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Abstract 

Appointment no-shows are common in outpatient clinics and increase clinic costs and 
patients’ dissatisfaction.  We develop a framework to predict the no-show probabilities of 
a given set of patients, and to subsequently employ these predictions to find the optimal 
appointment schedule.  Some existing work assumes that all patients have the same no-
show probability (1-class approach); other work assumes that patients have either a low 
or a high no-show probability (2-class approach).  In contrast, we utilize probabilistic 
classifiers to obtain the individual patients’ no-show probabilities (N-class approach). 
Our approach results in better-quality schedules, as measured by a weighted average of 
patient waiting time and provider overtime. We also find that a small increase in the 
prediction performance (measured by the Brier score) translates into a large decrease in 
the schedule cost.  Our results are obtained through a large-scale computational study 
and validated on a real-world data set from an outpatient clinic. 

Keywords:  IS in Health Care, Appointment No-Shows predictions, Appointment Scheduling with 
No-Shows 

Introduction 

Appointment no-shows occur when patients fail to show up for their clinic appointments. No-shows are 
common in many outpatient clinics, and increase clinic costs and patients’ dissatisfaction.  No-show rates 
in primary care clinics have been found to range from 12% to 30% (Whittle et al. 2008, Goffman et al. 2017).  
For fiscal year 2008, the Veterans Health Administration (VHA) reported an 18% no show rate, and 
estimated the total cost of no-shows at $564 million annually (U.S Dept of Veterans Affairs, OIG 2008).  In 
order to mitigate the negative effects of no-shows, a clinic may implement open access (OA) scheduling, 
where patients are assigned appointments times in the near future, typically at most two days in the future.  
Liu et al., 2010 study scheduling of patients to outpatient appointments in an OA setting, and find that OA 
is typically best when the supply of appointments is similar to appointment demand.  In lieu of this, a 
common way to counteract no-shows is to overbook appointment slots, a practice where more than one 
patient is assigned to an appointment slot.  Overbooking may cause the clinic to be overcrowded, which in 
turn may result in patient waiting time and provider overtime.  A patient experiences waiting time whenever 
their appointment cannot start at the predefined appointment time because the provider is seeing another 
patient; the provider experiences overtime when there are patients waiting to be seen at the end of the clinic 
session.  The former effect increases customer dissatisfaction while the latter effect increases the clinic 
costs.   

Figure 1 illustrates an example where six patients are scheduled in four slots (i.e., slots 2 and 3 are double-
booked) and one of the patients scheduled in slot 2 does not show up.  Assuming that the provider can only 
see one patient per appointment slot, there will be two patients (highlighted in light grey) who will have to 
wait for the length of one appointment slot beyond their scheduled time (i.e., they will incur one time unit 
of waiting time); because the last scheduled patient will be seen after the end of slot 4 (i.e., the clinic nominal 
end time), the provider will incur one time unit of overtime.   
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Empirical evidence suggests that a patient’s no-show probability is correlated to certain appointment and 
patient characteristics like the patient’s age, gender, and prior no-show history, or the appointment lead 
time (i.e., the time between when an appointment is made and when it is to occur) (Galluci et al. 2005, 
Goffman et al. 2017, Harris et al. 2016, Whittle et al. 2008).  Despite this, most outpatient clinics do not 
attempt to estimate the individual no-show probabilities to inform scheduling decisions; instead, clinics 
typically build their schedules under the assumption that all patients have the same no-show probability.  

 

Figure 1: An example of schedule where two patients experience waiting time (light-grey) 
and the provider experiences overtime (dark-grey) 

In this paper, we introduce an integrated framework to predict no-shows at the individual appointment 
request level, and to subsequently employ these predictions to find the optimal appointment schedule, that 
is, the schedule that minimizes a weighted sum of the expected patient waiting time and provider overtime.   

The input of our framework is a set of appointment requests.  The output is a schedule, that is, an 
assignment of each appointment request to an appointment slot, such that each patient is assigned to a slot, 
but each slot may be assigned to multiple patients.  Our framework has two main components: the first is a 
probabilistic classifier that estimates the no-show probabilities of a set of appointment requests; a 
probabilistic classifier is a predictive model capable of providing not only a binary prediction (i.e., no-show 
versus show), but also the no-show probability for each input observation.  The second component is a 
stochastic mixed integer program that schedules the 𝑁 appointment requests in 𝐹 slots (with 𝐹 < 𝑁) given 
the appointment requests’ estimated no-show probabilities.   

The research questions that we address are: 

1. How can individual no-show probabilities be effectively employed to optimally schedule appointments? 
2. How can a classifier be selected to predict individual no-show probabilities? 

Both research questions have largely been neglected by the existing body of work.  Regarding the first 
question, most research in data-driven appointment scheduling assumes that all appointment requests 
have the same no-show probability (i.e., 1-class approach), typically equal to the population no-show rate.  
Other work assumes that appointment requests have either a low or a high no-show probability (i.e., 2-class 
approach).  In contrast, this work considers any number of classes, up to the case where each appointment 
request has its own no-show probability (i.e., the 𝑁-class approach).   

Regarding the second research question, the majority of the existing work has focused on finding the 
classification technique that maximizes the Area under the Receiver Operating Curve (AUC).  This choice 
may at first sound sensible, because (1) maximizing the AUC is the preferred metric for binary classification 
on imbalanced data sets and (2) predicting no-shows is an imbalanced classification problem, since the 
majority of patients is expected to show.  However, we find that the classifier with the largest AUC is not 
necessarily the one that leads to lower-cost schedules.  In fact, our preliminary results suggest that the 
Brier’s score – a metric used to evaluate the quality of predicted probabilities– may be a more suitable 
metric to use when selecting a classifier.   

The two main contributions of our work are as follows.  First, to the best of our knowledge, our work is the 
first to develop an optimal solution method to schedule outpatient clinic appointments given individual 
patient no-show probabilities.  Second, we show that our method obtains higher-quality schedules – as 
measured by the schedule that minimizes a weighted sum of the expected patient waiting time and provider 
overtime – than the typical 1-class and 2-class approaches.   
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In addition to obtaining higher-quality schedules, we performed a preliminary study to help uncover two 
managerial insights which may be very valuable in designing prediction-based appointment scheduling 
systems.  First, we show that selecting the classifier with minimum Brier’s score on the calibration set, as 
opposed to the one with maximum AUC, may result in higher-quality schedules when considering 
appointment requests from the test set. Second, our preliminary results suggest that even a marginal 
decrease in Brier’s score (e.g., 0.20 to 0.19) may translate into a significant cost saving (e.g., 15%), as 
measured by the resulting schedule cost.  These findings suggest that organizations should spend significant 
resources to maximize the prediction performance of their probabilistic classifier. 

Our results are obtained through a large-scale computational study and validated through real-world data 
from a local outpatient primary care clinic.  

Literature Review 

Our paper contributes to Information Systems (IS) research in the form of machine learning and 
optimization methodologies that improve operational efficiency of outpatient clinics.  In this sense, our 
research falls under the IS field of Computational View of Technology, as categorized by Orlikowski and 
Iacono (2001).  

Our work draws from and contributes to two distinct areas of research.  The first area is composed of 
empirical papers that study the factors related to appointment no-shows.  Papers have found factors such 
as past no-show history (Harris et al. 2016, Goffman et al. 2017, Whittle et al. 2008), lead time, age, and 
gender (Gallucci et al. 2005, Goffman et al., 2017, Partin et al. 2016, Whittle et al. 2008) to be correlated 
with no-shows.  Because the focus of these papers is to describe the factors that are related to no-shows, 
they typically do not discuss how the resulting probabilities may be integrated into a clinic schedule. 
Additionally, the metric used to measure predictive performance is typically the AUC. Daggy et al. (2010), 
Srinivas & Ravindran (2018), and Samorani and LaGanga (2015) discuss both no-show prediction and the 
resulting schedule in their papers, but they do not employ no-show probabilities at the individual patient 
level.  In contrast, we discuss both no-show prediction and the resulting schedule while incorporating 
individual no-show predictions, and show that choosing a classifier based upon minimizing the Brier score 
results in a better quality schedule as opposed to maximizing AUC.   

The second area of research that our paper contributes to is appointment scheduling.  The papers published 
in this area aim at optimally scheduling appointment requests in order to minimize a weighted sum of 
patient waiting time and provider overtime.  Most of the works in this area employ a 1-class approach, where 
each appointment request is assigned the same no-show probability, which can be readily obtained by 
computing the population’s historical no-show rate (LaGanga & Lawrence 2007, LaGanga & Lawrence 
2012, Robinson & Chen 2010).  Some more recent works implement a 2-class approach, where patients are 
split into two classes of no-show probabilities (Zacharias & Pinedo 2014, Liu et al. 2010, Srinivas & 
Ravindran 2018).  To the best of our knowledge, only Zacharias & Pinedo 2014 extend the 2-class approach 
to a N-class approach, where each patient’s individual no-show probability is utilized.  However, Zacharias 
and Pinedo (2014) provide only analytical properties of the optimal schedule under the N-class approach; 
they do not attempt to optimally solve the scheduling problem. In this paper, we will overcome this 
limitation by developing a model that can find the optimal schedule given N individual no-show 
probabilities. 

Overview  

In this paper, we consider the appointment scheduling system depicted in Figure 2.  The input is a set of 𝑁 
appointment requests and the output is a schedule, that is, an assignment of each appointment request to 
an appointment slot of a clinic session.   
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Figure 2: Scheduling system developed in this study. 

The first step consists of predicting the no-show probability of each appointment request.  This task is 
performed by a probabilistic classifier previously trained with past no-show data.  The next section 
illustrates the construction of a probabilistic classifier on real-world appointment data.   

In the second step of our procedure, we may decide to partition the no-show probabilities into 𝑘 ≤ 𝑁 bins.  
After this 𝑘-class procedure, the no-show probabilities are modified so that all appointment requests in the 
same class have the same no-show probability.  The purpose of this step is to measure the performance of 
the existing methods, which utilizes values of 𝑘 of 1 or 2, and compare it to the performance of utilizing 
larger values of 𝑘 (i.e., 𝑘 = 3,4, … , 𝑁).   

The third and last step of our procedure employs a stochastic mixed integer program to find the optimal 
schedule.  The input of this problem is composed of the binned no-show probabilities, the number of slots 
and the ratio between overtime cost and waiting time cost, as well as other parameters that can be tuned to 
obtain a heuristic scheduling procedure.  Next, we illustrate the details of these components one by one. 

Step 1: Deriving No-Show Probabilities from a Probabilistic Classifier 

In a real-world setting, the individual no-show probabilities are obtained from a prediction model trained 
with past no-show data.  Predicting no-shows is a binary classification problem, where the positive class is 
composed of the appointment requests that no-show and the negative class is composed of the appointment 
requests that show.  To solve this problem, a classifier must be trained on past no-show data and employed 
to predict the no-show outcome of future appointment requests.  In our context, in order to obtain 
individual no-show probabilities, we need a so called probabilistic classifier, a classifier that is capable of 
providing not only a binary no-show outcome but also a probability of being a no-show.   

Some classifiers are probabilistic by nature (e.g., logistic regression), in the sense that their raw output is 
already a probability of being a no-show.  Others are capable of labeling each appointment request with a 
numeric “no-show score” which, despite not being an actual probability, is related to the probability of no-
show.  As explained by Niculescu-Mizil and Caruana (2005), a common technique to translate these 
numeric scores into probabilities is the Platt’s method (Platt, 1999), which consists of building a logistic 
regression model that predicts the binary no-show outcome given the no-show score.  To measure the 
quality of the probabilities, we use the Brier’s score (Brier, 1950), a common metric used to evaluate the 
quality of calibrated probabilities based on the corresponding binary outcomes.  The score computes the 
mean squared difference between the predicted probabilities and the real binary outcome; the lower the 
Brier’s score, the higher the quality of the probabilities.   

We prefer using the Brier’s score over more traditional prediction metrics typically used for binary 
classification, which measure the quality of the binary predictions (such as the accuracy or the F-score) or 
the quality of the ranking (such as the Area Under the Curve), and not that of the probabilities obtained.  
Table 1 shows a small example of the predictions made by two classifiers that achieve the same AUC but 
different Brier’s scores. 
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Observation # Actual no-show 
Probability predicted by 
Classifier 1 

Probability predicted by 
Classifier 2 

1 1 0.55 0.49 

2 1 0.54 0.49 

3 1 0.53 0.48 

4 0 0.49 0.46 

5 1 0.47 0.45 

6 0 0.45 0.44 

7 1 0.43 0.43 

8 0 0.34 0.39 

9 1 0.28 0.36 

10 0 0.27 0.35 

 Brier's loss score 0.2390 0.2507 

 AUC 0.7500 0.7500 

Table 1. Example of two classifiers with the same AUC but different Brier’s score 

The reason for the discrepancy between AUC and Brier’s score lies in the fact the probabilities predicted by 
classifier 1 are closer to the actual class than the probabilities predicted by classifier 2, even if both classifiers 
rank the observations in order of no-show probability in the same way. 

To achieve the best possible performance, several probabilistic classifiers should be calibrated on the 
available data using a cross-validation procedure or hold-out sample.  The classifier obtaining the lowest 
cross-validated or out-of-sample Brier’s score should be finally chosen.  The next subsection illustrates an 
in-depth case study where we follow a similar calibration process on three real-world data sets.  We also 
provide a tool that practitioners can readily use to construct a probabilistic classifier using their data. 

Case-study on real-world data  

Here, we illustrate our procedure to build probabilistic classifiers on real-world data.  The goal of this 
subsection is twofold:  

(1) To serve as a step-by-step guide for practitioners interested in predicting no-shows at their clinic.  
To this end, we provide a Jupyter notebook that practitioners can readily use on their data set (at 
https://github.com/samorani/appointment-scheduling-
utilities/tree/master/select%20best%20classifier).  

(2) To investigate the distribution of the individual no-show probabilities in real-world domains.  This 
information is used in the next section to choose the parameters of our simulation study. 

Our first data set is from fully anonymized, administrative records of 108,515 scheduled, in-person, 
weekday appointments from a local primary care clinic.  The features include past no-show history, age, 
appointment lead time, day of the week, month of the year, and flags for whether or not the appointment 
was a follow-up or if the patient had multiple appointments scheduled in the same day.  Of the 108,515 
appointment requests, 11.69% resulted in a no-show.  Because the no-show rate is approximately 12%, we 
call this data set VA-12.  

Our second data set, which we call VA-30, is built by increasing the no-show rate of our first data set, VA-
12, to 30%.  This new no-show rate is obtained by removing from the original data set a random subset of 
the showing appointments.  A no-show rate of 30% can be common in real-world clinics; with Daggy et al. 
(2010) reporting primary care clinic no-show rates between 14% and 50%. 

https://github.com/samorani/appointment-scheduling-utilities/tree/master/select%20best%20classifier
https://github.com/samorani/appointment-scheduling-utilities/tree/master/select%20best%20classifier
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For each of the two data sets, we built a probabilistic classifier as follows.  The first step consists of 
partitioning the available data into a calibration set (80% of the data) and a test set (20% of the data).  The 
calibration set is used to identify the best performing classification technique, whereas the test set is used 
to estimate its performance and to obtain the no-show probabilities that will be used throughout our 
experiments.   

Considering only the calibration set, we considered the following classification techniques: Random Forest, 
Naïve Bayes, Logistic Regression, Decision Tree, AdaBoost, and Discriminant Analysis.  For each 
classification technique, we performed the following steps: 

1. We executed a 10-fold cross validation on the calibration set.  At each iteration of the cross validation, 
the current classification technique is used to train a classifier with 90% of the calibration set, which is 
subsequently employed to label the remaining 10% with a predicted no-show score.  To perform a fair 
comparison among the classification techniques, we employed the default parameters (provided by the 
scikit-learn package) for each classification technique.  At this point, the current classification 
technique has labeled each observation in the calibration set with a no-show score.   

2. We translated the no-show scores into probabilities using Platt’s method, in order to build a 
probabilistic classifier. That is, we built a logistic regression model on the calibration set, where the 
independent variable is the no-show score and the dependent variable is the actual 0-1 no-show 
outcome.  That logistic regression model was then used to label each observation of the calibration set 
with a no-show probability.  This second step was performed for every classification technique except 
logistic regression, as the output of logistic regression is a set of no-show probabilities.   

3. We selected the classification technique that performed the best on the calibration set, as follows.  we 
considered the no-show probabilities derived in the previous step to compute both the AUC and the 
Brier’s score obtained on the calibration set. The AUC measures how well the current classification 
technique ranks the observations from the most likely to no-show to the least likely to no-show, whereas 
the Brier’s score measures how accurate the no-show probabilities are, on average. 

The cross-validated AUC and Brier’s score obtained by our classification techniques on the calibration set 
are reported in Table 2. 

 Data set 1 (VA-12) Data set 2 (VA-30) 

N:  # of observations 
of the data set 

108,515 42,270 

No-Show rate 11.69% 30.00% 

 AUC Brier’s score AUC Brier’s score 

Random Forest 65.45% 0.0996 68.25% 0.1911 

Naïve Bayes 70.86% 0.0990 70.94% 0.1915 

Logist. Regression 75.12% 0.0930 75.20% 0.1744 

Decision Tree 53.42% 0.1013 57.63% 0.2019 

AdaBoost 75.95% 0.1006 75.76% 0.2012 

Discriminant 
Analysis 

72.34% 0.0989 72.32% 0.1892 

Table 2. Cross-validated AUC and Brier’s score obtained by several classification 
techniques on the calibration set.  Best classification technique according to either AUC or 

Brier’s score are in bold. 

Table 2 shows that for both of our data sets, AdaBoost was the technique that obtained the best (largest) 
AUC, whereas Logistic Regression was the technique that obtained the best (smallest) Brier’s score.  To 
measure the impact of selecting the classifier that maximizes AUC and the impact of selecting the classifier 
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that minimizes the Brier’s score, we analyzed the test set, limiting our analysis to AdaBoost and Logistic 
Regression.   

For each data set, we built one Logistic-Regression-based and one AdaBoost-based probabilistic classifier 
as follows.  For Logistic Regression, we built a Logistic Regression model using the entire calibration set; 
this model can be readily used to predict no-show probabilities of test data.  For AdaBoost, we built a 
probabilistic classifier by cascading the following two components.  First, we trained an AdaBoost classifier 
on the entire calibration set and used it to obtain the no-show scores on the calibration set.  Second, we 
built a logistic regression model that uses these no-show scores on the calibration set to predict the actual 
no-show outcomes of the calibration set.  The no-show probability of a test appointment request can be 
obtained by first using the AdaBoost classifier to obtain a no-show score, and then employing the logistic 
regression model to translate the no-show score into a no-show probability. 

Next, we analyzed the test set in order to achieve two objectives: 

1. To check that our probabilistic classifier did not overfit the calibration set, and 

2. To collect the no-show probabilities obtained on the test set, with the goal of using them in our second 
and third set of computational experiments. 

To achieve the first objective, we used our probabilistic classifiers to label each observation in the test set 
with its no-show probability.  Then, we computed and recorded the AUC and Brier score obtained on the 
test set and compare them to the ones obtained during the cross validation procedure previously executed 
on the calibration set.  For all probabilistic classifiers, the test-set AUC and Brier’s score are similar to those 
obtained in the calibration set, suggesting that our classification methods did not suffer from overfitting.   

To achieve the second objective, we simply recorded the no-show probabilities obtained by each 
probabilistic classifier.  In our second and third set of computational experiments, we will repeatedly 
sample with replacement 𝑁 observations, use their no-show probabilities to schedule them optimally, and 
then finally use their real no-show outcome to evaluate the schedule.  Summary statistics of the test-set no-
show probabilities are reported in Table 3. 

 Data set 1 (VA-12) Data set 2 (VA-30) 

 AdaBoost Logistic Regr. AdaBoost Logistic Regr. 

AUC  74.77% 74.26% 75.79% 75.02% 

Brier’s score 0.1001 0.0932 0.2014 0.1760 

Mean predicted no-
show probability 

0.1169 0.1165 0.3004 0.2992 

Variance of 
predicted no-show 

probabilities 
0.0138 0.0118 0.0060 0.0354 

Minimum 0.0458 0.0167 0.2553 0.0640 

25th percentile 0.0560 0.0537 0.2805 0.1600 

50th percentile 0.0700 0.0796 0.2954 0.2386 

75th percentile 0.1156 0.1338 0.3178 0.3840 

Maximum 0.8853 0.8888 0.3786 0.9614 

Table 3. AUC, Brier’s score, and summary statistics of the predicted no-show probabilities 
obtained by Logistic Regression and AdaBoost on the test set. 

In summary, this section illustrated how we predicted no-show probabilities at the level of the individual 
appointment request.  On our data sets, we identified two classification techniques, AdaBoost and Logistic 
Regression, which resulted in the best AUC and Brier’s score, respectively.   
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Step 2: The 𝒌-class Approximation 

Existing work in appointment scheduling assumes that all requests have the same no-show probability or 
that requests have either a low or a high no-show probability (Robinson & Chen 2010, LaGanga & Lawrence 
2012, Zacharias & Pinedo 2014).  In contrast, our main claim is that using more levels of no-show 
probabilities results in a better performance.  To substantiate our claim, we introduce a procedure, called 
𝑘-class approximation, which “bins” the individual no-show probabilities obtained by the classifier into 𝑘 
classes. 

In particular, given 𝑁 no-show probabilities, the 𝑘-class approximation modifies them so that they belong 
to 𝑘 classes of probabilities, with 𝑘 ranging from 1 to 𝑁.  The probabilities are clustered into 𝑘 clusters using 
𝑘-means (Kanungo et al. 2002), so that an appointment request’s new no-show probability is set to the 
average no-show probability of the cluster to which it belongs.  Thus, the 1-class approximation sets each 
no-show probability to the 𝑁 requests’ average no-show probability, the 2-class approximation sets each 
no-show probability to either a “low” level or a “high” level, whereas the 𝑁-class approximation leaves the 
original no-show probabilities unchanged.  We show that the 𝑁-class approximation results in better-
quality schedules than the 1-class and the 2-class approximations.   

To see the impact of the 𝑘-class approximation on the optimal schedule and to demonstrate that the 𝑁-class 
approximation is optimal, let us consider a small example with 𝑁 = 6 appointment requests that need to be 
scheduled in 𝐹 = 4 slots.  Suppose that the no-show probabilities estimated by the classifier are:   

[0.800  0.500  0.300  0.200  0.100  0.010] 

For each value of 𝑘 = 1,…,6, Table 4 reports the approximated probabilities and the optimal schedule found 
using the approximated probabilities by the methodology illustrated in the next section.  

The schedule is reported as vector whose 𝑖-th element is the slot number (from 1 to 4) where the 𝑖-th 
appointment request was scheduled.  For example, the optimal schedule for 𝑘 = 6 consists of assigning the 
6th patient (the one with the lowest no-show probability) to the first slot, then the 1st and 5th patients to the 
second slot, the 2nd and 3rd patients to the third slot, and the 4th patient to the fourth slot.   

 

𝒌 Approximated no-show probabilities Schedule Found Actual Cost 

1 [0.318  0.318   0.318   0.318  0.318  0.318] [1 1 2 2 3 4] 7.874 

2 [0.650 0.650   0.152   0.152  0.152   0.152] [1 2 1 2 3 4] 6.417 

3 [0.800 0.400  0.400  0.103  0.103  0.103] [1 4 4 1 2 3] 5.679 

4 [0.800 0.500   0.250  0.250 0.055 0.055] [3 3 3 4 1 2] 5.306 

5 [0.800 0.500   0.300  0.200 0.055 0.055] [3 3 3 4 1 2] 5.306 

6 [0.800 0.500   0.300  0.200 0.100  0.010] [2 3 3 4 2 1] 5.298 

Table 4: Examples of schedules found using different 𝒌-class approximations 

 

This example shows that the optimality condition found by Zacharias and Pinedo (2014) can be relaxed: 
they prove that patients with a 0% no-show probability should all be assigned to slots at the beginning of 
the schedule without any overbooking. However, many schedules in Table 4 show that the appointment 
requests scheduled at the beginning of the session without overbooking do not necessarily have a no-show 
probability exactly equal to 0%.  For instance, for 𝑘 = 5 the fifth and sixth patients are assigned to the first 
two slots without any overbooking even if their no-show probability is 5.5%.   

The actual cost is the expected cost of the schedule found, when evaluated using the original no-show 
probabilities.  Note that when 𝑘 = 𝑁, the schedule found is the one with the lowest actual cost (i.e, it is the 
optimal schedule), because it is constructed using the original no-show probabilities. However, note the 
marginal improvement obtained by increasing 𝑘  by one decreases with 𝑘; this finding will be analyzed 
further in our computational experiments. 



 Probabilistic Classifiers in Appointment Scheduling 
  

 Fortieth International Conference on Information Systems, Munich 2019 9 
 

Step 3: Finding the Optimal Schedule 

In this section, we illustrate our solution method for the scheduling problem with individual no-show 
probabilities.  We consider an outpatient clinic where one provider sees patients sequentially.  
Appointments are scheduled in 𝐹 consecutive appointment slots of equal length.  We assume that patients 
who show are punctual and that the time taken for each appointment is constant and equal to the length of 
each appointment slot.   

The input of the problem is a set of 𝑁 “appointment requests” (or, more simply, “requests”); the output is 
an assignment of the appointment requests to appointment slots.  Each request must be assigned to exactly 
one appointment slot, but each appointment slot may be assigned to more than one request (i.e., it may be 
overbooked).  The 𝑖-th appointment request (𝑖 = 1, … , 𝑁) is labeled with the probability, 𝑞𝑖, that the patient 
will not show up for his or her appointment.  We previously showed how to derive these no-show 
probabilities.  Our methodology is defined for individual no-show probabilities (i.e., the 𝑁-class approach); 
however, as we discuss later in detail, the same methodology can be employed even if requests are clustered 
in classes of no-show probabilities (e.g., the 1-class approach or the 2-class approach).   

The objective of the problem is to schedule appointment requests in order to minimize a weighted average 
of the patients’ waiting time and the provider’s overtime.  Waiting time cost is incurred whenever patients 
start their appointment late, at a rate of 𝜔 dollars for every time unit of delay incurred by any patient; 
overtime cost is incurred whenever the provider finishes seeing the patients after the nominal end time of 
the clinic session (i.e., after 𝐹 time units from the start), at a rate of 𝜏 dollars for every time unit of overtime.  
Without loss of generality, we fix the waiting time cost to 𝜔 = 1, and we vary the overtime cost 𝜏.  Our 
notation is reported in Table 5. 

We model the scheduling problem as a stochastic mixed integer linear program.  First, without loss of 
generality, we assume that the no-show probabilities 𝑞𝑖  provided as input are pre-sorted by increasing 
probability of no-show, that is, 𝑞𝑖 ≤ 𝑞𝑖+1 for 𝑖 = 1, … , 𝑁 − 1.  We will later explain that this ordering will 
enable us to speed up the computation time.   

 

Parameter Description 

𝐹 Number of appointment slots.  Each slot is one time unit long. 

𝑁 Number of appointment requests to schedule 

𝑞𝑖 The no-show probability of appointment request 𝑖, with 𝑖 = 1, … , 𝑁 

𝜔 The cost per time unit that each patient incurs for starting their appointment late 

𝜏 The cost per time unit of overtime 

𝑞𝑖
𝑠 

A binary scalar that indicates whether request 𝑖 will not show under scenario 𝑠, 
with 𝑖 = 1, … , 𝑁 and 𝑠 = 1, … , 𝑆 

𝑣𝑖,𝑖+1 
A binary scalar that indicates whether patient 𝑖’s no-show probability is equal to 
patient 𝑖 + 1’s no-show probability, i.e., 𝑣𝑖,𝑖+1 = 1 iff 𝑞𝑖 = 𝑞𝑖+1, for 𝑖 = 1, … , 𝑁 − 1 

𝑥𝑖𝑗  
A binary decision variable indicating whether the 𝑖 -th appointment request is 
scheduled in the 𝑗-th slot, with 𝑖 = 1, … , 𝑁 and 𝑗 = 1, … , 𝐹 

𝑏𝑗
𝑠 

The number of patients that under scenario 𝑠 overflow from slot 𝑗 to slot 𝑗 + 1, with 
𝑗 = 1, … , 𝐹 and 𝑠 = 1, … , 𝑆 

Table 5. Notation 

Second, given the no-show probabilities 𝑞1, 𝑞2, …, 𝑞𝑁, we build 𝑆 “no-show” scenarios, each corresponding 
to one particular realization of no-shows: that is, each scenario corresponds to the subset of patients that 
will not show up.  Since there are 2𝑁  subsets of 𝑁  requests, the total number of scenarios is 𝑆 = 2𝑁 .  
Mathematically, each scenario 𝑠 (𝑠 = 1, … , 𝑆) is represented by a binary vector [𝑞1

𝑠, 𝑞2
𝑠, …, 𝑞𝑁

𝑠 ] of length 𝑁, 
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whose components indicate which requests will result in a no-show under that scenario (𝑞𝑖
𝑠 = 1 if request 𝑖 

will not show under scenario 𝑠, and 0 otherwise).  The probability 𝑝𝑠 of a scenario 𝑠 can be computed as the 
joint probability to observe that all requests 𝑖 for which 𝑞𝑖

𝑠 = 1 will not show and that all requests 𝑖 such 
that 𝑞𝑖

𝑠 = 0 will show.  That is: 

𝑝𝑠 = ∏ (𝑞𝑖
𝑠𝑞𝑖 + (1 − 𝑞𝑖

𝑠)(1 − 𝑞𝑖))
𝑖=1,…,𝑁

, 𝑠 = 1, … , 𝑆 

Consider, for instance, a small problem with 𝑁 = 3 requests with no-show probabilities 𝑞1, 𝑞2, and 𝑞3.  In 
this problem, there are 8 scenarios, each determining which subset of the three requests will not show up.  
For example, scenario [𝑞1

𝑠, 𝑞2
𝑠, 𝑞3

𝑠] = [0,0,1], which corresponds to the case where the first two patients show 
up and the third one doesn’t, has a probability equal to (1 − 𝑞1)(1 − 𝑞2)𝑞3.   

The cost incurred by the clinic, which varies from scenario to scenario, is computed by summing the costs 
incurred in each slot.  In slot 𝑗 under scenario 𝑠, events unfold as follows: 

1. The patients scheduled in slot 𝑗 who show up under scenario 𝑠 arrive at the beginning of slot 𝑗; 

2. If there was a queue of patients waiting for the entire duration of the previous slot (slot 𝑗 − 1), these 
patients “overflow” to slot 𝑗.  The number of patients overflowing from slot 𝑗 − 1 to slot 𝑗 under 
scenario 𝑠 is determined by a decision variable 𝑏𝑗−1

𝑠 . 

3. The provider starts seeing one patient at the beginning of slot 𝑗 (as long as there is at least one 
patient in the system) and finishes seeing him/her at the end of slot 𝑗; if more than one patient are 
present in the system at the beginning of slot 𝑗, there will be one patient being served and 𝑏𝑗

𝑠 

patients waiting for the duration of the slot.  Thus, in slot 𝑗 under scenario 𝑠 the clinic incurs a cost 
equal to 𝜔 ∙ 𝑏𝑗

𝑠 (i.e., a cost of 𝜔 for every patient waiting during slot 𝑗 under scenario 𝑠).   

4. At the end of slot 𝑗, the patient being served exits the system.  If other patients have been waiting 
during slot 𝑗 without being served, they overflow to the next slot. 

5. At the end of the last slot, slot 𝐹, the provider continues seeing all remaining patients overtime at a 
rate of one patient per time unit.  Thus, if there are 𝑏𝐹

𝑠 patients at the end of the last slot under 
scenario 𝑠, the clinic will incur an overtime cost of 𝜏𝑏𝐹

𝑠, as the provider will work overtime for 𝑏𝐹
𝑠 

time units, and a waiting time cost of 𝜔((𝑏𝐹
𝑠 − 1) + (𝑏𝐹

𝑠 − 2) + ⋯ + 1), as the number of patients 

waiting is 𝑏𝐹
𝑠 − 1 in the first overtime slot, 𝑏𝐹

𝑠 − 2 in the second overtime slot, etc.  The last overtime 
slot to be considered is slot 𝐹𝑚𝑎𝑥, which we will show being equal to 𝑁.   

We now present a stochastic mixed integer linear programming model to find the optimal schedule for a 
given set of appointment requests.  The assignment of requests to slots is determined by a set of binary 
decision variables, 𝑥𝑖𝑗 , which are equal to 1 if request 𝑖 is scheduled to slot 𝑗 (for 𝑖 = 1,…,𝑁 and 𝑗 = 1,…,𝐹).   

 

OPT-SCHED = 𝑚𝑖𝑛 ∑ 𝑝𝑠(𝜔 ∑ 𝑏𝑗
𝑠

𝑗=1…𝐹𝑚𝑎𝑥 + 𝜏𝑏𝐹
𝑠)𝑠=1…𝑆  

Such that: 

∑ 𝑥𝑖𝑗𝑗=1,…,𝐹 = 1 ∀𝑖 = 1 … 𝑁         (1) 

𝑏𝑗
𝑠 ≥ 𝑏𝑗−1

𝑠 + ∑ 𝑥𝑖𝑗(1 − 𝑞𝑖
𝑠)𝑖=1…𝑁 − 1 ∀𝑠 = 1 … 𝑆, 𝑗 = 1 … 𝐹𝑚𝑎𝑥     (2) 

∑ 𝑥𝑖𝑗𝑖 ≥ 1∀𝑗 = 1 … 𝐹          (3) 

𝑥𝑖𝑗 ∈ {0,1} ∀𝑠 = 1 … 𝑆, 𝑗 = 1 … 𝐹 

𝑏𝑗
𝑠 ≥ 0 ∀𝑠 = 1 … 𝑆, 𝑗 = 1 … 𝐹𝑚𝑎𝑥  

 

The objective is to minimize the expected total cost of the schedule.  Under each scenario, a given 
assignment of requests to slot (i.e., a schedule) will result in a scenario-dependent cost.  Our model 
computes the expected cost of a schedule as the average cost obtained under each scenario 𝑠, weighted by 
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the probabilities 𝑝𝑠, 𝑠 = 1, … , 𝑆.  Under each scenario, the cost is equal to the sum of the waiting time costs 
and the overtime cost.  Constraint set (1) states that each patient 𝑖 must be assigned to exactly one slot.   

Constraint set (2) sets the value of 𝑏𝑗
𝑠, i.e., the number of patients overflowing from slot 𝑗 to slot 𝑗 + 1.  It is 

at least equal to the number of patients overflowing into slot 𝑗, 𝑏𝑗−1
𝑠  plus the number of arrivals in slot 𝑗 

(∑ 𝑥𝑖𝑗𝑞𝑖
𝑠

𝑖=1…𝑁 ) minus one to account for the fact that one patient will be seen in slot 𝑗. 

Constraint set (3) prevents the presence of empty slots in the schedule.  As proved by LaGanga and 
Lawrence (2012), this is an optimality condition and we include it to reduce the solution space and, 
consequently, the computation time.  Because of this condition, the maximum overtime suffered by the 
provider will be equal to 𝑁 − 𝐹 time units, which may be incurred by assigning one patient to each of the 
regular 𝐹 slots, and the remaining 𝑁 − 𝐹 patients to the last regular slot.  If all patients in the last slot show 
up, the provider will see the last patient in slot 𝑁 (i.e., 𝑁 − 𝐹 slots overtime).  Thus, we set 𝐹𝑚𝑎𝑥 = 𝑁. 

Computational Results 

In this section, we perform three sets of computational experiments to demonstrate the merit of our 
approach.  In the first set of computational experiments, we show that using values of 𝑘 greater than those 
suggested by existing work (𝑘 = 1 or 2) results in significantly better-quality schedules.  In the second set of 
experiments, we show that when our methodology is employed in a realistic setting (i.e., using the real-
world data presented earlier), a small improvement in the Brier’s score may result in a large improvement 
in schedule quality; furthermore, the quality of the schedules obtained is more closely related to the Brier’s 
score than the AUC.  In the third set of experiments, we extend our methodology to the case where 
appointment requests arrive sequentially (rather than being all available at the same time) and show that 
our findings keep being valid in that situation. 

Computational Experiments 1: The Effect of Increasing 𝒌 

In our first set of experiments, we study the impact of the approximation number 𝑘 on the performance of 
our solution method.  In particular, we generated several instances of the scheduling problem, utilizing a 
different parameter combination for each instance.   

For the experiments, the number of appointment requests is fixed to 𝑁 = 8.  The reason for fixing the value 
of 𝑁 lies in the fact that each scheduling problem will be solved with all possible 𝑘-value approximations: 𝑘 
= 1, 2, …, 𝑁.  If more than one value of 𝑁 is used then some values of 𝑘 will be utilized only for certain values 
of 𝑁, making it harder to assess and interpret the effect of changing 𝑘.  This number of appointments is 
common at outpatient clinics, where appointments are generally scheduled in two sessions per day (one in 
the morning with 𝑁  appointments and one in the afternoon with 𝑁  other appointments).  To consider 
different no-show rates, we considered different values for the number of slots 𝐹 ∈ {5,6,7}.  For each value 
of 𝐹, we fixed the mean no-show probability to 𝑞 = 1 − 𝐹/𝑁 (i.e., 37.5%, 25.0%, and 12.5%).  The expression 
for 𝑞 results in an expected number of shows equal to the number of slots.   

The 𝑁 no-show probabilities of the appointment requests were generated according to a 2-parameter 𝛽-
distribution with mean 𝑞 and variance 𝜎2 ∈ {0.005, 0.010, 0.020}.  Our choice is justified by an analysis of 
the no-show probabilities collected on our real-world data.  In this analysis, we fit distributions to the data 
to find the best fit for the test-set no-show probabilities.  We restricted our search to the distributions 
defined on the domain 0-1, so as to avoid generating infeasible probabilities: uniform, beta, triangular, and 
truncated normal.  For both data sets, the best fit is obtained with the 𝛽-distribution.  Figure 3 shows the 
distribution and fit of the 𝛽-distribution on the no-show probabilities obtained by Logistic Regression. 
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VA-12 

 

VA-30 

 

Figure 3. Fit of 𝜷-distribution on the test-set no-show probabilities obtained on our two 
data sets by Logistic Regression. 

In the experiment, waiting time cost is fixed at 𝜔 = 1 per time unit; overtime cost is 𝜏 ∈{3,10}.  For each of 
the 3 x 4 x 2 parameter combinations listed above, we generated 100 different scheduling problems by 
randomly sampling a set of 𝑁 no-show probabilities, for a total of 2,400 problem instances.   

Each problem instance was solved through our mathematical model eight times, each time using a different 
𝑘-value approximation (𝑘 = 1, … ,8).  After solving each scheduling problem, we analytically computed and 
recorded the expected cost of the schedule obtained using the original no-show probabilities by averaging 
the cost incurred under each of the 2^N scenarios weighted by the probability of each scenario.  Table 6 
reports our results. 

Each row in Table 6 is associated to a set of 100 randomly generated scheduling problems with the same 
number of slots, no-show probability distribution (mean and variance), and overtime cost.  For each value 
of 𝑘, the table reports the average optimality gap and the 99% confidence interval obtained on the 100 
schedules obtained.   

The results suggest that the schedules obtained for larger values of 𝑘 are of higher-quality (i.e., with a 
smaller optimality gap) than the schedules obtained for smaller values of 𝑘.  In particular, the optimality 
gap is largest for schedules obtained with 𝑘 = 1 and 𝑘 = 2, which are the values adopted in prior work.  
Interestingly, the average optimality gap is smaller than 1% under all parameter combinations when 𝑘 ≥ 4.   

We also found that while larger values of 𝑘 yield significantly better-quality schedules, the solution time 
increases dramatically with 𝑘.  We will use this fact in our next set of experiments, where in order to solve 
larger scheduling problems in a shorter time, we consider values of 𝑘 smaller than 𝑁. 

Computational Experiments 2: Validation on Real-World Data  

In this subsection, we test our methodology on real-world data, by iteratively sampling appointment 
requests, predicting their individual no-show probability, and scheduling them.   

First, as illustrated in section above where we discussed the real-world data case study, using the calibration 
set, we train an AdaBoost and a Logistic Regression classifier for each of our two data sets, VA-12 and VA-
30.  AdaBoost has the better (larger) AUC, whereas Logistic Regression has the better (smaller) Brier’s 
score.  Here, we limit our analysis to these two classification techniques to show that a smaller Brier’s score 
(and not a larger AUC) results in a lower cost appointment schedule.  
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Table 6:  Optimality gap % and its 99% confidence interval of the quality of 8-patient schedules obtained with the different K-class 
approximations (k=1, 2,…,8) and different parameter combinations.  Dark-grey cells indicate an optimality gap significantly 
larger than 5% (with 𝜶 = 0.01); light-grey cells indicate an optimality gap significantly larger than 1%.  

*K = 1 and K = 2 are the approximations adopted in existing work. 

    𝑘-class Approximation 

NSlots 
No-show 
rate 

Overtime 
cost 

Var. 𝑘 = 1* 2* 3 4 5 6 7 
8 

(optimal) 

5 37.5% 3 0.005 4.99±0.52 1.49±0.27 0.5±0.08 0.24±0.05 0.11±0.03 0.03±0.01 0.01±0.01 0.0±0.0 

5 37.5% 3 0.01 7.9±0.87 2.4±0.4 0.81±0.14 0.41±0.08 0.16±0.04 0.04±0.02 0.01±0.01 0.0±0.0 

5 37.5% 3 0.02 14.43±1.72 4.29±0.77 1.52±0.28 0.57±0.12 0.24±0.08 0.08±0.03 0.02±0.01 0.0±0.0 

5 37.5% 10 0.005 2.76±0.32 0.62±0.09 0.26±0.04 0.11±0.02 0.04±0.01 0.02±0.01 0.0±0.0 0.0±0.0 

5 37.5% 10 0.01 4.24±0.53 1.04±0.16 0.42±0.06 0.2±0.05 0.07±0.02 0.03±0.01 0.01±0.0 0.0±0.0 

5 37.5% 10 0.02 6.74±0.97 1.86±0.27 0.76±0.13 0.31±0.06 0.12±0.03 0.04±0.01 0.01±0.01 0.0±0.0 

6 25% 3 0.005 10.11±0.96 2.88±0.53 0.87±0.16 0.37±0.07 0.16±0.04 0.06±0.02 0.02±0.01 0.0±0.0 

6 25% 3 0.01 16.79±1.58 4.18±0.91 1.44±0.32 0.59±0.12 0.27±0.07 0.12±0.04 0.03±0.01 0.0±0.0 

6 25% 3 0.02 29.91±3.29 5.84±1.59 1.55±0.32 0.75±0.17 0.35±0.1 0.13±0.04 0.04±0.02 0.0±0.0 

6 25% 10 0.005 4.96±0.53 1.16±0.16 0.44±0.07 0.2±0.03 0.09±0.02 0.04±0.01 0.01±0.0 0.0±0.0 

6 25% 10 0.01 7.83±0.95 2.07±0.28 0.82±0.13 0.44±0.09 0.22±0.06 0.07±0.02 0.02±0.01 0.0±0.0 

6 25% 10 0.02 14.31±2.25 4.45±0.62 1.84±0.32 0.6±0.13 0.28±0.06 0.13±0.03 0.02±0.01 0.0±0.0 

7 12.5% 3 0.005 23.99±2.97 4.65±1.09 1.62±0.48 0.69±0.25 0.36±0.15 0.12±0.08 0.02±0.02 0.0±0.0 

7 12.5% 3 0.01 38.35±5.05 6.38±1.39 1.85±0.59 0.89±0.35 0.38±0.17 0.12±0.08 0.01±0.01 0.0±0.0 

7 12.5% 3 0.02 68.48±15.34 8.0±2.2 2.23±0.81 0.47±0.19 0.24±0.14 0.1±0.07 0.03±0.04 0.0±0.0 

7 12.5% 10 0.005 16.86±1.62 4.27±0.73 0.89±0.18 0.44±0.1 0.17±0.05 0.07±0.02 0.02±0.01 0.0±0.0 

7 12.5% 10 0.01 27.19±2.76 5.05±1.13 1.42±0.41 0.4±0.13 0.19±0.06 0.06±0.03 0.02±0.01 0.0±0.0 

7 12.5% 10 0.02 42.86±5.23 7.88±1.86 1.24±0.31 0.45±0.15 0.17±0.07 0.05±0.02 0.01±0.01 0.0±0.0 
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Second, we check which classifier leads to the better performance on the test set by computing the cost of 
the schedule obtained for each data set and for each classifier, as follows.  For 500 iterations, we randomly 
sample with replacement 10 appointment requests from the test set and we employ the classifier to estimate 
their no-show probability.  Then, we find the optimal schedule given the estimated no-show probabilities 
using different values of 𝑘, and finally we unveil the patients’ actual classes (no-show or show) and use it to 
evaluate the schedule.  That is, the schedule is found from the no-show probabilities predicted by the 
classifier, but its quality is evaluated using the patients’ real no-show outcomes from the test data.  Table 7 
reports the results. 

 

Data 
set 

 
AdaBoost Logistic Regression 

Avg. Cost Reduction 
obtained by Logistic 

Regression  

VA-12 

 

 AUC = 0.76 
Brier’s score = 0.10 

AUC = 0.75 
Brier’s score = 0.09  

𝑘 = 1 3.12 3.11 0.32% 

2 2.53 2.31 8.70% 

3 2.44 2.24 8.20% 

4 2.46 2.25 8.54% 

5 2.39 2.26 5.44% 

VA-30 

 

 AUC = 0.76 
Brier’s score = 0.20 

AUC = 0.75 
Brier’s score = 0.17  

𝑘 = 1 6.44 6.20 3.73% 

2 6.08 5.59 8.06% 

3 6.12 5.15 15.85% 

4 5.91 5.06 14.38% 

5 5.94 5.05 14.98% 

Table 7. Average schedule cost resulting in using no-show probabilities predicted by 
AdaBoost and Logistic Regression.  Bold entries indicate that the cost reduction resulting 

from Logistic Regression is significantly greater than zero at 𝜶 = 0.05.  

We consider only values of 𝑘 up to 5 because larger values lead to only marginal improvement at the cost of 
much longer computational times.  Also, to keep the average solution times below ten seconds, we only 
consider 500 scenarios (out of 2^10 = 1024 possible scenarios).  Finally, to ensure a fair comparison 
between the two classification techniques, the appointment requests sampled in each of the 500 iterations 
are the same for each data set and for each classification technique.   

For each data set (VA-12 and VA-30), Table 7 reports the AUC and Brier’s score obtained on the calibration 
set.  Additionally, for each value of 𝑘 = 1,…,5, Table 7 reports the average cost obtained across the 500 
iterations when building a schedule using the no-show probabilities estimated by Logistic Regression and 
AdaBoost.  The last column reports the cost reduction percentage resulting when using Logistic Regression.   

Our results shows that logistic regression results in a lower scheduling cost than AdaBoost (bold entries 
indicate a significant difference) when 𝑘 ≥ 2.  When 𝑘 = 1, the no-show probabilities estimated by the two 
methods are very similar, and consequently the schedules obtained do not have significantly different costs.   

Because Logistic Regression has a lower Brier’s score and a lower AUC than AdaBoost, our results 
corroborate our claim that when predicting no-show outcomes for appointment scheduling, the goal should 
be minimizing the Brier’s score rather than maximizing the AUC.  Furthermore, our results suggest that by 
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improving the Brier’s score only marginally (by 0.01 on VA-12 and by 0.02 on VA-30) results in a very large 
cost reduction. 

Finally, the table confirms the results of our first set of experiments: within the same classification 
technique, increasing 𝑘 results in a lower cost.  In addition, the table suggests that the benefit of increasing 
𝑘 is more evident when the classifier has a lower Brier’s score; this is because the lower the Brier’s score, 
the more accurate the predicted probabilities, and the higher the benefit of not binning them. 

Computational Experiments 3: Sequential Scheduling 

So far, we have focused on the “static” scheduling problem, that is, we assumed that all 𝑁 appointment 
requests are available at the same time and can be scheduled all at once.  In reality, however, appointment 
requests arrive sequentially (i.e., one at a time), and need to be scheduled without knowing the 
characteristics of future appointment requests (i.e., their number or their no-show probabilities).   

As commonly done in other appointment scheduling work, we adapt the solution method we developed for 
the static scheduling problem to the sequential scheduling problem.  The idea is to attempt to schedule the 
incoming appointment requests as closely as possible to one of the 500 optimal schedules found in the 
previous section. Since we do not know the future appointment requests, we do not know which of the 500 
schedules to match. So, we follow all of them at the same time by measuring the deviation between each 
target schedule and the assignment of the patients already scheduled. 

More precisely, for each data set (VA-12 and VA -30) and each classifier employed in the previous section 
(AdaBoost and Logistic Regression), we set up the solution method as follows.  We create a set of available 
target schedules 𝑆 = {1,2, … ,500}  that contain all of the 500 optimal schedules found in the previous 
section.  Then, we characterize each target schedule 𝑠 = 1,2, … ,500 with two variables: first, the set of target 

assignments (𝑞𝑖
𝑠, 𝑗𝑖

𝑠, 𝑎𝑖
𝑠)𝑖=1,…,𝑁, where 𝑞𝑖 is patient 𝑖’s no-show probability, 𝑗𝑖 the slot assigned to 𝑖, and 𝑎𝑖

𝑆 a 

Boolean variable indicating whether that assignment is still available (𝑎𝑖
𝑆 = 𝑇𝑟𝑢𝑒 at the beginning); second, 

the total deviation 𝑑𝑒𝑣𝑠 = 0, which will measure the deviation between the no-show probabilities of target 
schedule 𝑠 and the no-show probabilities of the patients scheduled so far during the sequential scheduling.   

After setting up the variables of each target schedule, we generate a sequential scheduling problem by 
sequentially sampling 𝑁 = 10 appointment requests randomly from the test set.  Then, we sequentially 
schedule each appointment request as follows.  Let 𝑞 be the no-show probability of the current appointment 

request.  We want to find the schedule 𝑠∗ ∈ 𝑆 that results in the smallest total deviation 𝑑𝑒𝑣𝑠∗
.  To this end, 

we identify the best-fitting available assignment for 𝑞 as 𝑖∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑠∈𝑆,𝑖:𝑎𝑖
𝑠=𝑇𝑟𝑢𝑒(𝑑𝑒𝑣𝑠 + |𝑞𝑖

𝑠 − 𝑞|); that is, if 

the current request was assigned to slot 𝑗𝑖
𝑠  of schedule 𝑠, then the schedule’s total deviation 𝑑𝑒𝑣𝑠  would 

increase by |𝑞𝑖
𝑠 − 𝑞|.  After computing what would be the best assignment across all schedules, we select the 

assignment that results in the smallest new total deviation.  Let 𝑗∗  be the slot selected for the current 
appointment request; we update the data structure of each schedule 𝑠  as follows: first, we identify an 
available assignment 𝑖 for slot 𝑗 (i.e., such that 𝑗𝑖

𝑠 = 𝑗 and 𝑎𝑖
𝑠 = 1); then, we set 𝑎𝑖

𝑠 = 0; finally, we update 
𝑑𝑒𝑣𝑠 = 𝑑𝑒𝑣𝑠 + |𝑞𝑖

𝑠 − 𝑞|.  If schedule 𝑠 has no available assignment 𝑖 for slot 𝑗, then 𝑠 cannot be anymore a 
target schedule, and we remove it from 𝑆.  Table 8 reports the average cost obtained on 200 sequential 
scheduling problems by AdaBoost and Logistic Regression.  As for Table 7, the AUC and Brier’s score 
reported in Table 8 are relative to the calibration set. 

Our results suggest that even in the case of sequential scheduling, the classifier that on the calibration set 
obtains the lower Brier’s score performs (on the test set) significantly better than the one with the larger 
AUC. 
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Data set AdaBoost Logistic Regression 
Cost Reduction 

obtained by Logistic 
Regression 

VA-12 

AUC = 0.76 
Brier’s score = 0.10 

AUC = 0.75 
Brier’s score = 0.09  

2.60 2.38 8.46% 

VA-30 
AUC = 0.76 

Brier’s score = 0.20 
AUC = 0.75 

Brier’s score = 0.17 
 

5.14 4.64 9.73% 

Table 8. Average schedule cost resulting in using no-show probabilities predicted by 
AdaBoost and Logistic Regression in the sequential scheduling problem.  Bold entries 

indicate that the cost reduction resulting from Logistic Regression is significantly greater 
than zero at 𝜶 = 0.05. 

Conclusion 

Despite the existence of prior work that studies the causes of appointment no-shows, little effort has been 
spent to integrate the no-show predictions into an appointment scheduling system.   

Existing work in appointment scheduling has either used a unique no-show probability for all appointment 
requests (i.e., the 1-class approach) or has considered two classes of patients (i.e., the 2-class approach).  In 
contrast, this work considers any number of classes, up to the case where each appointment request has its 
own no-show probability (i.e., the 𝑁-class approach).  To the best of our knowledge, ours is the only 
methodology that optimally schedules requests given their individual no-show probabilities.  Our results 
show that considering more than 2 classes of no-show probabilities leads to higher-quality schedules.   

Some existing work that seeks to leverage no-show predictions to inform scheduling decisions has focused 
on finding the classification technique that maximizes the AUC (Goffman et al. 2017, Li et al. 2019).  In 
contrast, our experiments on real-world data suggest that the classifiers with the largest AUC is not 
necessarily the one that leads to lower-cost schedules.  In fact, we find that the Brier’s score is a more 
suitable metric to use when selecting a classifier.  We provide the code to guide practitioners to predict no-
shows from their data. 

Finally, our preliminary results show that a small improvement in the Brier’s score may result in a large 
reduction in scheduling cost.  However, more research is needed to quantify the improvement caused by 
reduction in Brier’s score.  

There are several other opportunities for future research.  First, our findings can be validated on other data 
sets and classification techniques.  Second, future studies can relax our assumptions of patients’ punctuality 
and constant service times.  Third, it would be interesting to include the possibility for patients to express 
preferences on the appointment day and time, as in Feldman et al. (2014).  Finally, we could deploy our 
system in an actual outpatient clinic and study how patients perceive the system. Because one of the 
predictors is the patient’s past no-show behavior and because patients with high no-show probability tend 
to be scheduled in overbooked slots, it follows that our system tends to schedule likely no-shows into 
overbooked slots.  This will result in longer waiting time, customer dissatisfaction, and -possibly- to the 
customer failing to show up again, which would further increase their no-show probability.  Thus, an 
additional avenue for future research could be to empirically study if and how systems like ours affects 
patient no-show behavior.   

In conclusion, our work shows that using probabilistic classifiers to predict no-shows can dramatically 
improve the quality of appointment schedules.  More research is needed to develop guidelines on how to 
select a suitable classifier. 
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