Man’s Sky, and the Problem with Procedural Generation
https://www.thumbsticks.com/no-mans-sky-problem-procedural-generation
Author: Tom Baines
Published: August 31, 2016
Last accessed: April 23, 2019

Game analysis
article

No
Man’s
Sky

NMS3 The Galactic Potential of No Man’s Sky
https://www.redbull.com/us-en/no-mans-sky-interview-and-preview
Author: Benjamin Kratsch
Published: March 23, 2017
Last accessed: April 24, 2019

Article reporting on
interview

No
Man’s
Sky

NMS4 No Man’s Sky—Procedural Content
http://3dgamedevblog.com/?m=201610
Author: GregkWaste
Published: October 17, 2016
Last accessed: April 23, 2019

Developer blog

No
Man’s
Sky

NMS5 World Without End: Creating a Full-scale Digital Cosmos
https://www.newyorker.com/magazine/2015/05/18/world-without-end-raffi-
khatchadourian
Author: Raffi Khatchadourian
Published: May 11, 2015
Last accessed: April 24, 2019

Article reporting on
interview

Analytical Framework

We use a simple analytical framework that sensitizes our analysis and allows for exploration and emer-
gence. Our analysis is thus based on inductive and abductive reasoning. This coding scheme comprises of
four broad categories that were derived from our research interest in how the use of autonomous tools
changes design work (process: design practices) as designers seek to navigate the tension between
determinism and unpredictability (challenges) when using autonomous tools for creative purposes
(goals, outcomes).

Goals. First, we are interested in the general goals that are pursued when using autonomous tools. As
explained earlier, these may range from the procedural generation of core content to the modal use of
autonomous design tools, where they simply add non-critical elements to the game. Generally, autono-
mous tools bear the potential of generating large amounts of content that could not be generated through
manual design given typical resource constraints (Hendrikx et al. 2011).

Challenges. Second, we are interested in the challenges that are encountered at the outset, and through-
out the game creation project, as they relate to the use of autonomous tools. For instance, early in our
analysis it became noticeable that game studios might turn to autonomous design tools because they want
to develop large games with (comparably) small team sizes and low budgets. Challenges are thus a key
reason for game designers to use autonomous tools, and challenges (limited resources) and goals (devel-
oping much content) are hence closely related.

Process: design practices. Third, we are interested in the specific design practices that are applied in
order to use autonomous tools throughout the different stages, i.e., in pre-production, production, and
testing of video games, particularly to navigate the tension between the determinism and simultaneous

 Design & Creativity with Autonomous Tools

 Fortieth International Conference on Information Systems, Munich 2019 6

unpredictability of autonomous design tools. It has been asserted that using autonomous tools requires
different workflows (Smelik et al., 2010) and design practices in general terms (Seidel et al., 2018).

Outcomes. Finally, we aim to understand the impact of autonomous design tools on the outcome—the
game itself. Here, we are particularly interested in the extent to which autonomous design tools in the
observed cases led to creative (i.e., novel and purposeful) results, considering the tension between deter-
minism and unpredictability associated with autonomous design tools. In the case of video game content,
this creativity is reflected by the variety of content that is generated through manual design and design
through autonomous tools. Unpredictability can be associated with novelty, which is a key element of
creativity, next to purposefulness (Amabile, 1996; Woodman et al., 1993).

Coding Procedures

Our analysis and construction of our explanation proceeded in two key steps that were guided by the four
broad categories—goals, challenges, practices, and outcomes—which served as a sensitizing device (Klein
& Myers, 1999). In a first step, by reading an initial dataset, we identified key themes—these revolved
around the understanding that (1) game development using autonomous tools always included some form
of architectural vision within which these tools were used and (2) that manual design in many cases still
plays an important role. Based on this initial analysis of three games, we were able to construct three dif-
ferent stories of how these games used autonomous tools. Around these themes, first concepts emerged,
most notably architectural vision and injecting creativity as key practices. Each of the three authors did
this for one case, but we then discussed the emergent themes to seek consensus about what we found in
the data. This initial process helped us understand the phenomenon of interest in much more depth. In all
three cases we found evidence for the existence of an architectural vision and also for the specific role of
human designers and their creativity.

In a second step, in order to theoretically sample (Glaser & Strauss, 1967), we collected additional data for
each of the cases and moved into a formal coding process. Note that our initial analysis had already pro-
duced first concepts, so our theoretical sampling was indeed guided by emergent concepts and not only by
mere themes, which is key to theoretical sampling (Charmaz, 2006). We thus included additional data
sources that we expected would help us learn more about the architectural vision and injection of creativi-
ty. In the spirit of open coding, we started to develop a list of open codes—now sensitized not only by the
broad categories of goals, challenges, process, and outcomes, but also the two categories of architectural
structuring and injecting variety. Still, we aimed to remain open in this stage and treated these emergent
categories as sensitizing, in order to find what else was important in the data (Urquhart & Fernández,
2013). We then, in the spirit of axial coding (Strauss & Corbin, 1998), started to group the emergent con-
cepts and identify relationships among them—that is, we coded around the ‘axis’ of these concepts. An
example result from this stage is that we were able to learn about how “content variety” is grounded in the
“level of modularity,” which in turn depends on key architectural choices that are made by the design
team.

Finally, in the spirit of selective coding (Strauss & Corbin, 1998), we integrated the emergent concepts
into propositions that explain how designers interact with autonomous tools to foster creative outcomes.
This process of open, axial, and selective coding was iterative, and coding and data collection overlapped.
The result of this procedure is the identification of a set of key practices organizations apply to manage the
tension between determinism and unpredictability of autonomous tools when working to accomplish cre-
ativity in video game production, and propositions related to these practices and their outcome.

Case Analysis

The Sunless Sea Story

In 2015, Failbetter Games released Sunless Sea, a virtual-world role-playing game involving sea explora-
tion. They developed the game with limited resources, funded by a Kickstarter campaign. Developers lev-
eraged procedural generation techniques to generate large portions of the game’s world (see Table 2 for a
summary of the results from our case analysis).

 Design & Creativity with Autonomous Tools

 Fortieth International Conference on Information Systems, Munich 2019 7

Table 2. Sunless Sea—Key Findings Related to the Use of Autonomous Design Tools

Category Key Findings

Goals ● Developing a game that allowed users to explore
● Developing a game based on relatively little funding (Kickstarter campaign)

Challenges ● Uniformity
● Errors through manually crafted content

Design Practices

● Architectural design
○ Definition of design rules in terms of modular operators
○ Procedural generation based on these design rules

● Manual design to inject variety was error-prone

Creative Outcome ● Variation that kept the game challenging for players

In Sunless Sea, the goal for the game play involved traveling from familiar land to explore the unknown
sea in the world under conditions of darkness. The developers thus aimed to create a user experience
based on the feeling of exploration:

“We wanted the world to provide both a challenge and a sense of threat, and didn’t want these to be lost as
the player became familiar with the setting.” (Source SUS2)

To accomplish this, the developers used procedural generation to regenerate large portions of the map
each time the game was started in a way that was always new.

A key challenge involved balancing the freshness of each iteration of gameplay with coherence between
gaming sessions. The developers wanted to avoid totally arbitrary gameplay (chaotic variety) by including
consistent, familiar elements across game sessions. They accomplished this through a square grid-and-tile
design for the world. A “L” shaped grid of stable, manually created elements were consistently part of the
world, and framed the world on two sides (the open side of the “L” was open-ended, but did include an
island grid). Procedurally generated grid tiles were merged according to categories (i.e., features, difficul-
ty, themes) and the characteristics generated influenced the generation of the adjacent tiles to maintain
continuity in the experience.

A major challenge in development involved navigating the grid size. Although the developers began with a
relatively large 18x18 grid design, they found that the team was more comfortable designing in a smaller,
3x3 design space and could better maintain continuity in this smaller space. They eventually settled on a
6x6 grid with larger tiles as a compromise solution (Figure 1, left). This decision limited the differential
components of the game, while at the same time enabling developers to make the components that they
did more engaging. These changes reduced the logic needed to procedurally inform adjacent tiles, but
increased requirements for content within a tile.

Figure 1. Approaches to Game Layout for Procedural Generation: Tile & Grid (left,
Sunless Sea—gray grids unvarying) versus Adjacent Regions Approach (right, Sunless

Skies—major ports are unvarying)
(source: failbettergames.com)

The team thus managed to balance the freshness of new experiences with stability of gameplay:

 Design & Creativity with Autonomous Tools

 Fortieth International Conference on Information Systems, Munich 2019 8

“In the end, the tile-based approach we took to procedural generation in Sunless Sea was successful. It ena-
bled enough variation to keep the challenge fresh for players, while allowing us to retain sufficient aesthetic
control to craft the experience we wanted.” (Source: SUS2)

However, developers were concerned that there was too much uniformity and not enough novelty in the
game experience. They addressed this in two ways. First, because of the structured nature of the design
rules intended to keep consistency in game play, the developers found themselves manually attempting to
inject variety into the game play. This, however, was prone to error as well as inefficient. The developers
addressed this shortcoming by incorporating a procedural logic to inform the game how to inject variety
into the procedurally generated content. They incorporated this new system into an underwater extension
to the game in 2016 (called Zubmariner).

Second, they realized that the grid arrangement limited novelty in the procedurally generated content.
Essentially, the trip back from uncharted areas to known areas was boring, as it repeated the outgoing
voyage’s challenges. They needed to find a way to inject variety into the gameplay in both directions, yet
still maintain some stability. In the sequel to the game, “Sunless Skies,” developers opted for putting sta-
ble “ports” in overlapping regions. In this configuration, the overlapping regions can be explored in a
greater variety of ways, offering more flexibility than did the earlier grid. Ports offer the stability and con-
sistency required for gameplay, but now players can approach the ports in a variety of ways, enabling a
richer experience (Figure 1, right).

Procedural generation enabled Failbetter Games to design a game in a novel way, using relatively small
Kickstarter funds. The game was a success commercially. The first thing that needed to be addressed was
the granularity of the design rules—this granularity had implications on the locus of creativity (adjacent
versus within tiles) that impacted gameplay. One implication involved limited creativity in the game, since
procedurally generated content lacked some novelty, partially because developers were focusing on con-
sistent gameplay in their design rules. As developers indicated:

“while every discovery should feel exciting and fresh, it should also feel natural to the player in hindsight.
Discoveries needed to build on the expectations players would have developed from exploring areas adjacent
to them. Our greatest fear when designing our procedural generation process was that we would expose the
players to tonally jarring contrasts that would throw them out of the world…” (Source SUS2)

The No Man’s Sky Story

In 2016, Hello Games released No Man’s Sky, a mass-scale universe exploration game. The game consists
of a vast universe of planets (18 quintillion plus, according to the developers) that can be explored and
exploited for resources. Gamers fly space ships between planets, and are free to explore the ones they land
on at their leisure. Though there are potentially aggressive creatures, and gamers must exploit planetary
resources to garner the energy needed to get to other planets, the game is not a classic “shoot-em-up”
space adventure. Rather, many users refer to it as a “chill game” (Source NMS1). Since the primary in-
tent of No Man’s Sky is exploration, and there are millions of planets in this virtual world, procedural
generation was a requisite for creating the game.

The game “began life as some lines of code on [Sean] Murray’s computer” (Source NMS1). Murray, orig-
inator of the game, in fact worked alone for a year on base code for the game before showing a tech demo
and getting funding from Sony to complete the game for Playstation and PC. For the five years of devel-
opment, the average team size was only six people, less than a tenth the size of a normal project team for
this sized game (Source NMS1), so the bulk of generative work had to be performed by procedural tools.
Table 3 gives an overview of the key findings from our analysis.

Table 3. No Man’s Sky—Key Findings Related to the Use of Autonomous Design Tools

Category Key Findings

Goals ● Scope: developing 18 quintillion unique worlds and biomes
● Speed: develop the game rapidly
● Runtime generation of varied but reproducible elements
● Exploration with large number of interesting planets

Challenges ● Very low budget
● Very small team (1 to 6 people)

 Design & Creativity with Autonomous Tools

 Fortieth International Conference on Information Systems, Munich 2019 9

● How to generate many planets with interesting things on most of them
● How to find variety in the procedural code

Design Practices

● Artist-driven concept (the “look”)
● Highly procedural-centric

○ Build the code, then let it run
○ Create drones to explore planets and return pictures
○ Tweak code to improve variety, excitement, and stability

● For animals, create base creature with all parts, then procedurally choose body parts and
size of parts

● For plants and biomes, use biology simulation: L-Systems
● Music procedurally samples from a vast music library at run-time, based on the game state
● Co-evolution of game design and tools

Creative outcome ● Nearly infinite universe of planets (18,000,000,000,000,000,000+)
● Each planet is unique
● Flora and fauna can take on vast number of shapes and sizes
● Music for the game is procedurally generated based on current game state

With a small development team and such ambitious universe creation goals, procedural generation of
everything—solar systems, planets, terrain, plants, animals, and even music—was in the design from the
very beginning. Murray notes that the planet terrain generator is only 1,400 lines of code, and that the
code was tweaked to ensure that the planets it generated were not only visually interesting but traversable
by a gamer. Early builds of the game produced many stunning planets that were non-navigable, while
some tweaks caused all the planets to be dull and unvaried (Source NMS5). Utilizing a procedural en-
gine to generate the content, then having humans examine the content for compliance with their vision,
then tweaking the procedural code to better match their vision, was the primary mode of asset develop-
ment for the game.

One fascinating aspect of No Man’s Sky is that even Sean Murray, originator of the game and creator of
the code, does not know what lies behind every corner of his game.

“It’s rare that a game can surprise its creator, but such is the nature of the No Man’s Sky universe, which is
procedurally generated and uncovered as players traverse it” (Source NMS3).

The team, in fact, had to invent virtual drones that can go visit sample planets and take ‘selfies’ while
there—pictures which the team will then review to ensure that planets near each other, for example, have
a variety of landscapes and creatures so there is a “little bit of variety” in each solar system (Source NMS
3). When creating a build of the game, the engine drops resources in a spot in space (these must be ex-
ploited in order for the gamer to move on), then figures out the aspects of the planet, from terrain to flora
and fauna, based on the resources at that spot (Source NMS3). A primary theme with the developers is
clearly the tension concerning variety versus accessibility: too much variety and the game becomes impos-
sible to play; too little variety and the game—vast as it is—is boring.

Concomitant with the vast scope of the game is the small installation size. The game installation is around
6GB, most of which is music files, and this small amount of data creates the large number of planets, and
all that is on them (Source NMS2). A solipsistic artifact of the game’s algorithmic nature is that nothing
exists until one arrives at that point in space. The game uses a smallish set of assets, created by humans,
to create hundreds or thousands of variations of everything (Source NMS4).

“Because all the necessary visual information in the game is described by formulas, nothing needs to be ren-
dered graphically until a player encounters it…. [T]he game continuously identifies a player’s location, and
then renders only what is visible. Turn away from a mountain, an antelope, a star system, and it will vanish
just as quickly as it appeared” (Source NMS5).

This economy is available to the game due to the deterministic nature of a game build: each point in space
is created procedurally, but with the same seed number and the same code, it will regenerate the exact
same thing at each point every time. Thus variety and nearly infinite possibility for exploration exists, but
this is contained within formulae that will dependably reproduce the same elements each time.

The life-forms for No Man’s Sky are also produced procedurally, but in a somewhat different manner. Life
is created using a version of the famous bio-mathematical L-Systems, originally developed by Aristid Lin-
denmayer in the late 1960s, and used by biologists and others to mimic everything from how life is created

 Design & Creativity with Autonomous Tools

 Fortieth International Conference on Information Systems, Munich 2019 10

to how complex ecosystems behave. The development team first created a number of life-form elements
(e.g., heads, backs, legs, tails, etc. for an animal) for a given life-form type. Figure 2 shows an example of
this “total mess” of an elemental creature (Source NMS4). The procedural engine then algorithmically
selects body parts that can go together, selects a size, and selects a texture for the creature. Thus animals
and vegetative matter are created procedurally from a relatively small set of hand-created parts. Again,
during game play, each of these creatures is created, assembled, and rendered just-in-time as the player
approaches it—a technical feat that is fairly astounding.

Figure 2. Multiple possible bodies, displayed at once, for a
creature in No Man’s Sky

(source: http://3dgamedevblog.com/?m=201610)

The Star Citizen Story

Star Citizen, in development by Cloud Imperium Games at the time of writing this paper, is a game where
players can move freely in a virtual open world of star systems, including planets, moons, and space sta-
tions. Players can use different vehicles such as various space ships for their explorations. This open world
includes significant procedurally generated pseudo-random content, such as the surfaces of planets and
moons, space stations, assets such as asteroids, and even missions/quests. Procedurally generated content
is an integral part of the game—this content is vital for the game to accomplish its vision and goals (Grey,
2017). Star Citizen got its initial funding through a Kickstarter campaign that started in 2012 and collected
more than two million USD. While stretching the initial goals multiple times, the game’s crowdfunding
continued, including the sale of virtual space ships and even concept sales of digital artifacts. In April
2019 the total funding exceeded 220 million USD.3 Table 4 provides an overview of key findings from our
analysis.

Table 4. Star Citizen—Key Findings Related to the Use of Autonomous Design Tools

Category Key Findings

Goals ● Scope: developing extremely large amounts of content and vast game worlds
● Speed: developing contents quickly
● Build time content generation
● Exploration, fresh experience, excitement

Challenges ● Kickstarter funded project; uncertainty
● Stretch goals
● Generating large amounts of content, but providing variety

Design practices

● Artist-driven design
● Confluence of procedural and manual design

○ Manual design of key structure at different levels (planets, biomes, etc.)

3 https://robertsspaceindustries.com/funding-goals, accessed 2019-04-18

 Design & Creativity with Autonomous Tools

 Fortieth International Conference on Information Systems, Munich 2019 11

○ Tools fill in key areas, e.g., using brushes
○ Artists craft specific art; to do so, they carve out areas

● Co-evolution of game design and tools

Creative outcome ● Extremely large game spaces
● Content variety

The game’s initiator, Chris Roberts, describes the goals of the project as developing a universe, which
requires extremely large amounts of content. The key goals of using procedural generation at Star Citizen
involve allowing designers and artists to generate game worlds at scale, and rapidly generating the content
at build time—but always in conjunction with manual design:

"We are going to use it [procedural generation] as a tool for universe building. I know a lot of people think
Star Citizen is purely hand-crafted… but the reality is that all of these games have a mix of hand-crafted and
procedural stuff in them." (Source SC1)

This process involves using procedural generation in sync with authored content to provide a large con-
tent scope and an exciting, fresh experience through the procedural generation of stories (missions/
quests).

The team started with simple tools that co-evolved as the game design evolved. Initially, the procedural
generation of planets was a mere idea that would be implemented only after the initial project launch,
being available with the Alpha 3.0 version. Version 1 (internally called V1) of the procedural tools was an
early, rudimentary version. Version 2 (V2) allowed for content generation at planetary scale. As the pro-
ject developed, it became clear that the team needed advanced tools for procedural generation to quickly
generate entire planets. Procedurally generated planets were thus one of the so-called stretch goals. Chris
Roberts described how the procedural generation of planets or space stations takes place at build time, the
tools providing constitutive elements of the game (Source SC 3). Designers start with a sphere and a
height map for the terrain of the planet. Then they add a distribution map to describe where biomes (for-
ests, mountains, deserts, etc.) are located. Designers manually paint some features and let procedural
tools generate the rest (Figure 3 shows a procedurally generated city).

There are two important observations to be made. First, certain architectural decisions are made (and
architectural rules are applied), and the procedural tools are used within the constraints of these architec-
tural decisions. Second, there is a significant amount of manual activity, i.e., “hand crafting” involved.
Overall, the approach is described as “artist-driven” by Chris Roberts:

“[Procedural planets V2] is a lot more artist authored and driven… We use these techniques to allow artists
to build the world out at scale, but they're determining where the continents are, where the forests are,
where the mountains are, where the desert plains are.” (Source SC1)

Planets in the game have surfaces of millions of square kilometers (as opposed to, for instance four or so
square kilometers for maps in conventional games). Users can freely navigate and explore this game space
in a way that would not be possible without the use of procedural tools (see Figure 3).

 Design & Creativity with Autonomous Tools

 Fortieth International Conference on Information Systems, Munich 2019 12

Figure 3. Procedurally Generated City in Star Citizen
(source: screen shot from Star Citizen Version 3.3.7-LIVE-1007767)

Discussion

The analysis of the three cases highlights how designing with autonomous tools leads to a rethinking of
formerly held notions about the process of game design. While the three cases differ in their specific goals,
the nature of the games developed, and the way they used procedural generation, there are certain com-
monalities: (a) In all three cases, organizations confronted new types of unpredictability related to the use
of autonomous tools; (b) in the three examples, this process was associated with certain risks (Grey, 2017)
and involved learning how to best use the tools; (c) in the each case, a relatively small team aimed to de-
sign an unusually large game space for the size of the design team.

From the perspective of the design practices in particular, we observe two key commonalities: in all cases
the developing teams (a) structured a particular architecture to shape the bounds of the procedural tools;
and (b) used manual designs in conjunction with procedural algorithms to produce a controlled amount
of variety for a rich user experience. Still, the specific strategies that were followed in the three games are
different, and we can thus identify a set of more detailed design practices. We discuss these two sets of key
design practices when using autonomous tools in what follows, and then suggest key propositions related
to these two sets of design principles.

Architectural Structuring

Our analysis suggests that the design practices applied in the three cases relate to capitalizing on the po-
tential of autonomous design to generate large amounts of content with certain levels of unpredictability.
However, to benefit from this unpredictability, the organizations used certain strategies to guide unpre-
dictability in order to align it with other design activities, such as those carried out by human designers, as
well as to implement a specific game idea or vision (Table 5). Broad architectural choices create a sense of
gameplay stability and allow game designers to convey their broad vision to the consumer. Still, these
choices might also lead to limited novelty in the procedurally generated content. The level at which the
game architecture is defined by human designers is highly variable.

Structuring for coherence. In all three cases, designers made architectural choices that would ensure
coherence—coherence among the various planets (Star Citizen, No Man’s Sky) and coherence among each
restart of the game (No Man’s Sky, Sunless Sea) to create consistent user experience. To this end, certain
design rules were defined, such as the arrangement of tiles in Sunless Sea.

Structuring for navigating granularity. In the case of Star Citizen, designers navigated different
levels of granularity, manually defining certain elements at high resolution, then allowing procedural tools
to deal with all other elements at lower resolution, using modular building blocks. This approach enabled
them to navigate different levels of procedural generation and thus have creative control over widely dif-
ferent levels of granularity of the project.

 Design & Creativity with Autonomous Tools

 Fortieth International Conference on Information Systems, Munich 2019 13

Structuring for novelty. In Sunless Sea, the arrangement of grids allowed implementing a certain level
of gameplay stability. At the same time, this move hindered the creation of novel experiences through the
use of procedural generation; the results created a repetitive experience for the user. However, an alterna-
tive architectural vision mitigated this effect, highlighting the importance of viewing game architecture
and procedural generation in context. Sunless Sea involved determining the bounds of procedurally gen-
erated content in different ways, and the strategies they implemented had much different impacts on
creative outcomes.

Structuring for procedural completion. Overall, each of the three games managed procedural gen-
eration by creating limits, or bounds on the elements to be created on autonomous tools. Procedural gen-
eration takes place within the constraints of the game’s architecture and architectural decisions clearly
matter to creativity. This involves a balance between the granularity of components, and the degree to
which components are specific.

Essentially, the organizations follow different approaches to modularity in their architectures (Baldwin &
Clark, 2003) to manage creativity in the projects, while at the same time leveraging autonomous tools.

Table 5. Architecting Design Practices

Design Practice Creative Outcome Examples

Structuring for coherence

• Defining rules that create a sense of consistency

Combing content variety with
consistent user experience

In Sunless Sea, similarities be-
tween the worlds generated at
game start allows users to become
more experienced in playing the
game.

In No Man’s Sky, spatial coordi-
nates and time dictate what exists
at each point, and at which point
animals and vegetation will be in
their life-cycle.

Structuring for procedural completion:

• Manually design basis

• Allow tools to complete design

Scale magnitude of work

Greater efficiency of creative
talent

In Star Citizen, broad areas (up to
the level of planets) are defined
and then filled procedurally.

In No Man’s Sky, animals are built
from a set of proto-elements that
are procedurally selected and put
together.

Structuring for navigating granularity:

• Manually design different elements of the game
environment at different resolutions, different
levels of abstraction

• Tools fill in the gaps with low resolution content,
and modular assembly of content

Scale magnitude of work and
greater efficiency of creative
talent

More flexibility in designing
general or specific game ele-
ments

In Star Citizen, the map architec-
ture involves different levels of
granularity, and procedural tools
are used at these different levels of
granularity.

Structuring for novelty:

• Arranging modular operators and interfaces in
such a way that procedural tools maintain clear
limits, but arranged in a way where these limits
effect the design less

More novelty in procedurally
generated content

In Sunless Skies, the map architec-
ture was adjusted based on the
experiences from Sunless Sea is in
such way that it fosters content
variety.

Our analysis suggests that these strategies are not mutually exclusive but can be combined. In Star Citi-
zen, for instance, designers (a) decide on what should be generated procedurally (structuring for proce-
dural completion), (b) at what level (e.g., planets, villages—structuring for navigating granularity), and (c)
to what extent this is then changed manually in order to inject variety—the design practice to which we
turn next.

Injecting Variety

Not only do autonomous tools operate within the boundaries of a specified architectural vision, designers
also interact with the generated outcomes to create rich experiences. Manual intervention helps to meet
architectural requirements (Smelik et al., 2010) and to introduce new sources of variety (Seidel et al.,
2018) into gameplay. We identified two key approaches.

 Design & Creativity with Autonomous Tools

 Fortieth International Conference on Information Systems, Munich 2019 14

Procedural completion. In No Man’s Sky, for example, a number of assets that were created manually
(including textures etc.), are procedurally combined at runtime to generate worlds. The final product—in
fact, the entire game—is generated procedurally.

Manual completion. In Star Citizen, for example, artists created game elements such as ruins or mine
shafts by carving out specific areas on planets, and then placing their specific art within that area. The
final product was thus generated manually, based on procedurally generated content. Table 6 shows how
(human) variety can be injected into procedurally generated content.

Table 6. Injecting Variety Design Practices

Design Practice Creative Outcome Examples

Procedural completion

• Designers initiate de-
signs that are instantiat-
ed procedurally

Ability to generate large design arti-
facts where manual generation pro-
vides the basis

New game space for every restart in Sunless Sea; large
portions of the game space are generated each time the
game is started.

Generation of planets, including landscape, flora and
fauna, at runtime in No Man’s Sky.

Manual completion

• Designers create and
place game elements
manually based on pro-
cedurally generated as-
sets

Ability to generate large design arti-
facts where procedural generation
provides the basic building blocks

Immersive experience in specific areas of the game
space in Star Citizen; designers created game elements
such as ruins or mine shafts by carving out specific
areas on planets, and then placing their specific art
within that area.

Propositions: Level of Modularity and Level of Manual Design

Clearly each of our cases attests to the need for a combination of manual design activity and procedural
generation (Schneider, Boldte, & Westermann, 2006; Smelik et al., 2010), but our key questions involved
how the two combine to generate creativity. The strategies related to architecture and injecting variety
essentially address two key issues: (1) key architectural choices determine the level of modularity; (2)
decisions about how variety is injected determine the level of manual design. Together, the level of modu-
larity and the level of manual design impact content variety, which is a proxy of creativity that is perceived
by the users. From these two strategies, we can infer two key insights.

The first insight, around the architecture, and thus the architecting design practices, involves the level of
modularity in the architecture. Clearly each of the cases determined the appropriate level of granularity
for the in-game modules based on the creative needs for gameplay. Star Citizen used a layering strategy to
quickly generate planets at scale, where each planet was a generated unit, and where each planet is com-
posed of biomes, which then contain mountains etc. Sunless Sea used a grid for generation, and the Sun-
less Sea example vividly shows that this level is critical to the right amount of creativity as they moved
from an 18x18 grid to a 3x3 to finally settle on 6x6 to balance designer attention with variety in the game-
play. Finally, the designers of No Man’s Sky had to balance the scale at which procedural generation could
run: too little granularity and the worlds are too uniform; too much and they are unplayably chaotic. The
granularity of the modules, resulting from the application of the key architecting design practices, is criti-
cal to maintaining creativity and at the same time economizing designer resources, leading to our first
proposition.

Proposition 1: More (less) granularity in the modular architecture for procedural generation
will result in greater (less) content variety.

Our analysis highlights how the use of autonomous tools in video game design is embedded in, and thus
constrained by, a game’s overall architecture, which reflects the designers’ broader architectural vision.
Procedural generation—which is inherently deterministic but should still produce outcomes that are un-
predictable from the designer’s perspective—is guided by this architecture, and the overall outcome de-
pends on how procedural generation is guided, or constrained, by that architecture. Moreover, since pro-
cedural generation is inherently deterministic, the interaction of manual design steps and procedural
generation are essential as game developers aim to create variety.

The second key insight relates to the way creativity is injected into the design artifact. Here, the key is the
level of manual design. Our data suggests that the level of manual design is high when a procedurally

 Design & Creativity with Autonomous Tools

 Fortieth International Conference on Information Systems, Munich 2019 15

generated design artifact is manually completed or changed. The opposite is that the level of manual de-
sign is lower when pre-built assets that are manually designed are then procedurally combined. While in
the first case determinism is followed by human ingenuity, in the second case, human ingenuity is fol-
lowed by deterministic recombination.

In all three cases, designers manually created critical components of the games—those components where
gamers were likely to spend more time and scrutinize more; those components that were critical to game
play. In Star Citizen, for example, we can see a combination of the two modes. First, designers make archi-
tectural choices to generate large amounts of content (procedural completion—and manual initiation), but
this content then provides the basis for manual interventions (manual completion—and procedural initia-
tion) as designers go on to identify and alter important areas in the procedurally generated game space. In
No Man’s Sky, for example, where the game space is generated at runtime, designers focused attention on
handcrafting key static elements, such as the playable characters as well as elemental assets that are then
re-combined to create vegetation and fauna at runtime—a case of manually initiated, but procedurally
completed content generation. That is, on the one hand designers can design key components and let the
procedural generation finish the design, resulting in more efficient leveraging of designer resources, but
potentially with less interesting components. On the other hand, designers can manually complete what
algorithms produce. This observation leads to our second proposition:

Proposition 2: Manually completed components of design are likely to show more content va-
riety than procedurally completed components of design.

These propositions point out how decisions associated with architecture and the way designers choose to
inject variety have implications for both the variety and associated apparent creativity of the resulting
artifact, but do so at the cost of the scope of the design that designers can address.

Conclusion

Digital technologies with autonomous capabilities, fueled by advancements in algorithms, artificial intelli-
gence, and related methods, play a key role in the changing nature of human work (Daugherty & Wilson,
2018; Seidel et al., 2019). It is clear that even traditionally human-centric practices such as design—
knowledge-based activities aimed at constructing artifacts and typically involving creativity (Dorst &
Cross, 2001)—change as autonomous tools are used (Seidel et al., 2019).

This paper presents how game development processes are structured as organizations seek to capitalize
on the affordances provided by autonomous design tools—tools that are based on algorithms and thus
deterministic, but at the same time capable of creating content of scale, complexity, and variety that is
impossible for humans to achieve within any reasonable time frame, and that appears to be unpredictable
to designers and users. Two key sets of practices allow game designers to navigate this tension: architec-
tural structuring and injecting variety. These two categories of design practices can be broadly subsumed
under what seems to be the current paradigm of game development when using autonomous design tools:
artist-driven procedural generation, which involves the combination of manual and procedural activities.
Procedural generation is an incredible way to efficiently generate a lot of design content, but in order to
ensure creativity, the architectural decisions and the process through which designers inject variety into a
game will have implications on both the realized design creativity, and on the scope of the design. In this
paper we take a step toward theorizing about these tensions.

Our study has some limitations. First, our data sample only considers cases from the substantive area of
video game development. Second, within this substantive area, we investigated three development pro-
jects that only cover a small part of the video game development landscape (e.g., our sample did not in-
volve a “Triple-A” game developed by a major studio and two of the games are crowdfunded; also, these
games used procedural generation in specific ways). However, in order to allow for applying our ideas in
different contexts, we aimed to move towards formal concepts in terms of the key practices we identified
and we developed two key propositions. To what extent the suggested concepts are applicable in other
contexts where autonomous design tools are used will be subject to future empirical work. Finally, our
study has focused on creativity from the perspective of designers and their design practices, and we have
argued that content-variety is a proxy for what will be perceived by users—it will thus be worthwhile to
also explore how the different outcomes are indeed perceived by users.

 Design & Creativity with Autonomous Tools

 Fortieth International Conference on Information Systems, Munich 2019 16

References

Amabile, T. M. (1988). A Model of Creativity and Innovation in Organizations. In B. M. Staw & L. L. Cummings

(Eds.), Research in Organizational Behavior (Vol. 10, pp. 123-167). Greenwich, CT: JAI Press.

Amabile, T. M. (1996). Creativity in Context: Westview press.

Backus, K. (2017). Managing output: Boredom versus chaos. In Procedural Generation in Game Design (pp. 13-

21): AK Peters/CRC Press.

Baldwin, C. Y., & Clark, K. B. (2003). Managing in an Age of Modularity. Managing in the Modular Age:

Architectures, Networks, and Organizations, 149, 84-93.

Brown, C., & Linden, G. (2011). Chips and Change: How Crisis Reshapes the Semiconductor Industry: MIT Press.

Charmaz, K. (2006). Constructing Grounded Theory: A Practical Guide through Qualitative Analysis. Thousand

Oaks, CA: Sage.

Colton, S., & Wiggins, G. A. (2012). Computational Creativity: The Final Frontier? Paper presented at the ECAI.

Daugherty, P. R., & Wilson, H. J. (2018). Human + Machine: Reimagining Work in the Age of AI: Harvard Business

Press.

Dorst, K., & Cross, N. (2001). Creativity in the Design Process: Co-evolution of Problem-Solution. Design Studies,

22(5), 425–437.

Glaser, B. G., & Strauss, A. L. (1967). The Discovery of Grounded Theory: Strategies for Qualitative Research.

Chicago, IL: Aldine Publishing Company.

Grey, D. (2017). When and Why to Use Procedural Generation. In Procedural Generation in Game Design (pp. 3-

12): AK Peters/CRC Press.

Hendrikx, M., Meijer, S., Van Der Velden, J., & Iosup, A. (2013). Procedural Content Generation for Games: A

survey. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 9(1),

1.

Klein, H. K., & Myers, M. D. (1999). A Set of Principles for Conducting and Evaluating Interpretive Field Studies

in Information Systems. MIS Quarterly, 23(1), 67-93.

Liapis, A., Yannakakis, G. N., & Togelius, J. (2014). Computational Game Creativity. Paper presented at the ICCC.

Müller, P., Wonka, P., Haegler, S., Ulmer, A., & Van Gool, L. (2006). Procedural Modeling of Buildings. ACM

Transactions On Graphics (Tog), 25(3), 614-623.

Schneider, J., Boldte, T., & Westermann, R. (2006). Real-time Editing, Synthesis, and Rendering of Infinite

Landscapes on GPUs. In: Vision, Modeling and Visualization.

Seidel, S., Berente, N., Lindberg, A., Nickerson, J. V., & Lyytinen, K. (2019). Autonomous Tools & Design Work:

A Triple-Loop Approach to Human-Machine Learning. Communications of the ACM, 62(1), 50-57.

Seidel, S., Berente, N., Martinez, B., Lindberg, A., Lyytinen, K., & Nickerson, J. V. (2018). Succeeding with

Autonomous Tools in Systems Design: Reflective Practice & Ubisoft's Ghost Recon Wildlands Project.

IEEE Computer, 51(10), 16-23.

Shaker, N., Togelius, J., & Nelson, M. J. (2016). Procedural Content Generation in Games: Springer.

Short, T. X., & Adams, T. (2017). Procedural Generation in Game Design: AK Peters/CRC Press.

Smelik, R. M., Tutenel, T., Bidarra, R., & Benes, B. (2014). A Survey on Procedural Modelling for Virtual Worlds.

Paper presented at the Computer Graphics Forum.

Smelik, R. M., Tutenel, T., de Kraker, K. J., & Bidarra, R. (2010). Integrating Procedural Generation and Manual

Editing of Virtual Worlds. Paper presented at the 2010 Workshop on Procedural Content Generation in

Games.

Strauss, A. L., & Corbin, J. (1998). Basics of Qualitative Research. Techniques and Procedures for Developing

Grounded Theory (2nd ed.). London, UK: Sage.

Togelius, J., Kastbjerg, E., Schedl, D., & Yannakakis, G. N. (2011). What is Procedural Content Generation?: Mario

on the Borderline. Paper presented at the 2nd International Workshop on Procedural Content Generation in

Games.

Urquhart, C., & Fernández, W. (2013). Using Grounded Theory Method in Information Systems: The Researcher as

Blank Slate and other Myths. Journal of Information Technology, 28(3), 224-236.

Watson, B., Müller, P., Veryovka, O., Fuller, A., Wonka, P., & Sexton, C. (2008). Procedural Urban Modeling in

Practice. IEEE Computer Graphipcs and Applications, 28(3), 18-26.

Woodman, R. W., Sawyer, J. E., & Griffin, R. W. (1993). Toward a Theory of Organizational Creativity. Academy

of Management Review, 18(2), 293-321.

Yannakakis, G. N., & Togelius, J. (2015). Experience-driven Procedural Content Generation. Paper presented at the

International Confernce on Affective Computing and Intelligent Interaction (ACII), 2015.

	Designing with Autonomous Tools: Video Games, Procedural Generation, and Creativity
	

	Designing with Autonomous Tools: Video Games, Procedural Generation, and Creativity

