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Abstract 

Robo-advisors enable customers to conduct automated digital investments, which could 
substantially transform the financial industry. However, robo-advisory use is lagging 
behind expectations. One reason could be potential customers’ insufficient trust.  

Therefore, we investigate determinants that influence trust and the intention to use robo-
advisors. More specifically, we build on trust to assess use intention and explore personal 
characteristics (perceived risk), organizational characteristics (trust in banks) and in-
dustry characteristics (structural assurances) as antecedents to trust. The survey data 
are analyzed by employing a PLS-SEM (n = 246). 

Preliminary results show that initial trust in robo-advisors is closely related to the inten-
tion to use robo-advisors. Trust is negatively linked to perceived risk but positively linked 
to structural assurances. Trust in banks is positively related to initial trust, however, only 
when structural assurances are not included. In a follow-up survey, behavior and poten-
tial barriers to robo-advisory adoption will be investigated. 

Keywords: Robo-advisory, trust, risk, structural assurances 
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Introduction 

The application of smart systems and algorithm-based decisions has the potential to reform the financial 
sector and poses an enormous challenge, particularly for conventional banks. A vivid example of this is the 
use of robo-advisors. Robo-advisory is a financial service that combines investment advisory with algo-
rithm-based investment decisions. In contrast to classic personal customer advice, personal contact be-
tween the customer and the bank is completely eliminated by the use of robo-advisors (Jung et al. 2018a). 
The customer is guided through questions, e.g., about the customer’s personal situation and risk tolerance, 
to an individual investment proposal (Phoon and Koh 2017). 

Banks are eager to use robo-advisors as an automated investment advisory to reach further customers. Es-
pecially because of their cost-saving design, robo-advisors are also well suited to target customers with 
smaller budgets than those required for traditional investments (Jung et al. 2018a). However, these cus-
tomers show particularly high risk aversion (Epperson et al. 2015; Jung et al. 2018a).The perceived risks of 
using robo-advisory can be explained by a low level of perceived user control during the investment process 
(Rühr et at. 2019). Accordingly, it is not surprising that the acceptance rate of robo-advisory is relatively 
low, with less than 0.1% of assets under management managed by robo-advisory services in 2018 worldwide 
(Statista 2019). Nevertheless, future prospects are highly promising, with forecasts predicting that by 2020, 
these services will manage 10% of total assets globally (BI Intelligence 2017). Thus, the issue of digital trans-
formation has become the most important challenge for the future strategic orientation of banks. 

However, banks are not the only players in this market. New entrants such as financial technology start-
ups (Fintechs) or technology companies are increasingly forcing their way into this market (Du Toit and 
Cheris 2018). Against the background of their enormous success, this represents a high threat for estab-
lished banks. Studies show that 54% of customers would rather use banking services provided by technology 
companies than those provided by banks (Bain & Company 2018). As a result, banks are no longer in com-
petition only with each other but rather are also in competition with Fintechs and other technology compa-
nies. 

Nevertheless, banks have the advantage of having established relationships with their customers. Banks 
know the regulations in the financial sector and already hold or manage their customers’ financial assets. 
Above all, they already have their customers’ trust. While trust in financial institutions has been rather low 
in the last decade, it has experienced a rise in recent years (Edelman 2018). Banks have realized that their 
customers’ trust is a decisive factor for the success of their digitalization strategies. Research has supported 
this view, showing that trust is one of the most important factors for the acceptance of financial online 
services and as such might also positively influence robo-advisory service adoption (Baptista and Oliveira 
2016; Chiu et al. 2017). However, research has also shown that structural assurances in the form of appro-
priate technological and legal structures have a strong effect on initial trust in technologies (McKnight et 
al. 2011; Pavlou and Gefen 2004). Such structural assurances can be provided irrespective of whether a 
bank or a technology company offers the robo-advisory service. Therefore, it is questionable whether cus-
tomers’ trust in banks provides an advantage for banks to successfully promote the use of robo-advisors. 

To investigate these issues, we aim to address the following research questions: Which determinants influ-
ence the adoption of robo-advisors? How does trust in banks and structural assurances affect trust in robo-
advisors? To address these questions, we conduct a PLS-SEM (n =246). We contribute to the literature by 
shedding light on the determinants and barriers to the adoption of robo-advisors. While trust has been 
shown to be decisive for other financial online services, the relationship has not been sufficiently investi-
gated in the context of robo-advisory. In the further progress of this research project, the relationship be-
tween the intended and actual uses of robo-advisory will be the focus. In particular, the barriers of actual 
use are to be investigated to derive further valuable implications for practice. 

The paper is organized as follows. The next section presents a brief overview of recent research in the liter-
ature on the adoption of robo-advisory. We develop hypotheses and present our research model in the sub-
sequent section. We then describe our methodological approach and research results. Finally, the article 
continues with a discussion of the results and their implications and finishes with an outlook for future 
research. 
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Theoretical Foundation and Research Model 

Literature Review 

As the literature on robo-advisory is only emerging, few researchers have focused on this issue yet. Previous 
research has drawn on related areas such as financial advisory research and decision support literature 
(Jung et al. 2018b). Studies on customers’ willingness to interact with robo-advisors have investigated the 
influence of robo-advisor designs (Glaser et al. 2019; Jung et al. 2018a; Kilic et al. 2015; Ruf et al. 2015) or 
the impact of personalization as an essential feature of robo-advisors (Faloon and Scherer 2017). Other 
studies have focused on legal complexities (Ji 2017) and risk management aspects (Glaser et al. 2019).  

Considering consumer behavior, Lee et al. (2018) emphasize the relevance of trust in the adoption of robo-
advisory. Based on an agent-based model, they propose that trust and information quality are critical com-
ponents of the adoption process. These findings are in line with Jung et al.’s (2018a) interview study, where 
participants reported that the impression of trustworthiness was one of the major factors in their attitude 
towards a robo-advisor. In another study on robo-advisory, Jung et al. (2018b) review the literature on 
robo-advisory and conclude that trustful communication is at least as important as the performance of 
robo-advisors. Taken together, these studies indicate that trust is a strong predictor of robo-advisory adop-
tion. 

One critical antecedent to trust is the perceived risk associated with the technology. Studies that have in-
vestigated this relationship have found strong support for this link (Malaquias and Hwang 2016; Roca et al. 
2009). Perceived risk is especially important in the robo-advisory context because financial information is 
often used for fraud, and customers often feel uncertain when making financial decisions (Heinrich and 
Schwabe 2018; Roca et al. 2009). Thus, it can be assumed that the risk associated with robo-advisory is 
perceived to be higher than that associated with traditional investments. The transaction is mediated by 
technology, and the customer needs to make decisions more independently. Thus, while the customer pre-
viously consulted a bank advisor while making an investment, the customer now has to take on additional 
responsibility (Rühr et al. 2019). 

Additionally, previous research has emphasized the relevance of customers’ trust in firms and structural 
assurances for trust development (Kim et al. 2009; Kundu and Datta 2015; Zhou 2012). As no personal 
contact with any advisor is given when using robo-advisors, the company that offers the robo-advisor, often 
a bank, serves as the only other referent of trust (Jung et al. 2018a). Structural assurances are concerned 
with feeling a sense of security as opposed to perceiving risk because of institutional arrangements (Moin 
et al. 2015). Kim and Prabhakar (2004) show that structural assurances are significant predictors of initial 
trust in electronic channels as a banking medium. Thus, trust in the bank and structural assurances have 
been identified as antecedents to trust in financial technologies. In summary, these studies indicate that 
trust in banks, structural assurances and perceived risk are closely linked to trust in robo-advisors, which 
is seen as a critical determinant for the intention to use robo-advisors. 

Research Model 

Trust 

Trust comprises the willingness to be vulnerable based on positive expectations towards a technology 
(McKnight et al. 2011). A number of previous studies have confirmed the positive relationship between trust 
in technologies and usage intention (Dimitriadis and Kyrezis 2010; Gefen et al. 2003; Kim and Prabhakar 
2004). For the adoption of robo-advisory technology, trust might be equally important. If customers believe 
that robo-advisors are reliable and perform well and thus have trust in them, they are more likely to actually 
use them. Accordingly, the following hypothesis is formulated: 

H1: Initial trust in robo-advisors is positively related to the intention to use them. 

Many customers feel uncertain when conducting digital investments for the first time (Zhou 2012). To over-
come uncertainty, customers’ trust may be especially relevant in this situation. Trademark perception sug-
gests that the trust positively associated with a brand is transferred to other services via the recognition of 
a brand. If a customer notices the well-known and positively rated brand of a bank, a subconscious transfer 
of trust to the new products and services offered takes place (Lee et al. 2007). This notion is supported by 
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previous studies that showed a positive effect of a bank's image on customers’ confidence in the bank's 
online products (Flavián et al. 2005; Yap et al. 2010). If customers perceive the bank as competent in areas 
such as online banking and traditional investments, they might assume that the bank is also competent in 
designing reliable robo-advisory services. Thus, customers might transfer the trust they have in the bank to 
the robo-advisors. Therefore, we argue as follows: 

H2: Customer trust in banks is positively related to initial trust in robo-advisors. 

Perceived Risk 

The use of a new technology in general and in a digital context in particular is associated with an inherent 
risk. This risk is based on uncertainty about the outcome but might also be due to fear of losing money or 
private data during the configuration process (Forsythe and Shi 2003; Malaquias and Hwang 2016). The 
riskier a customer perceives the use of robo-advisors to be, the lower the initial trust and the intention to 
use robo-advisors (Forsythe and Shi 2003). These relationships have been examined in other contexts. For 
example, Jarvenpaa et al. (2000) show that a higher risk perception reduces the willingness to buy books 
online. Malhotra et al. (2004) indicate a negative correlation between perceived risk and the willingness to 
disclose personal information on the internet. Kesharwani and Singh Bisht (2012) show that fear of insuf-
ficient protection of technological infrastructure negatively influences the intention to use online banking. 
Based on these theoretical explanations and the empirical findings, the following hypotheses are formu-
lated: 

H3: Perceived risk is negatively related to the intention to use robo-advisors.  

H4: Perceived risk is negatively related to initial trust in robo-advisors. 

Structural Assurances 

In contrast to transactions in an analogue context, the digital environment often lacks common trust-gen-
erating features. While in a bank branch, for example, customers can convince themselves of the profes-
sional behavior of employees or the appearance of the building, similar features are often missing on the 
internet. Against this background, there are other factors – so-called structural assurances – that can also 
build trust online (Zhou 2012). Structural assurances can be safety mechanisms as guarantees and laws or 
other structures that enhance perceived security (Kim and Prabhakar 2004). These structural assurances 
are especially relevant at the beginning of a new relationship and when the information base is imperfect 
(McKnight et al. 1998). Accordingly, it can be expected that structural assurances decrease perceived risk 
by reducing safety concerns (Luo et al. 2010). In addition, structural assurances contribute to robo-advisors 
being perceived as trustworthy. In line with studies investigating this relationship (e.g., Kim and Prabhakar 
2004; Luo et al. 2010; Yap et al. 2010), the following two hypotheses are proposed: 

H5: Structural assurances are negatively related to the perceived risk of robo-advisors. 

H6: Structural assurances are positively related to initial trust in robo-advisors. 

 

 

Figure 1. Proposed Research Model 
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Empirical Study 

Design and Participants 

During the course of the questionnaire, the participants were familiarized with the concept of robo-advi-
sory. For this purpose, we first gave information about robo-advising, including facts and an explanation of 
the basic functionality. In a second step, an investment process via a robo-advisor was simulated. In this 
simulation, the participants had to go through the first steps of a digital investment decision by answering 
questions about their potential investment (e.g., their attitude towards risk and the time horizon). The aim 
was to convey a realistic impression of the digital investment process. After the participants had completed 
this process, they answered the questionnaire. These questionnaires serve as the data basis for this analysis. 

During data collection, 331 subjects completed the questionnaire. Due to missing data or incorrect answers 
to the control question, 85 had to be excluded from the analysis, resulting in 246 completed questionnaires. 
Of the final sample, 127 participants (52%) were female, and on average, the participants were 36 years old, 
with a range from 18-63 years. Overall, 118 (48%) of the participants had a higher education degree. 

Measurements 

The research model used established scales that have been validated in previous studies. All questions were 
measured on a 5-point Likert scale. Intention to use was measured on a three-item scale (Cronbach’s alpha 
(α) = .937, composite reliability (CR) = .960, average variance extracted (AVE) = .889). For initial trust in 
the robo-advisor, we built on the scale developed by Zhou (2012; α = .875, CR = .915, AVE = .731). To 
measure trust in banks, we modified a four-item scale of Suh and Han (2002; α = .894, CR = .925, AVE = 
.754). Perceived risk was measured using a scale developed by Dash and Saji (2008; α = .794, CR = .859, 
AVE = .554), and items for structural assurances were adapted from McKnight et al. (2002) and Kim et al. 
(2009; α = .826, CR = .885, AVE = .658). All factor loadings exceed .60 and therefore show acceptable 
values (Hair et al. 2016). We included the demographic variables sex, education, and income as controls. 

Before conducting the SEM, we tested the reliability and validity of the measurement model. Internal con-
sistency and composite reliability can be assumed since Cronbach’s alpha met the quality criteria of >0.7 
and the AVE exceed .50 (Hair et al. 2016). To ensure discriminant validity, we examined the Fornell-Larcker 
and the Heterotrait-Monotrait (HTMT) criterion. The results show that the square root of each AVE in the 
diagonal is greater than the squared correlation between any pair of constructs, and all HTMT ratios are 
below the threshold of .90, confirming the discriminant validity of the measurement model (Fornell and 
Larcker 1981; Hair et al. 2016). Finally, all variance inflation factor (VIF) values are below 3, which suggests 
that multicollinearity is not an issue (Hair et al. 2016). 

Results 

We conducted the analysis using PLS-SEM as this method does not impose distributional assumptions on 
the data and is well suited for novel contexts (Hair et al. 2019). Table 1 shows the results of the PLS-SEM. 
We conducted the analysis in two steps to better understand the relationship between trust in banks and 
structural assurance. Consequently, the models differ in terms of the inclusion of structural assurance. 
Model 1 considers only consumers’ trust in banks and risk, while model 2 also includes structural assur-
ances. Control variables were included in both models but did not show significant influences. 

To select the best fitting model, we used several model selection criteria derived from information theory. 
These criteria include the asymptotically efficient Unbiased Akaike’s Information Criterion (AICu; Akaike 
1973), the asymptotically consistent Bayesian Information Criterion (BIC; Schwarz 1978), the Hannan-
Quinn Criterion (HQ) and the Corrected Hannan-Quinn Criterion (HQc; McQuarrie and Tsai 1998). We 
then created a set of theoretically plausible models and calculated their selection criteria values. Based on 
these selection criteria, we compared the alternative models and selected the one that showed the best 
model selection criteria values (Hair et al. 2019; Sharma et al. 2018). 

This resulted in the selection of models 1 and 2, whose PLS criteria we then examined. Both models show 
that the explained variance (adj. R²) and the predictive relevance (Q²) are satisfactory for initial trust (adj. 



 Determinants and Barriers of Adopting Robo-Advisory Services 
  

 Fortieth International Conference on Information Systems, Munich 2019 6 

R²Model 1 = .251, adj. R²Model 2 = .306, Q² Model 1 = .172, Q² Model 2 = .212) and intention to use (adj. R² Model 1 = 
.443, adj. R² Model 2 = .440, Q² Model 1 = .375, Q² Model 2 = .373). 

Model 1 finds support that trust in robo-advisors is positively related to usage intention, which supports H1 
(β = .633, p <.001), and trust in banks is positively related to trust in robo-advisors, supporting H2 (β = 
.149. p <.001). Perceived risk is not significantly related to the intention to use robo-advisors (β = -.091, p 
= .108). Thus, H3 must be rejected. However, risk is negatively related to trust in robo-advisors, supporting 
H4 (β = -.470, p < .001). 

Model 2 shows results including structural assurance. The results support H5, which proposed that struc-
tural assurances is negatively related to perceived risk (β = -.431, p <.001). H6, which stated that structural 
assurances is positively related to trust in robo-advisors, is also supported (β = .286, p <.001). However, 
when structural assurances is included, the effect of trust in banks on trust in robo-advisors diminishes (β 
= .039, p =.558). Thus, with all variables included, H2 must be rejected. 

Table 1. Results PLS-SEM 

 Model 1 Model 2 
H1 – H4 H1 – H6 

IN IT IN IT PR 

Initial Trust (IT) .633*** 
(.047)  .635*** 

(.047)   

Trust in Banks  .149*** 
(.053)  .039 

(.053)  

Perceived Risk (PR) -.091 
(.056) 

-.470*** 
(.050) 

-.084 
(.057) 

-.363*** 
(.060)  

Structural Assurances    .286*** 
(.068) 

-.431*** 
(.058) 

adj. R² .443 .251 .440 .306 .177 

Q²  .375 .172 .373 .212 .085 

AICu  -65.044 -129.776 -85.964 -135.925 -45.853 

BIC -57.547 -112.341 -71.942 -111.387 -38.843 

HQ -63.828 -126.998 -80.318 -126.045 -43.031 

HQc -63.616 -126.091 -79.977 -125.138 -42.918 

Table 1. Results PLS-SEM 

Note. Standardized path coefficients. Standard error of the estimators in parentheses. IN = Intention to 
Use; AICu = Unbiased Akaike’s Information Criterion; BIC = Bayesian Information Criterion; HQ = Han-
nan-Quinn Criterion; HQc = Corrected Hannan-Quinn Criterion; *p ≤ .05; **p ≤ .01; ***p≤.001. 

Discussion 

The aim of this study was to investigate the relationship between trust and the intention to use robo-advi-
sors for investments. Our results indicate that initial trust in robo-advisors is a strong predictor of use in-
tention. Therefore, factors that influence initial trust are of critical importance. 

Model 1 showed that trust in banks is positively related to trust in robo-advisors. Thus, customers who have 
high trust in banks are more likely to trust robo-advisors. Banks provide guidance to customers, perhaps 
because they provide an environment with which customers are familiar. However, as model 2 shows, trust 
in banks can, at least partially, be substituted by structural assurances. Thus, initial trust in robo-advisors 
can also be developed by structural assurances. When customers feel that they can use robo-advisors in an 
environment they feel comfortable in, trust in banks is no longer decisive. Banks must provide additional 
benefits to compete with technology companies, as they cannot rely on their customers’ trust alone. Such 
benefits can be based on the bank’s expertise in financial markets, on their providing guidance that is more 
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competent and comprehensive during the investment process or on their better connecting individual ser-
vices. Further, banks need to strengthen their capabilities in the areas that provide structural assurances, 
such as privacy, security, and reliability, to successfully participate in the digital investment market. Tech-
nology companies will continue to push into this market and challenge the established players. Structural 
safeguarding seems to be the most important factor considering the implementation of trust in robo-advis-
ing. The use of robo-advisors is inherently risky. Perceived risk has a negative effect on consumers’ trust in 
robo-advisors but, interestingly, no effect on use intention. Thus, trust mediates the relationship between 
perceived risk and use intention. This indicates that customers accept the risk but intend to use robo-advi-
sors only if their trust is high enough. 

Extended Research Model 

While the preliminary results of this study provide promising insights for the full-scale project, some ques-
tions remain unanswered. The intention to use robo-advisors does not necessarily lead to actual use (Ven-
katesh et al. 2003). Therefore, we aim to conduct a follow-up study to ask participants about their actual 
behavior to extend the proposed research model. To obtain meaningful results on the outcome of the active 
adoption decision-making process, we aim for a time gap of one year between the two survey periods (Ven-
katesh et al. 2003). In addition to assessing actual behavior, we are also interested in barriers to the adop-
tion decision. Some participants may perceive a lack of accessibility due to insufficient information or the 
lack of an overview of various offers. Other participants may be inert towards change or regard performance 
expectations as inappropriate, which both can be decisive barriers to robo-advisory use. 

To address these issues regarding the intended and actual uses of robo-advisory at ICIS 2019, we will con-
duct a follow-up survey in August 2019. A power analysis with G*Power 3.1 was performed to determine 
the required sample size for analyzing actual usage behavior (Faul et al. 2007). A meta-analysis revealed 
that the average effect between use intention and the actual use of mobile banking is .427 (Baptista and 
Oliveira 2016). As the barriers to the use of robo-advisors might be higher than the barriers to mobile bank-
ing, we assumed medium effect sizes (~.15) for the power analysis to estimate the sample size conservatively 
(Cohen 1988). Using a two-tailed test with an alpha error of .05 and a power of .80, the projected minimum 
sample size needed for the second survey is approximately N = 55. This proposed sample size for the follow-
up study also exceeds the requirements formulated by Hair et al. (2016). Given the 246 participants in the 
first survey stage, it seems highly realistic that at least 55 (22.3% response rate) of these participants will 
also participate in the second survey. In view of the expected low proportion of actual users (BI Intelligence 
2017), this number of participants is also sufficient to determine the barriers to use. In the first step, struc-
tured questions are used to examine possible barriers. In the second step, further barriers are queried 
through open questions in case the selection in the first step is not exhaustive. 

The final study will provide evidence on enabling and hindering mechanisms to robo-advisory adoption. 
Based on the two-step data collection, the final study will provide theoretical explanations and empirical 
validations of the differences between adopters of robo-advisory services and non-adopters. Moreover, we 
will be able to offer specific recommendations for practitioners to enhance the adoption of robo-advising. 
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