

Using the Same Problem with Different Techniques in
Programming Assignments: An Empirical Study of its

Effectiveness

Michael Newby
Department of Information Systems & Decision Sciences

California State University Fullerton
Fullerton, California 92834, USA

mnewby@fullerton.edu

ThuyUyen H. Nguyen
Business Analysis, Systems and Information Management, Newcastle Business School

Northumbria University
Newcastle upon Tyne NE1 8ST, United Kingdom

thuyuyen.nguyen@northumbria.ac.uk

ABSTRACT

This paper examines the effectiveness of a technique that first appeared as a Teaching Tip in the Journal of Information
Systems Education. In this approach the same problem is used in every programming assignment within a course, but the
students are required to use different programming techniques. This approach was used in an intermediate C++ course. The
assessment for the course consisted of four assignments and two examinations, one mid-term and one final. The first two
assignments deal with basic C++ programming and functions, and the other two with classes and inheritance. The mid-term
covers the basics of programming, including functions, and the final focuses on the use of classes and inheritance. The
performance of students in the course was measured in the two semesters before and in the two semesters after introducing the
use of the same problem. This was done by collecting the student scores for the assignments and examinations. Statistical
analysis showed that there was a significant difference in the means of the scores for the last two assignments and the final
before and after introducing the use of the same assignment problem, but no significant differences in the means of the scores
for the first two assignments and the mid-term. This would indicate that using the same problem for assignments in
programming classes could improve student learning by allowing students to focus on the technique, such as inheritance,
rather than having first to understand new program requirements. This approach also has the advantage from an instructor’s
viewpoint, in that it will reduce the amount of time spent specifying assignments and the time spent in grading as well.

Keywords: Programming Assignments, Assessment, Effective Instruction, Student Learning

1. INTRODUCTION

Computer programming, in its modern form, has been
around for over 60 years, and became a topic taught in
universities in the 1960s. Since that time various techniques
and tools have been developed to assist in teaching
programming (Powers et al., 2006). However, there seems to
be no agreement either on what we do when we teach
programming (Blackwell, 2002), or the best way to do so
(Fincher, 1999). Indeed, some authors argue that
programming cannot be taught, with some students having
aptitude and some not (Dehnadi and Bornat, 2006). For
many years, the computer industry recognized that there was
a disparity in the skill level of programmers, from novice to
expert, with capability differences in terms of productivity

including both development and debugging being a factor of
5 or greater (McConnell, 1998). Not surprisingly, most
instructors would see the same differences in their students,
between those who can program, and those who struggle. In
these classes, students may be classified as those who do
very well, those who cope, and those who do not understand
the material. The problem with this situation is that teaching
such a class is difficult because those who understand think
the class does not cover enough material, whereas the
students at the other end of the skill range believe the
instructor goes far too quickly. Learning to program is hard,
and so is teaching it (Dehnadi and Bornat, 2006). Students
must be capable of abstraction, which is why many believe
learning to program helps with general thinking skills
(Rinard, 2008; van Roy et al., 2003).

Journal of Information Systems Education, Vol. 21(4)

375

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301384702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This paper examines a technique suggested as a
Teaching Tip (Newby and Nguyen, 2007). The approach is
based on the Applied Apprenticeship method (Astrachan and
Reed, 1995), where students are given well designed
program code, then given similar problems to do on their
own or in groups and encouraged to apply similar techniques
(functions, classes, inheritance), even to the point of utilizing
the instructor’s code if this is appropriate. This is similar to
real-life situations, where programmers are expected to work
on someone else’s code and also to work in a group (Fowler,
2004).

Where the experiential approach (Newby and Nguyen,
2007) extends the Applied Apprenticeship approach is that
for all assignments, the same problem is used, but employing
different programming techniques. Using the same problem
for assignments has some similarities with the application-
based approach adopted by Astrachan, Smith and Wilkes
(1997) when teaching a data structures course, and to the
case study approach to teaching programming advocated by
Linn and Clancy (1992). In the course described in this
paper, the different techniques used for the assignments were
direct in-line code, function modularity, class modularity and
inheritance. A sample assignment specification is given in
the Appendix. Before adopting the same problem approach
for assignments, each of the four programming assignments
used a different problem. This was time-consuming for the
instructor to come up with new problems, and time-
consuming for the students to understand the requirements of
each problem. When different problems were used, it was
observed that many students did not seem to understand the
purpose behind each technique and its use. This applied
particularly to the concept of classes. The new approach of
using the same problem appeared to improve student
understanding and use of classes and inheritance. However,
this was a purely subjective observation. Fortunately, student
scores were available for assignments and examinations for
some courses that used different problems for the
assignments, and others that used the same problem. From
these, it was possible to address the research question:

 “Does using the same problem in all assignments
improve student understanding of the different
methods and concepts in a programming course?”

This paper describes the course, the assessable work, the
sample and the methodology, and discusses the findings.

2. APPROACHES TO TEACHING PROGRAMMING

There are a number of paradigms for the development of
programs (Fincher, 1999), and an instructor chooses a
paradigm and a language that satisfies their course
requirements. For example, an instructor may teach a
programming course by introducing objects early, or deal
with the functional aspects first and then introduce object
orientation afterwards. There is a fundamental difference
between a program written using functions and one written
using objects and classes. The difference is easily seen by
looking at possible underlying diagrammatic representations
of the programs. With a functional approach to
programming, the underlying diagram is a structured

flowchart, and a structure or hierarchy chart (Farrell, 2008).
With an object-oriented approach, the diagrams are class
diagrams, object diagrams, use case diagrams, etc. (Fowler,
2004). This means that to understand these two different
abstractions, students must construct two different
conceptual models.

The importance of the approach taken to teaching
programming is highlighted by the observation that
programming practices used by students in college are often
carried over to their professional careers (McAndrews, 2000,
p. 9), so if they are just interested in getting programs to
work without fully understanding the concepts, that is what
they are likely to do when they work in industry.

Most programming courses consist of lectures and
laboratory classes, the lectures being used to introduce new
material and the laboratory classes to provide students with
the opportunity of practicing using this material in a
controlled environment. Laboratory classes are important
because programming is a skill and cannot be learned simply
by reading a book but needs practice in order for it to be
acquired (Azemi, 1995). This skill must be mastered before
further progress can be achieved. Laboratories are a major
component of learning in a programming course, and it has
been demonstrated that a computer laboratory environment
can affect learning and achievement (Newby and Fisher,
2000; Newby, 2002).

In terms of assessing student learning, there are a
number of possible components including written
examinations, laboratory examinations, structured laboratory
exercises, and projects or assignments (Chamillard and
Braun, 2000; Barros et al., 2003). Of these, both laboratory
exercises and assignments play a dual role, one for
assessment and the other for learning, although most students
only see the former. The characteristics of laboratory
exercises are that they are very specific to a topic, and take a
short time to complete, usually one or two hours at the most.
On the other hand, assignments are more complex, take
much longer, and although they have specific goals, these
goals are much broader than those for laboratory exercises.

For an assignment to be useful in both of its roles, it
must be well specified, realistic, yet able to be completed,
from a developer’s perspective, in a relatively short period of
time, measured in weeks. The time constraint issue applies to
other disciplines, but is particularly important in Information
Systems, where instructors strive to make the problems and
cases realistic and relevant (Cappel and Schwager, 2002).
From the point of view of learning, any skills gained by the
student in completing one assignment must be able to be
carried over into other assignments, so assignments must
have specific goals, and must require the use of specific
techniques. There is one further complicating factor,
stemming from the time constraint placed on completing
assignments, and that is that many students will do anything
to get the program to work. Their focus is on correctness,
and they will use any techniques to achieve it.

Instructors of programming courses seek ideas that may
improve the effectiveness of their teaching, and many of
these are very innovative (Benander and Benander, 2008;
Miliszewska and Tan, 2007; Dunican, 2002). Journals
covering education in Information Systems and Computer
Science usually have a section on Teaching Tips. These

Journal of Information Systems Education, Vol. 21(4)

376

sections allow instructors to share their experience and
approaches that they have found useful. However, there are
few articles that attempt to measure whether a particular
approach or technique actually improves student learning,
although there are some exceptions (Al-Imamy, Alizadeh
and Nour, 2006).

3. THE COURSE

The course involved in this change of teaching technique is
an intermediate level one in C++. It is an option in the
Information Systems major of a Bachelor of Business
Administration program. The pre-requisite is an introductory
course in programming in Visual Basic, which means that,
for the overwhelming majority of students, this course is
their introduction to the programming language C++. It is a
single semester course over sixteen weeks, including finals,
and, in that time, students have to learn and master the
subject matter from basic skills in the language to the use of
inheritance.

The main components of assessment for the course are
four programming assignments and two examinations, one
mid-term and one final. In the assignments, students develop
an application which has been specified for them. In the first
one, they write it using in-line code; in the second, they must
use functions where appropriate; in the third, they use a
single class, and in the last assignment, inheritance and
polymorphism must be used. The assignments are graded
according to a rubric that emphasizes structure and style,
rather than correctness, even though the instructors recognize
that correctness is the most important characteristic of
production software. The reason for focusing on style and
structure is that these characteristics of software are widely
accepted as making a major contribution to correctness
(Dromey, 1995).

The examinations are written, and do not involve use of
any C++ environment. Students are required to write short
sections of code, functions, and classes, either from scratch
or derived from another class or classes using inheritance.
They are also required to demonstrate that they understand
how to use functions, classes and polymorphism. The
examinations test not only what the students have learned in
the lectures, but also, what they learned from the
programming assignments and laboratory exercises. The
mid-term examination covers the fundamentals of C++
programming and the use of functions, and the final covers
classes and inheritance. The reason for not allowing the use
of an environment is to determine whether students really
understand the material or whether they just use the
environment to find out what a section of code does. In a
way, these examinations have similarities with those for
certification (e.g. Oracle, Microsoft, Sun Microsystems), in
that candidates are not permitted to use an environment. The
only difference is that the examinations in this course require
short answers, whereas for certification, multiple choice
questions are used.

4. METHODOLOGY

The sample consists of four classes taught by the authors,
one as instructor, and the other as teaching assistant, over

four semesters. These are identified as semesters 1, 2, 3 and
4. All students were undergraduate, either Junior or Senior,
and the maximum class size in each case was 40. The total
number of students in semesters 1 and 2 was 70, and in
semesters 3 and 4, it was 60. From the instructor’s subjective
observations, the students in each group were comparable in
ability.

In the first two semesters, each of the four assignments
was based on a different problem, and in the second two
semesters, they were based on the same problem. In all
semesters, solutions to the programming assignments were
published before the next assignment was posted, and
students were told they could utilize any part of the code
they found useful. After the last assignment was graded, a
solution to that assignment was posted. All assignments were
graded by one of the authors using the same rubric, and all
examinations were graded by the other author to give
consistency. The point allocation used when grading the
assignments was the same from semester to semester. The
rubric for grading the assignments was made available to the
students, so they knew how their programs would be
assessed. However, they did not know how the points were
allocated, so could not use the rubric to maximize their
score.

5. ANALYSIS

Table 1 shows the descriptive statistics for the percentage
scores for each assignment and examination grouped as
semesters 1 and 2, and semesters 3 and 4.

5.1 Differences within semesters
A paired-samples t-test was carried out to examine
differences in the mean between Assignments #1 and #2, #2
and #3, #3 and #4, and the Mid-term and the Final. The
purpose of this was to determine whether there are any
differences in the students’ performances on the assignments
and tests within each class irrespective of teaching approach.
This was done for semesters 1 and 2 combined, and for
semesters 3 and 4 combined. The results for semesters 1 and
2 are presented in Table 2, and for semesters 3 and 4 in
Table 3.

The paired samples t-test for scores in semesters 1 and 2
shows significant differences (p < .001) in the means for
Assignment #3 and Assignment #2, and for the final and
mid-term examinations. The score for Assignment #3 is
significantly less than that for Assignment #2, as is the mid-
term examination when compared with the final. The effect
size measures the importance of an effect, and Cohen (1988)
suggests that a size of greater than 0.1 is small, 0.3 medium,
and 0.5 large.

From these, it may be seen that the effect size for the
differences between Assignment #2 and Assignment #3, and
between the Mid-term and the Final are large, accounting for
more than 25% of the variance in each case. The effect size
for the difference between Assignments #1 and #2 is small.
For semesters 3 and 4, there are no significant differences in
the means of the scores for the assignments or the
examinations.

Journal of Information Systems Education, Vol. 21(4)

377

 Before Change (Semesters 1 & 2) After Change (Semesters 3 & 4)
 Mean S.D. Min Max Mean S. D Min Max
Assignment #1 85.3 12.15 38.9 100.0 86.5 8.42 53.0 100.0
Assignment #2 88.4 7.66 63.3 100.0 87.4 11.30 56.5 100.0
Assignment #3 80.0 7.37 60.0 93.0 85.4 16.46 62.0 100.0
Assignment #4 79.5 8.30 60.0 90.0 86.5 12.78 58.0 100.0
Mid-Term 80.6 13.83 44.0 98.0 79.1 15.04 30.0 100.0
Final 71.2 14.00 40.5 96.0 78.3 11.27 54.5 99.0
 N=70 N=60

Table 1: Descriptive Statistics of the Samples

 Before Change (Semesters 1 & 2)
 Mean of Difference t-value p-value Effect size
Assignment #2 – Assignment #1 3.08 1.72 0.090 0.206
Assignment #3 – Assignment #2 -8.31 -7.13*** 0.000 0.654
Assignment #4 – Assignment #3 0.45 -0.41 0.683 0.049
Final – Mid-Term -9.45 -6.61*** 0.000 0.623

***p < .001

Table 2: Comparison of Differences between Means of Assignments and Examinations within Semesters 1 and 2

 After Change (Semesters 3 & 4)
 Mean of Difference t-value p-value Effect size
Assignment #2 – Assignment #1 1.03 0.68 0.496 0.091
Assignment #3 – Assignment #2 -1.94 -0.90 0.373 0.118
Assignment #4 – Assignment #3 -0.36 -0.14 0.886 0.019
Final – Mid-Term -0.77 -0.47 0.641 0.061

Table 3: Comparison of Differences between Means of Assignments and Examinations

within Semesters 3 and 4

5.2 Differences between semesters
An independent samples t-test was carried out on each of the
assignments and the exams, grouping the variable on
semester, with one group being semesters 1 and 2, and the
other group being semesters 3 and 4. The purpose of this was
to see if there were any differences in the mean scores for
each assignment and each examination before and after

changing to using the same problem for the assignments. As
Table 1 shows large differences in the standard deviation
before and after the change for some of the variables,
Levene’s test for the homogeneity of variance was
performed. This is reported in Table 4. The results of the
independent samples t-test are presented in Table 5. In this
table, each t-value is appropriate to whether or not equal
variances are assumed.

 Before Change S.D. After Change S.D. F- value df1 df2 p-value
Assignment #1 12.15 8.42 3.025 1 120 0.085
Assignment #2 7.66 11.30 9.087 1 120 0.003**
Assignment #3 7.37 16.46 13.008 1 120 0.000***
Assignment #4 8.30 12.78 4.712 1 120 0.032*
Mid-Term 13.83 15.04 0.026 1 120 0.873
Final 14.00 11.27 5.326 1 120 0.023*

*p < .05, **p < .01, ***p < .001

Table 4: Levene’s Test for Homogeneity of Variance Based on the Mean

Journal of Information Systems Education, Vol. 21(4)

378

 Before Change
Mean

After Change
Mean

t- value p-value df Effect Size

Assignment #1 85.3 86.5 0.604 0.547 126 0.054
Assignment #2 88.4 87.4 -0.595 0.553 99.0 0.053
Assignment #3 80.0 85.4 2.294 0.023* 72.5 0.200
Assignment #4 79.5 86.5 3.781 0.000*** 93.3 0.320
Mid-Term 80.6 79.1 -0.594 0.553 127 0.052
Final 71.2 78.3 3.583 0.000*** 126.6 0.305

*p < .05, **p < .01, ***p < .001

Table 5: Comparison of Means of Assignments and Examinations between Semesters

Levene’s test shows that the standard deviations for
Assignments #2, #3 and #4 are significantly greater after the
change than before. For the final examination, the standard
deviation after the change is significantly less than before.

Examining the means of the scores from the
assignments and the examinations shows that for
Assignments #3 and #4, and the final examination, the means
after introducing the use of the same problem are
significantly greater than those before. For Assignments #1
and #2 and for the mid-term exam, there is no significance
between the means. The effect size for the differences in the
means for Assignment #4 and the final examination was
medium, and for Assignment #3 small.

6. DISCUSSION OF RESULTS

As stated earlier, Assignment #1 uses in-line code,
Assignment #2 uses functions, Assignment #3 uses classes,
and Assignment #4 uses inheritance. In a similar way, the
mid-term examination tests knowledge of in-line coding and
functions, and the final tests knowledge of classes and
inheritance.

The results from the paired samples t-test supports the
subjective observation that students in semesters 1 and 2
were not performing as well on Assignments #3 and #4 as
they were on Assignments #1 and #2. There is a similar
result for the final exam and the mid-term. This would imply
that these students did not have as good an understanding of
classes as they did of functions. It is to be expected that they
would have a better understanding of functions as they had
already met them in the pre-requisite course, whereas the
concept of classes was new to the overwhelming majority of
students. After the change was made to using the same
problem for all four assignments, there were no significant
differences between the students’ performances on each of
the assignments. Admittedly, this is no doubt in part because
they had available to them program code (written by the
instructor) from the previous assignment, but they also had
similar code provided to them in the semesters before the
change was made. Another possible explanation is that the
courses were taught better after the change than before, but
this is doubtful as the instructor has been teaching C++
programming classes for over 20 years, as well as other
programming languages such as Cobol, Java, Visual Basic
and C#. His teaching style has not changed significantly in
the last 10 years. One notable observation to be made is that
there was also no significant difference between performance
on the mid-term and the final after the change was made.
The final covers only classes and inheritance, and, in the
final, students are asked to write small sections of code for

applications they have not seen before. Further, they are not
allowed to use an environment to test if the code they supply
actually works. From this it may be inferred that by using the
same problem for assignments, the students would appear to
understand classes and inheritance to the same extent that
they understand functions.

The results from the independent samples t-test indicate
that using the same problem could help students understand
the use of classes and inheritance better. The scores for
students in Assignments #3 and #4, and the final
examination are significantly higher after we implemented
using the same problem compared with using different
problems, with the effect size for the final being medium.
Again for Assignment #3 and #4, this could be explained to
some extent by students having access to ‘good’ code for the
previous assignment, but this does not explain the improved
performance in the final examination. An interesting
observation is that the effect size for Assignment #3 is small,
but for Assignment #4 it is medium. This could imply that
once students understand classes, the transition to
understanding inheritance is easier.

Levene’s test for the homogeneity of the variance
shows there are significant differences in the standard
deviations before and after the change for Assignments #3
and #4, and for the final examination. For Assignments #3
and #4, the minima before and after are similar, but the
means are significantly greater after the change, and this
could imply that the most able and moderately able students
are helped most by this approach. For the final examination,
the minimum after the change is considerably greater than
before the change, the mean is significantly greater, but the
standard deviation is significantly smaller. It would seem
from these results that all students, even the less able, gain
better understanding of classes and inheritance from this
approach. This is possibly because when they are studying
for the final, they have the same sample problem using
different techniques making it easier for the student to
compare and understand the differences in the techniques.

Overall, these results would support the contention that
using the same problem for assignments in a programming
course could improve student understanding of different
techniques and how to use them.

7. LIMITATIONS OF THE STUDY

Although the findings of the study demonstrate
improvements in student outcomes in terms of achievement
in examinations and assignments, there are two limitations
that must be addressed.

Journal of Information Systems Education, Vol. 21(4)

379

The first one is that the GPAs for the students were not
collected, and this limits us in determining if there were any
differences in ability between the student groups across the
semesters. In the study, it was assumed that students in the
four semesters were comparable in overall ability. The
second limitation is that student feedback was not
incorporated into the research to determine what the students
thought of this approach. It could be suggested that students
may suffer from assignment fatigue, and become bored by
having to write yet another program for the same problem.
Anecdotal evidence would indicate that this is not the case
for the majority. In fact, the most common response from
students is firstly, surprise that they are doing the same
problem followed by relief when they realize they do not
have to work out new requirements. However, as student
opinions were not sought, it is impossible to be definitive
about whether they thought the approach improved their
learning experience.

8. CONCLUSION

In any programming course, there are a number of
components that contribute to the learning, such as lectures
and structured laboratories, and there are other components
that contribute to the assessment, and these include
assignments, laboratory tests and examinations. As
assignments involve program development over a period of
time, not only do they contribute to the assessment, they also
contribute to learning. This paper examined how the use of
the same problem for four programming assignments could
improve student learning outcomes. The assignments
involved basic in-line coding, using functions, using classes
and using inheritance respectively. Before switching over to
using the same problems, different problems had been used
for the assignments.

The results of the analysis would imply that using the
same problem for a series of assignments does improve a
student’s understanding of classes and inheritance. There
could be a number of reasons why this approach is effective,
but the main one would be that, in the later assignments, the
students can focus on the technique (either classes or
inheritance), rather than spending their time trying to
understand the problem requirements. The authors are aware
that in a real-life application, developers do need to
understand requirements, but the intention of this course is to
teach programming techniques within a short period of time,
not to develop a production system.

Apart from the improvement in student learning that
may be seen from this approach, there are other benefits
from the instructor viewpoint. Firstly, there is a reduction in
time spent thinking up new problems that are realistic but
able to be completed in a relatively short period of time.
Secondly, less time is spent on explaining the program
requirements, and finally, less time is spent on grading them.

This paper demonstrates that using the same problem
across a series of programming assignments facilitates
learning, and requires less effort on the part of the instructor.
This technique is not specific to any programming language,
and the instructor has applied it to courses involving Java
and Visual Basic, and found similar improvements in student
learning. It is an approach that the authors would recommend
to any teacher of programming.

9. REFERENCES

Al-Imamy, S., Alizadeh, J., and Nour, M.A. (2006). “On the

development of a programming teaching tool: The effect
of teaching by templates on the learning process.” Journal
of Information Technology Education, Vol. 5, pp. 271-
283.

Astrachan, O. and Reed, D., (1995). “AAA and CS 1: The
Applied Apprenticeship Approach to CS 1” Proceedings
of 26th SIGCSE Technical Symposium on Computer
Science Education, Nashville, Tennessee, pp. 1-5.

Astrachan, O., Smith, R. and Wilkes, J. (1997),
“Application-based modules using apprentice learning for
CS 2”, ACM SIGCSE Bulletin, Vol. 29, No. 1, pp. 233-
237.

Azemi, A. (1995), “Teaching computer programming
courses in a computer laboratory environment.”
Proceedings of ASEE/IEEE Frontiers in Education
Conference, November 1995, pp. 2a5.18-2a5.20.

Barros, J.P., Estevens, L., Dias, R., Pais, R., and Soeiro, E.
(2003), “Using lab exams to ensure programming practice
in an introductory programming course.” ACM SIGCSE
Bulletin, Vol. 35, No. 3, pp. 16- 20

Benander, A.C. and Benander, B.A., (2008), “Student monks
– Teaching recursion in an IS or CS programming course
Using the Tower of Hanoi.” Journal of Information
Systems Education, Vol. 19, No. 4, pp.455-468

Blackwell, A.F. (2002), “What is programming?” In J.
Kuljis, L. Baldwin & R. Scoble (Eds), Proceedings from
the 14th Workshop of the Psychology of Programming
Interest Group, Brunel University, June 2002, pp. 204-
218.

Cappel, J.J. and Schwager, P.H. (2002), “Writing IS teaching
cases: Guidelines for JISE submission.” Journal of
Information Systems Education, Vol. 13, No. 4, pp. 287-
293

Chamillard, A.T. and Braun, K.A. (2000), “Evaluating
programming ability in an introductory Computer Science
course.” Proceedings of the 31st SIGCSE technical
symposium on Computer science education, pp. 212-216.

Cohen, J. (1988), Statistical power analysis for the
behavioral sciences. Second edition. Academic Press, New
York.

Dehnadi, S. and Bornat, R. (2006), “The camel has two
humps.” Retrieved November 18, 2009 from
www.cs.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf

Dromey, G.R. (1995), “A model for software product
quality.” IEEE Transactions on Software Engineering,
Vol. 21, No. 2, pp. 146-162

Dunican, E. (2002), “Making the analogy: Alternative
delivery techniques for first year programming courses.”
In J. Kuljis, L. Baldwin & R. Scoble (Eds), Proceedings
from the 14th Workshop of the Psychology of
Programming Interest Group, Brunel University, June
2002 , pp. 89-99.

Farrell, J. (2008), Programming logic and design. Fifth
edition. Course Technology, Boston.

Fincher, S., (1999), “What are we doing when we teach
programming?” Proceedings of 29th ASEE/IEEE
Frontiers in Education Conference, San Juan, Puerto Rico,
pp. 12a41-5.

Journal of Information Systems Education, Vol. 21(4)

380

Fowler, M. (
standard o
Addison W

Linn, M.C. a
studies of
the ACM, V

McAndrews,
(TSP): An
disciplined
TR-015, ES
Software En

McConnell,
programme
March/Apri

Miliszewska,
programmin
introductory
and Inform

Newby, M. (
environmen
Journal of
pp.303 – 31

Newby, M.
relationship
and studen
Environmen

Newby, M.
problem w
assignment
Vol.18, No

Powers, K., G
K.J., Proul
teaching
Proceeding
Computer
New York.

Rinard, M. (2
to teach ge
2009 from p

(2004), UML d
object modelin

Wesley, Boston.
and Clancy, M.
programming p

Vol. 35, No. 3, p
D. R. (2000),
overview and

practices,” Tec
SC-TR-2000-10
ngineering Instit

S. (1998),
ers.” IEEE S
il 1998, pp. 126-
I. and Tan, G.
ng: A propo
y programming
ation Technolog
(2002), “An em
nts of open and
Information Sys

14
and Fisher, D.

p between com
nt outcomes in
nts Research, Vo
and Nguyen,

with different
s.” Journal of In
. 3, pp.279-282

Gross, P., Coope
lx, V., and Ca
introductory
s of the 37th SI
Science Educat

2008), “Using p
eneral thinking
people.csail.mit.

distilled: A brie
ng language.

J. (1992), “The
problems.” Com
pp. 121-132

“The Team So
d preliminary re
chnical Report C
5. Carnegie-Me
tute.

“Dealing w
oftware, Vol.
-128
(2007). “Befrien

osed approach
.” Issues in Info

gy, Vol. 4, pp. 27
mpirical study o

closed compute
stems Education

.L. (2000), “A
mputer laborator

university cour
ol. 3, No. 1, pp.5
T. (2007), “U
techniques in

nformation Syst

er, S., McNally
arlisle, M. (200
programming: w
GCSE technical
ion 2006, pp. 5

rogramming lan
skills.” Retriev

.edu/rinard//pape

ef guide to the
Third Edition.

e case for case
mmunications of

oftware Process
esults of using
CMU/SEI-2000-
llon University,

with problem
15, No. 2,

nding computer
to teaching

forming Science
77-289
of the learning
er laboratories.”
n, Vol.13, No.4,

model of the
ry environment
rses.” Learning
51-56

Using the same
n programming
tems Education,

, M., Goldman,
06), “Tools for
what works?”
l symposium on
560-561. ACM,

nguage concepts
ved October 21,
er/wowcs08.pdf

f

m

r

t

r

s
,
f

van Roy, P
(2003), “
programm
Technical
pp. 269-2

Michael N

improving s

ThuyUyen

also interest
Information

P., Armstrong, J
“The role of l
ming.” Proceed
l Symposium o

270.

AUTHOR

Newby is a l

student learning

H. Nguyen is

ted in researchin
n Systems course

J., Flatt, M., an
language paradi
dings of the
on Computer Sc

BIOGRAPHIE

ecturer in the
Information Sys
Sciences at
University, Fu
He received hi
University of L
M.Sc. from th
Bradford, U.K
from Curtin
Western Austra
interests inc
learning env
in programming

a senior lecture
Analysis,
Information Ma
group at New
School, Northu
She received h
from California
Fullerton, and h
University of T
major research
Information
Customer
Management in

ng into how lear
es may be impro

nd Magnusson, B
igms in teachin

34th SIGCS
cience Educatio

ES

e Department
stems & Decisio
California Sta

ullerton (CSUF
is B.Sc. from th
London, U.K, h
he University

K. and his Ph.D
University

alia. His researc
lude comput

vironments, an
g courses.

er in the Busine
Systems an
anagement subje
wcastle Busine
umbria Universit
her BA and M
a State Universit
her PhD from th

Teesside, UK. H
interests includ
Systems

Relationsh
n SMEs. She
rning outcomes
ved.

B.
ng
SE
on,

of
on
ate
F).
he
his
of
D.
in
ch
ter
nd

ess
nd
ect
ess
ty.

MS
ty,
he

Her
de
&

hip
is
in

Journal of Information Systems Education, Vol. 21(4)

381

APPENDIX - TYPICAL PROBLEM SPECIFICATION

A travel company provides tour packages for its customers to three regions Europe, Asia, and Australia. To make it easier for
customers, the company has adopted a simple pricing formula. You are to write a program to calculate the cost of each trip,
based on which package the customer buys, whether airfare is included, and how far in advance the package is booked.

The basic land-only tour costs for different regions are:
Europe $1950.00
Asia $2250.00
Australia $2550.00

The price discount based on advance booking is:
90 days or more 15%
between 30 and 90 days 5%
less than 30 days 0%

The airfare is charged separately from the land-only tour, and is not discountable. For those customers who wish to include the
airfare in the package, it is calculated as followed:

To Europe: 60% of the land-only tour price
To Asia: 75% of the land-only tour price
To Australia: 90% of the land-only tour price

For each customer, you are to input the following:
Booking Number
Customer Name
Travel Region (as a character)
Number of days booked in advance (as an integer)
Whether airfare is included (as a character ‘Y’ or ‘N’)

The tour region is to be represented as a single character as follows:
Europe ‘E’
Asia ‘A’
Australia ‘U’

After doing so, you are then to output for each customer the following values:
Booking Number
Customer Name
Tour region (as a string)
Cost of land tour-only before discount
Discount amount
Cost of land-only tour after discount (Cost of land-only tour before discount – Discount amount)
Airfare included (a string that says whether airfare is included or not)
Cost of airfare
Cost of the trip (Cost of land-only tour after discount + Cost of the Airfare)

Customer’s information should be processed repeatedly until the null string is input for the Booking Number, at which point
the following totals should be displayed:

Number of customers
Total Discount for all customers
Total Cost for all customers

The program should then terminate.

All input data should be validated and suitable error messages produced

Assignment #1: Write the program as in-line code without writing your own functions

Assignment #2: Write the program using appropriate functions

Assignment #3: Write the program using a class for the tour package, so that all functionality for the tour package is within
the class.

Assignment #4: Write the program using an abstract class for tour package, with three derived classes, one for Europe tours,
one for Asia tours and one for Australia tours.

Journal of Information Systems Education, Vol. 21(4)

382

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2010 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

