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Abstract On the one hand, predictive analytics is an important field of 
research in Information Systems (IS); however, research on predictive 
analytics in healthcare is still scarce in IS literature. One area where 
predictive analytics can be of great benefit is with regard to unplanned 
readmissions. While a number of studies on readmission prediction 
already exists in related research areas, there are few guidelines to date on 
how to conduct such analytics projects. To address this gap the paper 
presents the general process to develop empirical models by Shmueli and 
Koppius (2011) and extends this to the specific requirements of 
readmission risk prediction. Based on a systematic literature review, the 
resulting process defines important aspects of readmission prediction. It 
also structures relevant questions and tasks that need to be taken care of 
in this context. This extension of the guidelines by Shmueli and Koppius 
(2011) provides a best practice as well as a template that can be used in 
future studies on readmission risk prediction, thus allowing for more 
comparable results across various research fields. 
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1 Introduction 
 
Hospital readmissions, especially unplanned readmissions are an important 
quality measure in healthcare, as they can indicate issues around treatments, 
rehabilitation and/or discharge management. Moreover, readmissions are often 
associated with increased costs resulting from penalties and regulations enforced 
by policy makers and insurers. At the same time, the increasing availability of 
healthcare data leads to an uptake in predictive analytics research conducted in 
the healthcare sector. The identification of patients at high risk of readmission is 
a significant issue in this context. The main motivation behind this research area 
is to identify patterns that can help to unravel high-risk patients to allow for 
timely interventions. The starting point of these interventions lies in the 
screening of individuals at high risk of discharge failure (Scott, 2010). By 
identifying high-risk patients, hospital resources can be allocated accordingly and 
interventions and discharge planning can be adapted. Multiple factors associated 
with a higher risk of readmission have been identified in research, including 
health factors (e.g., co-morbidities (Kumar et al., 2017; van Walraven, Bennett, 
Jennings, Austin, & Forster, 2011), social factors (e.g., marital status (Hasan et 
al., 2010)), clinical factors (e.g., hospital utilization (Shadmi et al., 2015)), length 
of stay (Heggestad, 2002)) or effective discharge management (Ohta, Mola, 
Rosenfeld, & Ford, 2016). 
  
Determining the risk of readmission is an imperative and highly complicated task, 
relying on different risk factors for various health conditions. While some studies 
propose general risk scores (Donzé, Aujesky, Williams, & Schnipper, 2013; van 
Walraven et al., 2010) applicable for all kinds of diseases, research shows 
significant variation in risk factors for different health conditions. Thus, to be 
able to accurately predict patients at high risk of readmission, individual 
prediction models for different health conditions should be preferred. Even 
though there are a number of studies dealing with this phenomenon, currently 
no theoretical framework exists to guide these kinds of research projects. This 
leads to the issue that studies on readmission risk prediction often disregard key 
characteristics for this prediction task. Also, results from different studies are 
often difficult to compare and thus unsuitable to generalize best practices. This 
study proposes a theoretical framework to guide studies on readmission risk 
prediction by providing a structured overview of relevant definitions, tasks and 
questions that need to be taken care of in this context. To identify these steps 
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previous studies are analysed to identify project characteristics specifically for 
hospital readmission prediction. 
 
2 Theoretical and conceptual background 
 
2.1 Readmissions in hospitals 
 
While there is no standard definition for readmissions available, they can be 
broadly described as "a second admission to a hospital within a specified period 
after a primary or index admission" (Kristensen, Bech, & Quentin, 2015, p. 265). 
For each healthcare system, criteria concerning the index admission and the 
second admission to account as a readmission as well as the considered time 
frame, have to be defined. These criteria can include clinical characteristics (e.g., 
diagnosis), demographics (e.g., patient age), type of the admission (e.g., elective 
or emergency) or the treatment facility (Kristensen et al., 2015). To determine 
the applicable time frame, readmission days are counted from the discharge date 
of the index admission until the admission date of the second admission. 
Consequently, a readmission is defined by the relation between two admissions 
and the time frame in between. There is no international consensus considering 
the specified period between admissions. The time frame varies among studies 
from 14-day to 4-year with the most common being 30-day readmissions 
(Kansagara et al., 2011). 
 
2.2 Predictive analytics 
 
Predictive analytics methods are used in a variety of application fields to extract 
patterns from historical data to create empirical predictions as well as methods 
for assessing the quality of those predictions in practice (Shmueli & Koppius, 
2011). Predictive analytics are part of data mining, which aims at deriving models 
that can e.g., use patient-specific information to predict a specific outcome. As 
opposed to descriptive models that aim to identify human-interpretable patterns 
and associations in existing data based on pre-defined attributes, predictive 
analytics tries to foresee outcomes or classifications for new input data using a 
special response variable, thus the classification (Bellazzi & Zupan, 2008). 
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Shmueli and Koppius (2011) present a general approach for conducting 
predictive analyses. They postulate that in general, predictive analyses consist of 
two components: First, the empirical predictive model, such as statistical 
methods or data mining algorithms and second, methods that evaluate the 
predictive power of a model. The latter refers to the ability of a predictive model 
to accurately represent new observations. The explanatory power, in turn, is 
related to the strength of the association induced by the statistical model (Shmueli 
& Koppius, 2011). Figure 1 illustrates the general process steps, which are carried 
out for the creation of all empirical models. The individual tasks in this process, 
however, differ extensively when developing an explanatory or predictive model. 
For example, while explanatory models investigate the explanatory power of their 
identified relationships (e.g., theoretical coherence, strength-of-fit, statistical 
significance), predictive models assess the predictive accuracy of a model, e.g., 
using cross-validation or split-validation measures. The individual modelling 
steps as proposed by Shmueli and Koppius  (2011) guide the development of the 
readmission prediction framework presented in this paper. 
 

 
 

Figure 1: Process to build an empirical model (Shmueli & Koppius, 2011) 
 
2.3 Imbalanced data 
 
A major concern in predicting readmissions is the occurrence of imbalanced data. 
Imbalanced data, also known as skewed data, has a strong unequal distribution 
of the minority and majority classes (Sun, Wong, & Kamel, 2009). In the case of 
hospital readmissions, this is especially true for unplanned readmissions, as rates 
usually vary between 1.1 to 6.7 % (Kreuninger et al., 2018). The main issue with 
handling imbalanced data is that traditional classifiers tend to perform best with 
an equal class distribution while the relevant information from the minority class 
might be overlooked with regards to the majority class (Sun et al., 2009, 2009). 
There are a number of different approaches to handle imbalanced data (Nitesh 
Chawla, 2005; Galar, Fernandez, Barrenechea, Bustince, & Herrera, 2012; He & 
Garcia, 2009; Kotsiantis, Kanellopoulos, & Pintelas, 2006; Longadge & Dongre, 
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2013; Sun et al., 2009), the most popular being sampling or ensemble techniques 
(Haixiang et al., 2017).  
 
Sampling 
 
Two main sampling approaches can be differentiated, namely oversampling and 
undersampling. Undersampling reduces the entities from the majority class, while 
oversampling creates additional entities of the minority class (Galar et al., 2012; 
Kotsiantis et al., 2006). A variety of sampling approaches are available to reach 
this goal, the most prominent being random over- and undersampling, informed 
undersampling, synthetic minority oversampling (SMOTE), adaptive synthetic 
sampling, sampling with data cleaning, and cluster-based sampling methods (He 
& Garcia, 2009).  From the variety of over- and undersampling methods 
presented in literature (Galar et al., 2012; Haixiang et al., 2017), random 
undersampling (RUS) is still one of the most commonly applied undersampling 
techniques (Haixiang et al., 2017). In RUS, entities of the majority class are 
randomly removed to reduce the data imbalance (Galar et al., 2012). The most 
commonly used oversampling technique is SMOTE and its derivations (Haixiang 
et al., 2017). The SMOTE process is introduced by Chawla et al. (2011; 2003). 
For each entity of the minority class, the k-nearest neighbours are identified; after 
this, a distance vector from the minority entity to its neighbours is calculated. By 
randomly multiplying the vector with a number between 0 and 1, SMOTE creates 
a new data entity, which is added to the training data.  
 
Ensemble learning 
 
Hybrid methods of predicting imbalanced data include cost-sensitive learning 
and ensemble learning. Cost-sensitive learning follows the approach of 
manipulating the algorithm to weight the minority class higher and improve 
classifier performance. Cost-sensitive approaches have the downside that the 
actual costs of misclassification must be known (Sun et al., 2009). Another issue 
in readmission prediction as pointed out by Kansagara et al. (2011) is the poor 
performance of individual classifiers. Ensemble methods counter this issue by 
combining multiple classifiers into one classification system to produce a higher 
accuracy than achieved by its individual components (Galar et al., 2012). 
Ensemble learning can either be performed by combining different classifiers or 
by applying variations of the same classifier (Haixiang et al., 2017). Two main 
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approaches that can be differentiated are bagging and boosting. Bagging, which 
is short for bootstrapped aggregating, is introduced by Breiman (1996) and 
combines several base classifiers into one classifier. In the first step, data subsets 
are sampled from the training data. The bagging approach bootstraps the data to 
create several different bags. Bootstrapping means that random samples are 
added to the subset until the subsets have the same number of entities as the 
training data. This leads to intended duplicates in the subsets. Next, for each of 
the bags, the base classifier is trained and applied to the application set. 
Subsequently, the differently trained classifiers vote as to which class a new entity 
belongs, and a majority vote of the classifiers determines in which class the 
observation fits best. A prominent bagging method are RandomForests, which 
combine individual decision trees into a single classifier. In boosting, the training 
set is again split into k subsets. The model building, however, is done sequentially 
as opposed to the independent training for bagging models. Here, a weight is set 
for each data element, where misclassified examples increase their weight for the 
subsequent training round. In addition, a weight is set for each classifier 
dependent on its individual error rate. Thus, a weighted vote from all classifiers 
is used for the prediction of a new example (Quinlan, 1996). The most prominent 
boosting method, AdaBoost (adaptive boosting) (Freund & Schapire, 1997) is 
based on the principle of boosting introduced by Schapire (1990) and uses the 
base principle of improving the algorithm in every iteration to achieve a higher 
performance. Here, the base classifier is applied to the entire training data set. 
Next, AdaBoost calculates the error rate for each individual sample and adds it 
to the data. In the next iteration, the algorithm selects the training data by 
considering the assigned weight to give misclassified samples higher attention. 
After each iteration, AdaBoost weights the models according to accuracy. 
 
3 Framework development 
 
3.1 Goal definition and study design 
 
As a first step in any prediction project, the analysis goal has to be defined. While 
the main objective is to predict patients at risk of readmission to the hospital, the 
specific terms and criteria to successfully reach this goal need to be defined, 
namely the type of prediction, the interpretation of a high-risk patient as well as the 
parameters for an episode to count as a readmission. 
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Prediction: In supervised learning, two types of prediction tasks can be 
differentiated, namely classification and regression. Classification aims at 
predicting discrete values, i.e. predefined categories or classes, whereas regression 
provides continuous values. In the task of readmission prediction, a categorical 
value, hence a classification approach, is required. At the highest level, a 
dichotomous differentiation between readmitted and non-readmitted patients is 
chosen. If necessary, the classes can be extended to further distinguish the time 
of readmission (e.g., early versus late readmissions) in a specified time frame, they 
can be separated by the reason for readmission (e.g., complications or 
corrections) or the level of risk (e.g., low risk, medium risk, high risk). The main 
issue for each of these cases is the prior classification of examples in the historical 
dataset that has to be aligned with the goal of the analysis task. In the case at 
hand, the main goal is to find out, whether a patient will be readmitted or not. 
Thus, a binary variable reflecting either 1 (readmission) or 0 (no readmission) is 
chosen as the classification target. 
 
High-risk: The binary distinction can further be extended by considering the 
probability of class memberships. This way, prediction models cannot only 
specify, whether a patient belongs to the predicted readmission group or not, but 
also the probability of belonging to a group can be determined. The lower the 
threshold for a required class membership is set, the more risk patients can be 
identified. On the other hand, this also increases the likelihood of false positives. 
If the costs for a false positive prediction or a false negative prediction are known, 
weights can be specified accordingly. The concrete value of wrong predictions, 
however, is difficult to determine and poses a major challenge in readmission 
prediction. Costs for a prolonged length of stay or intervention programs can be 
used as approximations (Jamei, Nisnevich, Wetchler, Sudat, & Liu, 2017). 
 
Readmission: Another issue in readmission prediction lies in the basic 
definition of the readmission episode itself. Readmissions are commonly 
differentiated between planned or unplanned readmissions and related or 
unrelated to the index admission (AHA, 2011). While the identification and 
prediction of readmissions should primarily focus on unplanned, related 
readmissions, it is often difficult to assess the relationship between admissions. 
Also, planned readmissions are often not documented within hospitals and 
therefore exacerbate the distinction of unplanned readmissions. Besides the 
admission intent, some studies also differentiate between avoidable and 
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unavoidable readmissions (van Walraven et al., 2011; van Walraven, Wong, & 
Forster, 2012). The proportion of avoidable readmissions in that context and the 
underlying criteria to determine whether they are indeed avoidable varies strongly 
between studies. For example, van Walraven et al. (2011) suggest a median 
proportion of around 27 % of readmissions to be avoidable, or similarly van 
Galen et al. (2017) propose 27-28 % be at least predictable. 
 
To specify which episodes qualify for this definition, a variety of factors, 
including the timespan between admissions and the reasons for readmission have 
to be clarified. The timeframe can be selected based on regulations at a country 
or hospital-level or adhere to protocols by insurers. The reasons for readmission 
to be related to the index admission are highly dependent on the episodes under 
study. If certain diagnoses or procedures are investigated, the most common 
diagnoses for readmissions can be identified apriori and categorised into the 
presented scheme for readmissions (AHA, 2011). This task requires sufficient 
domain knowledge to undertake the classification for a specific procedure or 
diagnosis group. Alternatively, existing guidelines or regulations by insurers or 
governments can also be used.  
 
3.2 Results  
 
The data preparation process covers various steps of cleaning, visualising and 
reducing the available dataset in order to be suitable for the subsequent analysis. 
This includes dealing with missing and inconsistent data as well as creating and 
selecting appropriate features. To get a better understanding of the underlying 
data and identify noise, exploratory analysis and simple visualizations of the 
dataset are conducted. Figure 2 gives an overview of the individual steps that are 
taken to develop the appropriate feature sets in the following sections. 
 

 

 
Figure 2: Data preparation steps 
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Data selection 
As a first step, data is filtered to only include relevant admissions for the 
prediction task. It is imperative that the prediction model is trained on the data 
of the admission episodes that might have led to a readmission, not on the 
readmission episodes. The following criteria are important for each episode to 
remove irrelevant data points accordingly: 
 

• The patient is admitted to acute care. 
• The patient did not die during or after the hospital stay. 
• The patient did not leave the hospital at his/her own risk. 

 
Feature creation 
To complement the data set with further relevant attributes, the availability of 
the identified risk factors from previous studies is assessed for each procedure 
group. Based on the insights from systematic reviews by Kansagara et al. (2011) 
and Zhou et al. (2016) relevant attributes for readmission risk prediction from 
previous studies can be analysed and, if applicable, integrated into the dataset. 
Furthermore, if no studies on predictive models are available for the diagnosis or 
procedure under study, explanatory models can also provide an indication of 
relevant risk factors. 
 
Data cleaning 
The term data cleaning describes the process of detecting and removing data 
errors and inconsistencies. Unclean data can either occur on attribute, record, 
record type, or source level. According to Rahm (2000) errors can appear on a 
schematic or at an instance level.  
Schematic errors can consist of the following: 
 

• illegal values in attributes (e.g., a BMI of 0), 
• inconsistencies on record level (e.g., between age and date of birth), 
• record type errors, such as uniqueness violations (e.g., multiple uses of 

patient or episode IDs), or 
• referential integrity violations (e.g., missing descriptions of diagnosis 

codes). 
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On an instance level,  
 

• missing values, 
• misspellings,  
• abbreviations or non-defined codes,  
• embedded values (i.e., multiple attributes in one column), or 
• misfielded values (e.g., age in the date of birth column) can occur. 

 
Duplicate records or varying value representations (e.g., data types) also affect 
the integrity of the data set (Rahm & Do, 2000). According to Chen et al. (2014), 
completeness, accuracy, and timeliness of data are the major factors for data 
quality specifically in health information systems. To identify errors, data 
profiling can be performed, which provides metadata to discover errors in the 
data. 
  
Missing values can be handled in different ways, where entities can either be 
deleted, missing values can be imputed or the missing values can present 
knowledge themselves (Grzyb et al., 2017). If missing values don't indicate 
additional insights, attributes with too many missing values are not taken into 
further consideration. Also, attributes contributing low or now information are 
identified by calculating the variance of each variable. Attributes with a variance 
lower than a predefined threshold can be excluded from the dataset. 
 
Exploratory data analysis 
 
The goal of the exploratory data analysis (EDA) is to analyse the dataset visually 
and numerically to ensure that the data is suitable for the prediction model. In 
addition, dimensions are systematically reduced in this step as too many 
predictors can introduce noise and thus decrease the performance of a prediction 
model. Depending on the type of the attribute under study, different graphical 
representations can be used to gain insights into the analysed records. For 
univariate and bivariate data (e.g., gender), simple plots, such as histograms or 
scatterplots can be used. The numerical distribution gives an insight into how the 
two cohorts differ. 
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Choice of variables 
 
After reducing dimensions, the next step is to select which variables to use for 
the prediction models. To this end, the variables must have a measurement 
quality, which means variables that do not assist in predicting unplanned 
readmissions are not relevant for the model. A feature is seen as beneficial if it is 
correlated with the prediction flag but is not redundant to any other relevant 
feature (Yu & Liu, 2003). This means that the variables must have the ability to 
predict readmissions while not being highly correlated with each other. Since 
variables with correlations above 0.70 are seen as highly correlated (Asuero, 
Sayago, & González, 2007), features with a correlation above 0.70 can be 
removed.  
 
An additional aspect that distinguishes prediction models from explanatory 
models is the time of data availability. While explanatory models can utilize all 
data that is available to identify relationships a posteriori, prediction models need 
to be based on data that is available at the time of prediction (Shmueli & Koppius, 
2011). As the prediction models are usually utilized before patient discharge, only 
attributes that are available before a patient leaves the hospital can be considered. 
 
3.3 Model development 
 
According to a systematic review by Artetxe et al. (2018) on predictive models 
for hospital readmission risk, machine learning methods can improve the 
prediction ability over traditional statistical approaches. Such contributions to 
this academic field are aimed at first aligning complex and sensitive information 
across multiple sources, using, among others, administrative, insurance, clinical, 
and government registry data. This information is thereafter used to identify 
patients in need of additional healthcare resources by means of various 
intervention methods (Billings, Georghiou, Blunt, & Bardsley, 2013). The model 
development is split into several steps (cf. Figure 3) and is tightly connected to 
the internal evaluation and optimization of a prediction model. 
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Figure 3: Model development process 
 
Split the dataset 
 
As a first step, the prepared dataset is split into a training and a validation set. 
The training set is further used to train, test and optimize the models, while the 
validation set is used in the very last step to evaluate and compare the predictive 
performance of the final models. The data is split in a stratified fashion, thus the 
distribution of readmitted and non-readmitted patients is equal in both datasets.  
A major issue in predictive analytics is overfitting, which refers to a model that 
fits the training data perfectly, but fails to generalize in order to correctly predict 
new examples. Different strategies can be applied during model training to avoid 
and test if a model overfits, namely hold-out validation and cross-validation. To 
perform these validations, the data is split into three subsets, a training set and a 
validation set for cross-validation or hold-out validation and a test set for final 
evaluation. Depending on the evaluation strategy, these sets are created and used 
in different manners.  
 

• Training set: This subset is used to fit the model, i.e., derive the 
relationship between the input variables and the target class. 
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• Validation set: Next, the developed model is tested on unseen data, 
where the predicted values are compared with the real class membership 
to determine the error rate of the predictions. 

• Test set: The test set is used in the last step to evaluate the final model 
that is built on the full dataset (training + validation) given the optimal 
hyperparameters previously determined by the training and validation 
data.  

 
For both approaches, a test set is omitted for final testing of the developed 
model. The training and validation of the model, however, differs. In hold-out 
validation, for each parameter setting, the model is only trained once on the 
training set and then applied to the validation set. When the best parameter 
setting is found through this approach, the final model is again trained on the 
entire dataset (training + validation data) and then evaluated using the test set. In 
cross-validation, on the other hand, the data is split into k subsets, where k equals 
a positive integer. Next, the model is trained on k-1 subsets and validated on the 
remaining subset. This is repeated until every subset has been used as a training 
and validation set (cf. Figure 4). A special form of cross-validation, termed leave-
one-out cross-validation (LOOCV), splits the data into k subset, where k equals 
the number of examples in the dataset. Thus, each data point is used on its own 
to evaluate the model that is built on the remaining dataset. This approach, 
however, gets extremely cost-intensive with regards to computing time the bigger 
the data set. While hold-out validation requires less computing time as the model 
only has to be trained once, sampling of the training and test set can lead to an 
unwanted bias. In cross-validation, on the other hand, each data point is used 
both as a training and a validation example, eliminating the sampling bias. Since 
computing time is not an imitating factor in this analysis and the size of the data 
sets is appropriate for cross-validation, this technique is used for evaluating the 
prediction models in the following sections. 
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Figure 4: Hold-out validation versus cross-validation 
 
Sampling 
 
If the utilized algorithm doesn't support class weights, sampling can be 
performed on the training data set to handle an imbalanced class distribution. 
There is no clear suggestion, whether over- or undersampling performs better in 
a given prediction task, thus both approaches should be tested. In order to avoid 
shrinking the data set in the sampling process too extensively, the desired ratio 
between the minority and majority class can be specified. 
 
Feature selection 
 
Next, different feature selection approaches are performed for each classifier. In 
general, filter, wrapper and embedded methods can be distinguished (Guyon & 
Elisseeff, 2003). The main difference between these approaches lies in the point 
in time of feature selection with regards to the model development and 
evaluation (cf. Figure 5). 
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Figure 5: Feature selection approaches (cf. Suppers, van Gool, & Wessels, 2018, p. 7) 
 
Filter methods clearly separate the feature selection and model building process. 
As a first step, attributes are chosen based on model-independent factors, such 
as variance or correlation thresholds. Wrapper methods, on the other hand, 
iteratively build and evaluate a model and adapt the feature set based on the 
results of the model evaluation until a certain threshold is reached. This adaption 
can be done by increasing or decreasing the number of features. In forwards 
selection, the initial feature set consists of one attribute that is consistently 
extended. The main issue with forwards selection is that features whose 
usefulness is dependent on other features ("feature synergy") might be lost 
(Kohavi & John, 1997). To overcome this issue, backwards elimination initially 
uses the entire feature set to build the classification model and attributes are 
iteratively removed. Recursive feature elimination (RFE) is a type of backwards 
selection, where the model is first trained on all features, which are then ranked 
based on their contribution to the prediction task. The lowest-ranking features 
are removed until the prediction accuracy of the model decreases. Lastly, 
embedded methods perform the feature selection task during model building. 
Decision trees are a prominent example of an embedded feature selection model, 
as the information gain of each attribute is used to choose the features for model 
building. Since KNN and NB can't consider varying importance of different 
features, the models are fitted on all attributes. L1 regularization (also termed 
"least absolute shrinkage and selection operator (LASSO)") also presents an 
embedded method for a linear regression that adds a penalty for overly complex 
models, i.e., the number of input factors. Since DT have an embedded method 
of feature selection based on the information value of attributes, RFE is 
performed with cross-validation (RFECV) for all other methods. In RFE, 



402 32ND BLED ECONFERENCE  
HUMANIZING TECHNOLOGY FOR A SUSTAINABLE SOCIETY, CONFERENCE PROCEEDINGS    

 

 

attributes are continuously excluded from the data set based on their contribution 
to the prediction task.  
 
Hyperparameter tuning 
 
As a next step, hyperparameter tuning is performed where the classifier is fitted 
to the sampled training set with the remaining relevant attributes. Each model 
can be trained using a set of hyperparameters relevant for each algorithm. The 
hyperparameters determine various criteria on how a model is trained, the 
learning speed and the structure of the model. To identify the best combination 
of hyperparameters, different search strategies can be applied. With sufficient 
computing power, formerly popular manual "trial-and-error" settings can be 
neglected. Instead, parameter combinations can be tested within a given scope 
using search algorithms, such as random search or grid search. In random search, 
each parameter setting is sampled from a distribution over possible parameter 
values. On the other hand, grid search offers an exhaustive search in a specified 
scope parameter value. Research has shown that random search provides a more 
efficient way of identifying the optimal parameter setting with at least equally 
satisfying results (Bergstra & Bengio, 2012).  
 
Model building 
 
In the last step, the prediction model is built by training the classifier on the entire 
training and test data set using the identified hyperparameter combination. The 
resulting model can then be used for the final validation. Depending on the 
classifier, sample weights or embedded feature selection can be employed during 
model building. Otherwise, the over- or undersampled data is used to build the 
prediction model based on the previously identified relevant features.  
 
3.4 Evaluation, validation, and model selection 
 
In the last step, the prediction model is applied to the final test set. Thus, the 
model is tested on previously unseen data that hasn't been involved in the 
development process. A major issue in predictive analytics is overfitting, which 
refers to a model that fits the training data perfectly, but fails to generalize in 
order to correctly predict new examples. A popular strategy to test if a model 
overfits is to perform cross-validation. For this purpose, the data is split into 
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three subsets, a training set, test set and validation set. For the training and testing 
data sets, the data is split into k subsets, where k equals a positive integer. Next, 
the model is trained on k-1 subsets and tested on the remaining subset. This is 
repeated until every subset has been used as a training and testing set. While cross 
validation already aims to avoid overfitting of the model during training, it is 
argued that a final test on an unseen validation set should be performed in 
addition using data not present in the cross-validation (Ripley, 2009).  
 
For evaluation, different metrics to investigate model performance are available. 
Since projects on readmission prediction usually concentrate on identifying as 
many risk patients as possible, the positive class should be focused on in the 
model evaluation. For this purpose, either the sensitivity or the F-2 score should 
be chosen as they put more emphasis on the positive class (cf. Table 1). Besides 
the resulting predictive performance stated by the evaluation metrics, model 
interpretability and computing time should also be considered for the final model 
selection. 
 
Table 1: Evaluation metrics 
 

Evaluation metric Formula* 

Accuracy 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇  

Sensitivity (Recall pos. class) 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 

Specificity (Recall neg. class) 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 

Precision 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 

F-Score (1+ β²) *  
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

�𝛽𝛽�2 ∗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 

* TP = True Positives, TN = True Negatives, N = All examples, FN = False Negatives, FP = False Positives 

 
Table 2 summarizes the results of this study by defining five main process steps 
that are further subcategorized in relevant tasks and questions that need to be 
answered in any readmission prediction project. 
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4 Discussion and Conclusions 
 
This study set out to identify and unpack key issues around applying predictive 
analytics to healthcare especially in the area of hospital readmissions.  In doing 
so the study has several contributions for theory and practice as follows: The 
proposed framework can be used to perform future studies on readmission risk 
prediction in a more systematic and guided way. Common mistakes in these kinds 
of projects can therefore be avoided and results are better comparable. 
Furthermore, this work extends the theoretical knowledge on predictive analytics 
based on Shmueli and Koppius (2011). In a next step, the proposed framework 
will be further tested and adapted by means of a systematic literature review on 
readmission risk prediction. Furthermore, an exemplary prediction project is 
conducted based on the presented guidelines to test its applicability in practice. 
For this purpose, episode data from an Australian hospital group is used to 
predict unplanned readmissions 
 
Table 2: Framework for research on readmission risk prediction 
 

Process Step Main questions Example 

Goal definition 

Prediction: What is the 
main purpose of the 
prediction? 

Define time of prediction, e.g., 
identify patients at risk for 
readmissions at admission, before or 
after discharge 

High-risk: At what level 
should the readmission be 
predicted? 

Discrete: Binary prediction 
(readmission / no readmission) or 
Multinominal prediction (e.g., high 
risk, medium risk, low risk) 
Continous: Risk probability (0 - 
100 %) 

Readmission: How is a 
readmission defined? 

Reason for readmission (procedure-
specific or general) 
Timeframe of readmission (28-day, 
30-day, 6 months, etc.) 

Study design: When is 
the data collected? 

Retrospective study versus real-time 



I. Eigner, F. Bodendorf & N. Wickramasinghe: A theoretical framework for research on readmission 
risk prediction 405 

 

 

Data collection 
and study 
design 

Data collection: Which 
episodes should be 
excluded from the 
dataset? 

Patient is admitted to acute care 
Patient died before or after discharge 
Patient left the hospital against 
medical advice 

Data 
preparation 

Selection: Which data 
points (episodes) are 
relevant for the context at 
hand? 

Focus on specific procedures, 
diagnoses, patient groups 

Feature creation: Which 
additional attributes are 
potentially interesting? 

Create additional attributes from 
collected data that are not directly 
reported (e.g., from previous studies 
on predictive or explanatory models) 

Cleaning: Which data 
points are usable for the 
prediction task? 

Missing values 
Outliers 
Low variance 
High correlation 
High cardinality 

Exploratory data 
analysis: What does the 
population under study 
look like? 

E.g., use histograms or scatterplots 
to compare the distribution between 
two cohorts (readmission, no 
readmission) 

Choice of variables: 
What data is available at 
the time of prediction? 

Depends on the prediction goal (at 
admission, before or after discharge) 

Model 
development 

Split dataset: How does 
the data need to be split 
for evaluation? 

Training + test dataset (e.g., 80 %) 
(Final) validation dataset (e.g., 20 
%) 
Cross-validation (during model 
training) versus holdout-validation 

Sampling: Which 
sampling method should 
be applied to reduce the 
issue of imbalanced data? 

Methods that support class weights 
(e.g., SVM) 
Undersampling (e.g., Random 
Undersampling) 
Oversampling (e.g., SMOTE) 
Hybrid Sampling 



406 32ND BLED ECONFERENCE  
HUMANIZING TECHNOLOGY FOR A SUSTAINABLE SOCIETY, CONFERENCE PROCEEDINGS    

 

 

Feature selection: Which 
attributes contribute to 
the predictive 
performance of a model? 

Filter methods (subsequent approach, 
e.g., variance threshold) 
Wrapper methods (iterative 
approach, e.g., backwards 
elimination) 
Embedded methods (integrated 
approach, e.g., decision trees) 

Hyperparameter tuning: 
Which hyperparameter 
combination leads to the 
best predictive 
performance? 

Random search (specify the number 
of parameter combinations in a given 
range) 
Exhaustive search (test all 
parameter combinations in a given 
range, e.g., grid search) 

Model building 

Build the model on the entire 
training + test dataset using the 
identified optimal hyperparameters 
Use sample weights and embedded 
feature selection (if applicable) 

Evaluation, 
validation, and 
model selection 

Evaluation: Which 
evaluation measure should 
be chosen? 

Focus on readmission cohort: F2-
score, Precision-recall curve, AUC 

Validation: How well 
does the model perform 
on unseen data? 

Apply the model on the validation 
set 

Interpretation: How can 
the final model be 
interpreted? 

Logistic regression: Odds ratio for 
each attribute 
Decision tree: Deduct rules from tree 

Selection: What model 
should be selected for the 
final prediction task? 

Predictive performance, computing 
time, interpretability 
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