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Abstract 
We study how artificial intelligence (AI) can influence the drug development process in 
the global pharmaceutical industry. Despite considerable effort made in developing 
drugs, pharmaceutical firms experience declines in novelty for drugs they produced. As 
AI becomes an important general purpose technology (GPT), it could be used to address 
some known challenges in the drug development process. Using two large-scale 
datasets that contain detailed historical records of global drug development and 
patents, we identify AI-related patents to approximate firms’ AI capabilities and 
construct a relatively new similarity-based metric to measure drug novelty based on 
their chemical structure. We find that AI can primarily affect the earliest stage in drug 
discovery when tasks are heavily dependent on automatic data processing and 
reasoning. However, it may not necessarily help with the more expensive and risky 
clinical trial stages that require substantial human engagements and interventions. 
Additionally, AI can facilitate the development for drugs at the medium level of chemical 
novelty more than at the extreme ends of the spectrum. Our study sheds light on the 
understanding of the roles and limitations modern technology can have on drug 
development, one of the most complex innovation processes in the world. 

Keywords:  Artificial Intelligence, Drug Development, Innovation 

Introduction 
Artificial Intelligence (AI)’s impact on the global economy is increasing and has already transformed 
innovation and business practices in many industries.1 Advances in AI including its subfield of machine 
learning have drastically improved in recent years and has empowered a wider variety of innovative 
business applications through the use of supervised and reinforcement learning. AI has currently 
surpassed human doctors in detecting certain cancers, enabled the first self-driving cars, and beaten the 
best human players in the game of Go and Starcraft.2 As AI has progressed beyond the narrow domains 
that have traditionally been limiting its applications (Esteva et al. 2019; Topol 2019), AI is starting to 
exhibit characteristics of “general purpose technologies (GPT)” (Bresnahan and Trajtenberg 1995; 
Cockburn et al. 2018; Jovanovic and Rousseau 2005) that are expected to transform the nature and the 
process of innovation (Bughin et al. 2017).  
 
Despite the promise of AI as a GPT, empirical evidence documents a general decline in innovation and 
productivity especially in the recent years (Bloom et al. 2017; Gordon 2017; Jones 2010). Medical 

 
1 According to a report dated in 2018, “How AI boosts industry profits and innovation” by Accenture research, it is 
estimated that AI will raise the profitability rate by an average of 38% by 2035 and provide an economic boost of $14 
trillion across 16 different industries. 
2  https://www.forbes.com/sites/samshead/2019/01/25/deepmind-ai-beats-professional-human-starcraft-ii-players/ 
and https://www.wired.com/2016/01/in-a-huge-breakthrough-googles-ai-beats-a-top-player-at-the-game-of-go/ 
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innovation is particularly important as one of the greatest gains in life expectancy in developed countries 
has come from the new therapeutic drugs to treat conditions such as heart disease, cancer, and HIV/AIDS 
(Lichtenberg 1998; Lichtenberg and Sun 2007). Although the investment in pharmaceutical R&D has 
dramatically increased since 1990, productivity as measured by the novelty of new drugs being approved 
has declined (Pammolli et al. 2011). The new drugs developed are often incremental improvements upon 
existing drugs with minimal added therapeutic value, and they played an important role in driving up 
healthcare costs (Naci et al. 2015). The simultaneous increase in investment in AI and the decline in 
innovation quality mirrors the IT-productivity paradox post by Robert Solow in a 1987 remark, “we see IT 
everywhere but not in productivity statistics.” Likewise, we can argue we see AI everywhere but not in the 
innovation statistics (Wu et al. 2018). In this paper, we examine how AI affects the development of new 
drugs. By focusing on one important industry where innovation is critical for productivity and competitive 
advantage, we aim to understand some potential drivers in explaining the apparent innovation paradox. 
  
The pharmaceutical industry is extremely competitive with no single firm occupying a market share 
greater than 6% of the industry.3 Thus, it is critical to continuously develop novel drugs that can surpass 
the competition. Although scientists have made considerable effort in identifying the underlying patterns 
and mechanisms of how a biological target could causes a disease, the drug development process is 
inherently slow when dealing with biological system, perhaps the most complex system in the world, 
costing billions of dollars per drug and taking 5 to 15 years to develop (Hughes et al. 2011).  
 
AI could potentially accelerate drug development by efficiently identifying more new drug candidates that 
human researchers alone cannot identify. Accordingly, both small and large pharmaceutical firms are 
starting to use AI to aid drug discovery and development. We present two instances of anecdotal evidence 
of using AI to improve drug discovery from a large pharmaceutical company and a startup. With the goal 
of developing drugs in silico instead of in the lab, Novartis is actively expanding its AI capability and 
digital transformation by launching several innovative internal programs. It developed a digital 
infrastructure system that manages the digitization of medical records and clinical trials 4  and use 
predictive analytics and advanced AI to propose new treatments for diseases.  
 
Start-ups are also using AI to facilitate drug discovery. BenevolentAI based in UK has already created its 
own AI platform for analyzing academic publications, patents, clinical trials and patient records. Deep 
learning5 is applied to produce a knowledge graph for hypothesis generation and validation, and to infer 
the interplay between numerous chemical or biological entities such as genes, proteins, diseases and drug 
candidates (Fleming 2018). Based on these intelligent methods, new drug candidates have already been 
proposed to treat amyotrophic lateral sclerosis (ALS) (also known as motor neuron disease, MND), 
glioblastoma and Parkinson’s disease, among others, and are believed to shorten the time for drug 
development at early stage by 60%6. The acceleration in ALS drug discovery is substantial as AI has aided 
the identification of 5 new compounds, of which, three are promising after extensive tests, and one works 
exceptionally well7.  
 
To understand how AI can facilitate the development of new drugs, we measure AI capability by using a 
large-scale global patent database, and measure drug developmental stages and chemical novelty of drug 
candidates using the Informa Pharmaprojects dataset. Following the computational methods in chemical 
informatics, we use a newly developed method to measure novelty based on the chemical structure of the 
drug and compare how it differ from prior drugs (Krieger et al. 2018). This measurement of novelty is 

 
3  https://www.hardmanandco.com/wp-content/uploads/2018/09/global-pharmaceuticals-2017-industry-stats-april-
2018-1.pdf. Pfizer was the largest player that accounts for 5.5% share in the global pharmaceutical drugs market in 
2017, followed by Novartis, Roche and Johnson & Johnson. 
4 Novartis Seeks Hidden Cures in Machine Learning, AI, https://www.informationweek.com/big-data/big-data-
analytics/novartis-seeks-hidden-cures-in-machine-learning-ai/d/d-id/1332269  
5 Why we need to use AI for life not just lifestyle, https://benevolent.ai/blog/why-we-need-to-use-ai-for-life-not-just-
lifestyle1  
6 Great News for Big Pharma: BenevolentAI Uses New Funds to Prepare ALS Drug Clinical Trials, 
https://healthcareweekly.com/big-pharma-news-benevolentai/  
7 This AI unicorn is disrupting the pharma industry in a big way, https://www.wired.co.uk/article/benevolent-ai-
london-unicorn-pharma-startup  
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based on the chemical structure at the time of the drug candidate’s initial development, and thus it would 
not conflate with ex-post measurement of success (e.g. getting FDA priority review or eventual market 
size). 
 
To the best of our knowledge, our study is the first to systematically and empirically examine the linkage 
between AI capabilities and drug development. We document the change of drug development before and 
after a firm acquires AI capabilities and track how they affect different stages of the drug development 
process. We find that AI can primarily support the development of very early-stage molecular drugs, more 
specifically, during the discovery and pre-clinical research stage. We do not observe the significant impact 
of AI on any later stages during the three intermediate phases (Phase I/Phase II/Phase III) in clinical 
trials as well as the final stages for FDA approval or market launch. We further explore the effect of AI on 
drug novelty and find that AI is best at discovering drug candidates with medium level of novelty. For 
firms with similar research and development capabilities, we also find that those with AI capabilities tend 
to develop more novel drugs than those without AI capabilities.  
 
Overall, these findings suggest that while AI has the promise of becoming an important GPT for a variety 
of applications, it can facilitate drug development only in the earliest stages in the development process 
where tasks are performed to substantively enhance human ability for addressing an extremely complex 
biological system that heavily relies on automatic data processing and reasoning. However, it does not 
seem to have an effect on helping the drug through the expensive and risky clinical trial stages that 
require substantial human engagement and intervention. In addition, we show that AI is suitable for 
developing drugs at the medium level of novelty, suggesting the limitations of using AI to develop drugs at 
all novelty levels. By examining the drug development process, one of the most innovation-intensive and 
complex processes, these insights also contribute to the growing debate of a simultaneous decrease in 
innovation productivity and the growing use of advance technologies. While AI can provide many benefits 
as a GPT, applying it to areas it cannot support could lead to mismanagement of AI and accordingly, 
contribute to the apparent lack of productivity gain from AI investments. 

Theory and Literature Review 
A considerable body of literature has abundantly documented the impact of digital transformation and 
technology in healthcare. The research on Health IT (HIT) often focuses on its efficacy on various 
healthcare services. HIT has been linked to reduced costs and improved quality in patient care through 
the use of large enterprise healthcare IT systems, such as personal health record (PHR), electronic 
medical record (EMR) systems, and clinical decision support systems (CDSS) (Agarwal et al. 2010; 
Hillestad et al. 2005; Murdoch and Detsky 2013). Agarwal et al. (2010) provides an overview of HIT as a 
key for improving healthcare services and outcomes, such as lowering mortality rates (Amarasingham et 
al. 2009; Devaraj and Kohli 2000; Devaraj and Kohli 2003) and improving patient safety (Aron et al. 
2011; Parente and McCullough 2009). Goh et al. (2011) examines factors influencing the adoption and 
diffusion of HIT and its impact on delivery of healthcare service.  While the effect of IT on healthcare 
services have been extensively studied, limited attention has been paid on how modern IT, especially 
recent advances in AI, affects drug product development.  
 
Developing drugs is perhaps one of the most expensive processes in the world, costing about an average of 
$2.6-billion for a typical drug, with 90% of drug candidates failing to achieve regulatory approval from the 
FDA. This innovation process requires deep understanding of a complex biological system with up 25,000 
genes generating millions of proteins that can interact with each other and with other cell types (Pisano 
2006). Managing this complexity is primarily why it is difficult to developing new drug candidates 
(Dougherty and Dunne 2012). While the earlier attempt in digitizing the human genome to manage the 
complexity was touted for its potential in delivering new therapeutic treatments, it has not lived to the 
expectation in part due to the inability to effectively use data analytics tools. However, modern machine 
learning applications can substantially ease the process of identifying complex and anticipated 
interactions and can thus address some known challenges associated with the pharmaceutical innovation 
(Lo et al. 2018; Schneider 2018; Vamathevan et al. 2019). It is important to identify at which stage of the 
drug development process can AI have the most effects.  
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AI and Drug Development Processes 

Drug development typically has 5 phases. The first is the discovery and pre-clinical trials stage where drug 
candidates are proposed to address certain biological targets. The next three phases (Phase I/Phase 
II/Phase III) involve human clinical trials. Lastly, if the drug passes these trials, it would gain the FDA’s 
approval and would be launched into the market. While the failure rate at each of the stages is high, the 
reasons for the failure at each stage differ. During the discovery and preclinical trial stage, the bottleneck 
is in identifying drug candidates that can recognize and modify their targets to achieve therapeutic effects 
(Gashaw et al. 2011; Hughes et al. 2011). Because of the long and expensive process in developing a new 
drug, the pharmaceutical industry has fully recognized the importance of improving the efficiency of the 
drug discovery process, and the need to do things differently. AI has the potential to aid the drug 
discovery process in two important  ways: 1) AI automatically and intelligently collects, digests, analyzes 
and detects complex patterns in the existing data about biological system; 2) AI can search systematically 
to generate more hypotheses for drug testing that scientists may not be able to process on their own (Gil 
et al. 2014; Vamathevan et al. 2019). 
 
As information about the chemical structure of drug targets and existing drugs is digitized, they can be 
inferred from their common knowledge representation and interrelated concepts to discover new drug 
candidates. AI can be used to facilitate this process by expanding the space for potential drug-target pairs 
(Dougherty and Dunne 2012; Pisano 2006). Machine learning, especially supervised learning, can be 
particularly helpful because it requires only input-output pairs to be specified to make accurate 
predictions without the need to specify the mechanism or pathway of how a drug candidate can treat the 
target. AI can find hidden linkage and patterns in a vast amount of digital data that would have been 
extremely labor intensive or impossible for human to identify. Accordingly, AI can accelerate the process 
of identifying drug candidates and overcome the barriers in computation and data management that 
hamper the discovery of new drugs (Vamathevan et al. 2019). The resulting drug candidate suggested by 
AI could then serve as a useful starting point to examine whether it can address the disease.  
 
This insight is backed by recent evidence that pharmaceutical firms, such as Novartis and BenevolentAI 
(introduced earlier), are actively using machine learning to uncover hidden patterns and generate new 
hypotheses about the relationships between certain molecular compounds and possible new treatments 
for certain health conditions. For example, to search for new cancer therapies, Genentech adopted a 
machine learning and simulation system from GNS Healthcare. The system can analyze a diverse set of 
patient data to uncover new pathways and personalized drug targets to individual patients.8 The startup 
Atomwise pioneered the development of deep learning models to optimize drug designs and substantially 
shorten the process of discovering new drugs. It has excelled at the early stage of the discovery process by 
screening more than 10 million compounds every day to predict the bioactivity of small molecules 
(Wallach et al. 2015). It has received over $50M in early stage venture capital funding in a short amount 
of time.  
 
Overall, these examples show AI can expedite hypothesis generation for drug-target pairs by identifying 
novel patterns in large data. Once a list of potential candidate targets is identified, AI can also help sift 
through which molecules possess suitable characteristics to become a drug candidate. This includes the 
optimization of chemical structures to improve drug properties such as toxicity and metabolism, which is 
costly and data-intensive (Lo et al. 2018; Schneider 2018). Similarly, AI system can reduce the human 
errors in this discovery process that has proven to be a bottle neck in the drug discovery process (Gil et al. 
2014). By facilitating both the discovery and verification of drug candidates, we expect AI to have a strong 
effect on the discovery and pre-clinical trial stage.  
 
Hypothesis 1: AI has a positive effect on the development of drugs prior to the clinical trials. 
 
After the discovery and preclinical stage, clinical trials are used to verify both safety and efficacy of the 
drug on actual human subjects (Junod 2014). Compared to the pre-clinical stage, clinical trials require far 
more human interactions and communications to meet different requirements set by the FDA.  

 
8 https://www.gnshealthcare.com/gns-healthcare-announces-collaboration-to-power-cancer-drug-development/  
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The primary reasons for failures in clinical trials are the drug candidates from earlier development stage 
lack the necessary efficacy and safety when used in human (Harrison 2016). This is common in clinical 
trials in part because biological system is extremely complex with plethora of unpredictable interactions 
(Dougherty and Dunne 2012). Accordingly, it is difficult to infer how human subjects would interact with 
the drug even when it has shown promise in the early stage. This is further compounded by differences in 
the varying demographics and health conditions of the patients. As stated in (Northrup 2005), what is not 
understood about the human body and how it functions is far greater than what is understood. The lack of 
knowledge about human body hinders the usefulness of AI to infer about complex interactions in human 
body. Furthermore, much of the decisions in clinical trials would still need to rely on human judgement 
and clinical experience. This type of knowledge is not only difficult to digitize but its incomplete nature 
further impedes the use of AI in clinical trials. Accordingly, the innovation process for finding a drug 
candidate at this stage goes beyond computational complexity that AI can support. 
 
Moreover, a misunderstanding in correspondence with the FDA about a pre-clinical trial can put a 
program at risk. Each phase of a clinical trial also requires a patient pool and a customized dosage. Drug 
developers need to communicate with the FDA and submit documents about the evidence of drug safety 
and efficacy (Junod 2014; Sacks et al. 2014). These activities often require extensive human 
communications and thus cannot be easily automated using AI. As AI cannot yet replace human 
judgement, clinical experience and communication that are critical for the clinical trials and the FDA 
approval stage (Agrawal et al. 2018), we expect a limited effect of AI at the later stages of drug 
development.  
 
Hypothesis 2: AI contributes to drug development at the later stages to a lesser extent than 
at the earlier stages. 

AI and Drug Novelty 

While AI can accelerate the discovery of drug candidates at the earliest stage, it is unclear whether the 
drug candidates they uncovered are incremental or sufficiently novel. Research has shown that 
discovering novel drug candidates is much harder than discovering incremental “me-too” drugs (Krieger 
et al. 2018). Although the return of novel drugs in both financial terms and in therapeutic value is 
substantially higher than “me-too” drugs, they also incur much higher risks. AI can potentially accelerate 
the process for discovering novel drugs that the pharmaceutical companies desperately need. While it can 
also help the discovery of incremental drugs, the marginal benefits are likely to be smaller for “me-too” 
drugs than for novel drugs as firms may have already developed the competency in creating incremental 
drugs.  
 
AI primarily enables the recognition of hidden patterns within digitized data at a much faster speed than 
human labor. For example, Watson uses AI to undercover 28 new p53 kinases, a cancer suppressor, in 2 
months which would have taken researchers more than 6 years to do. The accelerated discovery is 
possible because there are already well-known p53 kinases with established functionality, so it is relatively 
easy for AI to recognize similar patterns in the data to find other types of p53 proteins that match existing 
patterns. However, when there is no data about a certain drug candidate or the drug candidate is 
sufficiently different from existing structures, it is difficult to use data to infer the functionalities of the 
drug, and as a result, AI is limited in facilitating this type of discovery (Wu et al. 2018).  
 
Furthermore, it has been documented that AI lacks the abilities to make decisions based on small data, 
especially those involving human intuition, creativity and human insights (Simon 1977). Inferences based 
on small data may heavily depend on more tacit knowledge and “sticky” information that is inherently 
costly to collect, transfer, and therefore difficult to digitize and use as inputs to AI systems (Henderson 
and Clark 1990; Nonaka and Von Krogh 2009; Von Hippel 1994). Similarly, AI is also limited in 
facilitating the development of incremental drugs because firms have already developed capabilities to 
produce such drugs (Krieger et al. 2018). The application of AI in finding incremental drugs may be too 
expensive for the returns that firms would get from AI, especially in light of substantial upfront 
investments and strategic planning for the digital transformation required (Bughin et al. 2017). 
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Therefore, we expect AI is most effective in developing drugs that are of intermediate novelty. These drug 
candidates can benefit more from broad searches and linkages of diverse data that AI can facilitate, but AI 
is limited in producing entirely novel drugs that have minimal precedents or available data, and it is 
limited in producing incremental drugs that are derivatives of known compounds, a capability 
pharmaceutical companies have already acquired. 
 
Hypothesis 3: AI is most helpful with the development of drugs in the intermediate level of 
novelty to a greater extent than in the lower and the higher levels of novelty.  

Data and Measurement 

Drug Development 

We primarily focus on the global pharmaceutical industry, which has a well-established process for 
developing new drugs. The entire process can take 5 to 15 years to complete. Figure 1 shows the life cycle 
of drug development. However, despite established procedures, there is substantial uncertainty in the 
drug development process for several reasons. First, understanding the mechanism of disease requires 
enormous investments in research and development so that therapeutic solutions could be proposed to 
develop new drug candidates. Second, each of the stages in the drug development process has a high 
failure rate and faces different types of risks and uncertainty.   
 

 
Figure 1. The Life Cycle of Drug Development (Kapoor and Klueter 2015) 

We collect drug development data from Informa Pharmaprojects database between 1995 to 2017 (Eklund 
2018). This database is the leading source about global drug development and has been widely used in a 
range of research about the global pharmaceutical industry (Hess and Rothaermel 2011; Kapoor and 
Klueter 2015; Sosa 2013). It provides a comprehensive coverage of drug candidates and tracks their 
development stages from the commencement of pre-clinical stage to the ultimate discontinuation or the 
worldwide market launch. In addition, the data includes the originators and licensees and all other firms 
involved in the development process. Some drugs may start the development at a small biotechnology 
firm before moving into the control of larger pharmaceutical firms for clinical trials. Control and 
development of drug candidates can also change hands through company mergers and acquisitions 
(M&A). We account for the transfer of drug patents and the associated rights using the Recap database 
and the Zephr database from Bureau Van Dijk to ensure that drugs in the Informa Pharmaprojects 
database are correctly matched to the firms responsible for their original development (Eklund 2018). 
Thus, at any given point in time, we can observe a firm’s drug portfolio and pipeline. 
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Drug Novelty 

 

 
Drug name: Imatinib Mesylate  Drug name: Bafetinib 
Molecular formula: C30H35N7O4S   Molecular formula: C30H31F3N8O 

 
Figure 2. Chemical Structures of Imatinib Mesylate and Bafetinib, with their Maximum 

Common Substructure Highlighted in Red 
 
Using methods suggested in recent research literature in Chemical Informatics (Backman et al. 2011; Cao 
et al. 2008; Krieger et al. 2018), we measure the novelty in the chemical structure of 13,396 drugs.9 We 
follow the “Similarity Property Principle,” a central concept in chemistry, which states that structurally 
similar molecules are more likely to have similar physicochemical properties and biological activities 
(Johnson & Wiley-Interscience, 1991). We measure drug similarities using a similarity score that is based 
on the chemical adjacency between the focal drug candidate at its initial development and all previously 
drugs ever developed10 (Krieger et al 2018). 
 
First, we calculate the pair-wise similarity score between any drugs, X and Y, which is measured 
topologically by the “Tanimoto coefficient”, which yields the ratio of the total number of atoms in the 
maximum common substructure (MCS) that appears in both of their structures and the total number of 
unique atoms11 (Cao et al. 2008; Krieger et al. 2018; Nikolova and Jaworska 2003): 
 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦),+ = 	
./&1

./2	.13	./&1
,  (1) 

 
where 𝑁) and 𝑁+ are the total number of atoms in chemical structures of drug X and drug Y respectively, 
and 𝑁)&+	is the total number of atoms in MCS that appears in both drugs X and Y. Thus, a similarity score 
of zero means that the two drugs have no common components. A similarity score of 1 indicates that they 
have the same set of atoms and bonding, although it does not imply that the two molecules are identical 
because MCS does not take the orientation in space for the molecule into account. The classic example of 
two drugs with the same similarity score but different orientation is Nexium and Prilosec, where Nexium 
is a mixture of two version of the same molecule but with differing orientations while Prilosec has only 
one orientation. Thus, it is possible to have a new drug candidate with a similarity score of 1, meaning this 
drug differs only in orientation or combinational therapies involving compounds that were previously 
developed.  

 
9 Our database provides detailed historical records on the development of over sixty thousand drugs. But most drugs 
that never progress beyond the very early development stage don’t have chemical structure information available. 
Neither do large molecule drugs (known as biologics) that require a more complicated synthesis of substances needed 
for their manufacturing. Those drugs provided with chemical structures belong to small molecule drugs mainly 
produced by chemical synthesis. Small molecule drugs make up over 80% of the market (Krieger et al. 2018; Otto et 
al. 2018). 
10 We also restrict the previous drugs to be within a certain time range so that our novelty score is not automatically 
decreasing mechanically as the base of comparison becomes larger over time. Our results using the 5-year range are 
similar. 
11 Conventionally any non-hydrogen atoms are included for computation.  
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The similarity metric we use has been widely used to search for similar chemical compounds, screen for 
related drugs, and digitally quantify certain properties of the chemical compound without testing them on 
animals (Wallach et al. 2015; Wawer et al. 2014). Although we note that similarity in molecular structure 
cannot precisely predict functional properties, the chemical informatics research has shown that 
molecular similarity is on average useful for identifying drug quality and novelty.  
 
Our drug data provides the simplified molecular-input line-entry system (SMILES) codes, which is a 
chemical notation language mainly designed for digital processing (Weininger 1988). It allows for 
rigorous structure specification and encodes chemical structures as short ASCII strings, with each 
component to describe and identify atoms, bonds, rings, branching and other compound shapes. We 
convert the SMILES codes of each drug to its graph representation and use an MCS-based approach 
(Backman et al. 2011; Cao et al. 2008) on the graphs to compute pair-wise similarity scores. 
 
The MCS approach also enables us to visually display the common and unique substructures between 
drugs, instead of simply showing a numerical value as typically shown in standard structural descriptor-
based methods. We visualize the structure of two similar drugs Imatinib mesylate and Bafetinib, as well as 
their MCS highlighted in colors (see Figure 2). Imatinib mesylate, the mesylate salt of imatinib, is a first-
generation tyrosine kinase inhibitor for treating chronic myelogenous leukemia (CML). Bafetinib was 
developed as a more powerful and alternative treatment for patients that have become resistant to 
Imatinib mesylate. In terms of the size of their chemical structures, they both have 42 atoms in total, with 
35 atoms appeared in their MCS. Therefore, their pairwise similarity score is calculated as 
 

56
78278356

= 0.714. 
 
After all pair-wise drug similarity scores are calculated, we compute the novelty score for each drug 
candidate by its maximum similarity score to all previously developed drug candidates. We use the time at 
a drug’s earliest development stage as the basis for comparison. Accordingly, this metric does not conflate 
with ex-post measure of success such as in receiving an FDA priority or being the first in the market to 
treat a rare disease. As the pairwise similarity score is between 0 and 1, we define the novelty of drug i as: 
 

𝐷𝑟𝑢𝑔	𝑁𝑜𝑣𝑒𝑙𝑡𝑦D = 1 −max
I∈KL

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦D,I, (2) 
 

where 𝑃D is all drug candidates that have reached at least the Phase I stage of clinical trials prior to the 
initial development of the focal drug i (Krieger et al. 2018). Therefore, a novel drug candidate should have 
a lower maximum similarity score and is likely to possess a more distinct molecule structure from its 
previous drug candidates12. The median of all scores of drug novelty is about 0.5.  For measuring the drug 
novelty at the firm-level, we compute the total number of drugs within each novelty range for each firm in 
a particular year. We also further refine the aggregate by separately calculating the number of drugs at 
each stage of the drug development process. We do not use the average of novelty scores of firm’s drugs 
for the case where a firm has not developed any drugs for some years.  

Patent Stock 

To measure a firm’s investment in research and development in drugs, we gather information of global 
patents from a worldwide patent statistical database PATSTAT13 created by the European Patent Office 

 
12 Despite the broad coverage of drug information in the Informa Pharmaprojects database, it’s possible that we may 
still miss drugs at the earliest stage of development that are not recorded in the database. We address this issue by 
using year fixed effect estimation in our firm-level regression analyses. We also measure the novelty of a given drug by 
comparing it to early drug candidates that reach at least Phase I within a rolling 5-year window and get directionally 
similar results. 
13 https://www.epo.org/searching-for-patents/business/patstat.html. We use the 2017 Autumn Edition of the EPO 
PATSTAT database. The date of data collection from the source patent databases is the end of July for the PATSTAT 
Autumn Edition. On January 4th, 2018, the products “PATSTAT Biblio” and “PATSTAT Legal Status” from this 
Edition are combined into the new product “PATSTAT Global.” 
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(EPO). PATSTAT offers bibliographical data for over 100 million patents from 90 patent issuing 
authorities that include both leading industrialized and developing countries going back as far as the 
nineteenth century. Each patent record contains a detailed patent application, citations, a title, an 
abstract, and legal persons (e.g. firms or any organizations) filing the patent applications. It identifies 
whether the patentees are business enterprises, higher education institutions, governmental agencies or 
individuals (Du Plessis et al. 2009). It also develops a comprehensive approach to standardize the original 
name of patentees automatically (Magerman et al. 2006). These global patents serve as critical indicators 
of innovation activities for all companies in the world.  
 
We match the name of pharmaceutical firms from Informa Pharmaprojects database to patent assignees 
in EPO PATSTAT. We also adjust the assignee names to represent the original company that filed the 
patent after accounting for their merger and acquisition activities. Based on these matched 
pharmaceutical firms, we then retrieve their patent application documents from PATSTAT, and extract 
filing years, titles, abstracts and citations for these patents. Following the convention in the R&D 
literature (Griliches et al. 1986; Hall et al. 2005), we use the patent filing year (as opposed to the 
publication year) because it more closely approximates the time at which the firm produced and had the 
innovation described in the patent available. We measure a firm’s R&D investment when the drug 
candidate starts the pre-clinical stage using the accumulated stock of patent applications that the firm has 
applied (Aggarwal and Hsu 2013). 

Artificial Intelligence (AI) Stock 

We measure AI innovation capability using the patents owned by each global pharmaceutical firm. We 
investigate various concepts, definitions and fundamentals that support AI and subfields within AI to 
comprehensively measurement AI innovation (Cockburn et al. 2018; Vamathevan et al. 2019; WIPO 2019; 
Yao et al. 2010). We use three steps to identify AI patent. We start with the latest international patent 
classifications (IPC) or Cooperative Patent Classification (CPC) that is linked to patents. As the United 
States Patent and Trademark Office (USPTO) already provides a clear patent class relating to AI: class 706 
for “Data Processing – Artificial Intelligence” that consists of a large set of subclasses including “fuzzy 
logic hardware,” “plural processing systems,” “machine learning,” “neural network,” and “knowledge 
processing systems,” we apply the IPC or CPC concordance for this class to obtain the classification code 
that is used for classifying global patents. Next, we leverage the content-based information available in 
our patent documents and construct a comprehensive list of validated words and phrases pertaining to AI 
and search these terms in both the title and abstract of our patents. Specifically, Cockburn et al. (2018) 
define three interrelated technological subfields within AI—robotics, symbolic systems and learning—that 
characterize the evolution of achievements in AI. We also follow a well-accepted ACM Computing 
Classification System (CCS) that accounts for the dynamic change of AI technologies (WIPO 2019). This 
method has been used for over 50 years to organize the concept and trends of technologies, which can 
significantly alleviate the lack of consensus on AI categorizations and avoid subjective classifications. CSS 
provides three major hierarchies to develop AI-related phrases for classification. They are (i) “artificial 
intelligence” hierarchy that comprise of AI functional application such as natural language processing, 
computer visions to simulate human cognitive tasks, and AI techniques used to realize the functions;  (ii) 
“machine learning” hierarchy that unveils numerous learning-based AI techniques; (iii) “life and medical 
sciences” hierarchy under the “applied computing” category that covers activities concerning intelligent 
computing for producing medicines. Lastly, we also test on several variants of these keywords in our 
dictionary, but they do not qualitatively change the classifications of AI patents. The patent classification 
and content-based methods found 6,182 AI patents by 391 global pharmaceutical firms for our sample 
from 1995 to 2017. Similar to measuring firm’s general patent application stock, we aggregate all the AI 
patents for which a firm has applied as the firm’s AI patent stock. In Figure 3, we plot the average number 
of molecular drugs developed in a firm (left subfigure) and the average number of novel molecular drugs 
with similarity scores above the median (right subfigure). We graph them in a relative time scale before 
and after the time when those pharmaceutical firms are developing their first AI patents (at relative year 
of zero). Accordingly, the negative relative years indicate the period before firms have AI patents, and the 
positive relative years show the period when firms are developing AI patents. Overall, Figure 3 shows that 
there are more drugs being developed at the pre-clinical stage when firms have AI patents than when 
firms do not have AI patents, and the increase continues to exist for novel molecular drugs. 
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Figure 3. Number of Drugs around Firm’s Starting to Build AI Patent Stock 

 
Empirical Strategy and Identification 
 
We merge Informa Pharmaprojects with PATSTAT to compile a firm-year panel dataset that has more 
than 200 global firms in the pharmaceutical industry between the years 1995 and 2017. Following the best 
practices in counting the number of unique drugs, we include only drug candidates that contain complete 
information about their development including progression through the various developmental stages 
and have advanced beyond the initial pre-clinical stage. However, a drug candidate may stop its 
development process in any of the clinical trial phases due to detected failure or healthcare regulations.  
 
To estimate the effect of AI stock on drug development for pharmaceutical firms, we first estimate the 
effect on the number of drug candidates a firm produce in a given year after controlling for a firm’s 
general research and technology investment and firm-specific fixed effects and time dummies. 
 
ln(𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐷𝑟𝑢𝑔𝑠)DU = βW +	βYln(𝐴𝐼	𝑆𝑡𝑜𝑐𝑘)DU + 𝛽8 ln(𝑃𝑎𝑡𝑒𝑛𝑡	𝑆𝑡𝑜𝑐𝑘)DU + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠DU + 𝑦U + 𝛾D +	𝜖DU. (3)  
 
The number of drug candidates is highly skewed. Many pharmaceutical firms in our sample have zero 
drug candidates in a typical year. Firms with AI patents are more productive on average, having developed 
about two drug candidates in an average year. After accounting for the novelty of the drug candidates, the 
average number of drugs with sufficient novelty is less than one. Thus, to account for the skewness in the 
dependent variable, we take the logarithm of one plus the raw number of drug candidates in our main 
analysis14. We also include firm-fixed effects 𝛾D in the model to control for any unobserved time invariant 
differences in firm characteristics in AI and innovation investment, and also year-fixed effects 𝑦U  to 
account for temporal shocks and aggregate trends for the development of drug candidates by 
pharmaceutical firms in our sample. Our main coefficient of interest is βY that captures the marginal effect 
of a firm’s continued investment in AI innovation on drug development. Because entrepreneurial exits 
have been shown to affect organizational innovation outcomes (Aggarwal and Hsu 2013), we incorporate 
a binary variable about the firm’s financial ownership status over years (variable Public Status = 1 when 
the firm is publicly held, otherwise Public Status = 0). The ownership status is found in Crunchbase and 
PitchBook databases. This variable can also be used control for firms’ drug development experience since 
most publicly traded pharmaceutical firms have already successfully developed at least one drug. We also 
control for firm age and number of employees. 
 

 
14 We also use models from Poisson and Negative Binomial regressions for our analyses, and the results are 
directionally similar.  
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Next, we focus on AI’s effect on the novelty of drugs. Instead of counting all drug candidates, we only use 
drugs that are sufficiently novel. To determine novelty in drugs, we split the drug candidates into two 
groups, based on the median value of the novelty scores in our sample (which is 0.5 out of 1 in our drug 
sample). Those above the median are considered sufficiently novel. We also divide the range of novelty 
scores into 10 decile increments and compute the total number of drugs within each novelty range. The 
average of novelty scores is not used because a firm may not have developed any drugs in a particular 
year. 
 
ln(𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑁𝑜𝑣𝑒𝑙	𝐷𝑟𝑢𝑔𝑠)DU = βW +	βYln(𝐴𝐼	𝑆𝑡𝑜𝑐𝑘)DU + 𝛽8 ln(𝑃𝑎𝑡𝑒𝑛𝑡	𝑆𝑡𝑜𝑐𝑘)DU + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠DU + 𝑦U + 𝛾D +
	𝜖DU. (4)  
 
There are several endogenous factors we need to consider in equations 3 and 4. First, the estimate for AI 
can be overestimated if pharmaceutical firms with more slack resources choose to allocate technology 
investments for innovation. We address this reverse causality bias using instrumental variables that are 
derived from a patent-citation network. In this network, each node is a pharmaceutical firm, and the 
weight of a link between node A and B is all the citations B has received from A. We create two 
instrumental variables from the citation network to address endogeneity related to the AI patent stock: 1) 
the average number of accumulated AI patents produced by the neighboring pharmaceutical firms up to 
and including the observation year, 2) the average ratio of AI patent stock over all patent stock from these 
neighbors. Similar to the network-based approaches for instrument construction in (Wu et al. 2017), our 
instruments rely on the citation flows between firms. The flow can be used to approximate the ease in 
accessing external innovation. The flow can also satisfy the exclusion restriction as neighbors in the 
citation network (firms that cite each other) are not necessarily competitors in terms of their products and 
services. The network neighbors vary across industries and geographical locations and are thus less likely 
to be affected by common industry or region-specific shocks or competitive pressure. Accordingly, 
instrumental variables derived from “similar firms” in citation networks are less likely to face the Manski 
reflection issues that would be caused by instrumental variables using firms in the similar industries or 
geographical locations (Manski 1993).  
 
Second, there could be selection biases in certain firms choosing to invest more in AI. To address this, we 
use the Coarsened Exact Matching method to match on the basis of firm’s general production of patents, 
and the control variables used in our analyses. Matching on similar patent stock and general 
characteristics including ownership status, age and workforce size, firms with AI capabilities produces 
more of drugs than those without AI capabilities, and the rate of increase is much higher for more novel 
drugs.  
 
Results 
 
Table 1 shows the summary statistics and the correlation table of all the variables used in the study. We 
primarily focus on drugs with a known chemical structure in our data. In this sample, we observe a 
significant decrease in drug candidates as they progress from the pre-clinical trial stage to the last stage 
involving FDA approval and market launch stage, while the decrease between the pre-clinical and the 
clinical stage is weaker. We also observe firms with more general patents are more likely to have AI 
patents as the correlation between AI patent stock and general patent stock is about 0.6. 
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Table 1. Summary Statistics and Correlation Table 
              
Variables # of 

obs. 
Mean Std. 

Dev. 
1 2 3 4 5 6 7 8 9 10 

For ln(Number of Drugs):              
1. at Pre-clinical Stage 4,988 0.24 0.63 1          
2. at Pre-clinical Stage, 
Novelty: 0-0.5 

4,988 0.15 0.45 0.90 1         

3. at Pre-clinical Stage, 
Novelty: 0.5-1 

4,988 0.16 0.50 0.93 0.74 1        

4. at Clinical-Trial Stages 
(Phase I-Phase III) 

4,988 0.19 0.51 0.72 0.70 0.67 1       

5. at FDA Registration 
and Launched Stage 

4,988 0.035 0.19 0.46 0.46 0.42 0.59 1      

6. ln(AI Stock) 4,988 1.37 1.32 0.18 0.18 0.19 0.19 0.24 1     
7. ln(Patent Stock) 4,988 5.24 2.56 0.37 0.33 0.36 0.35 0.31 0.60 1    
8. Public Status 4,988 0.30 0.46 0.25 0.22 0.24 0.34 0.24 0.20 0.36 1   
9. ln(Firm Age) 4,988 2.90 1.17 0.26 0.24 0.25 0.24 0.16 0.27 0.52 0.22 1  
10. ln(Number of 
Employees) 

4,988 8.71 2.30 0.16 0.16 0.16 0.12 0.15 0.079 0.14 -0.18 0.20 1 

 
We then relate firm’s innovation capability in AI to the number of drug candidates that a firm generates in 
a year. To disentangle the effect of AI from general research investment, we control for a firm’s 
accumulated patent stock, financial ownership status, age, and total number of employees. After 
controlling for firm and year fixed effects in our regression analyses, we find AI patent stock is positively 
associated with the number of new drugs developed at the pre-clinical stage. Specifically, a one percentage 
increase in a firm’s investment in AI innovation is associated with about 0.03% additional change in the 
number of drugs (Column 1 to Column 2 in Table 2). However, this effect disappears in the next three 
phases of clinical trials and the final stage for FDA approval or market launch (Table 3)15. This suggests 
that AI plays a more limited role in developing drugs at later stages than at the earlier stage. Overall these 
results provide support for Hypothesis 1 and 2. 
 

Table 2. AI on Development of Drugs at Pre-clinical Stage 
 (1) (2) (3) (4) (5) (6) 
DV ln(Number of 

Drugs) 
ln(Number of 

Drugs) 
ln(Number of 

Drugs, Novelty: 
0-0.5) 

ln(Number of 
Drugs, Novelty: 

0-0.5) 

ln(Number of 
Drugs, Novelty: 

0.5-1) 

ln(Number of 
Drugs, Novelty: 

0.5-1) 
ln(AI Stock) 0.038*** 0.025*** 0.010 0.0073 0.034*** 0.020*** 
 (0.0080) (0.0083) (0.0072) (0.0075) (0.0067) (0.0070) 
ln(Patent Stock)  0.040***  0.0092  0.045*** 
  (0.0076)  (0.0069)  (0.0064) 
Public Status -0.11*** -0.11*** -0.059*** -0.060*** -0.088*** -0.093*** 
 (0.020) (0.020) (0.018) (0.018) (0.017) (0.017) 
ln(Firm Age) 0.13*** 0.11*** 0.089*** 0.085*** 0.083*** 0.063*** 
 (0.013) (0.013) (0.011) (0.012) (0.011) (0.011) 
ln(Number of Employees) -0.0076*** -0.0075*** -0.0043* -0.0043* -0.0066*** -0.0065*** 
 (0.0028) (0.0028) (0.0025) (0.0025) (0.0023) (0.0023) 
       
Observations 4,988 4,988 4,988 4,988 4,988 4,988 
R-squared 0.82 0.82 0.71 0.71 0.80 0.80 
Year FE YES YES YES YES YES YES 
Firm FE YES YES YES YES YES YES 

 

Next, we examine how a firm’s AI patents can affect the novelty of drugs firms choose to develop, because 
to reduce risks, pharmaceutical companies tend to focus on the development of incremental “me-too” 
drugs as opposed to novel drugs with new therapeutic values. Instead of simply counting all drug 
candidates, we account for the novelty of the drug in Columns 3-6 of Table 2. First, we first split the drug 
candidates into two groups, based on the median value of the novelty scores in our sample (which is 0.5 

 
15 We also separately estimate the impact of AI stock separately on the three intermediate phases in clinical trials and 
observe that the coefficient of AI stock is not statistically significant from zero. 
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out of 1 in our drug sample). Our results suggest that while having AI patents may not affect the 
aggregated number of drugs with novelty scores being less than 0.5 (Column 3 and Column 4 in Table 2), 
it is positively associated with drugs that are above the median in novelty score (Column 5 and Column 6 
in Table 2). This suggests that AI is primarily used to develop novel drugs as opposed to incremental 
drugs. To further explore this phenomenon, we finely divided the range of novelty scores from 0.5 to 1 
into 5 decile increments and explore AI’s effect on developing drugs in the 5 novelty ranges (Table 4) 16.  
 

Table 3. AI on Development of Drugs at Post Pre-Clinical Stages 
 At Clinical Trial Stages At FDA Registration and Launched Stage 
 (1) (2) (3) (4) 
DV ln(Number of Drugs) ln(Number of Drugs) ln(Number of Drugs) ln(Number of Drugs) 
     
ln(AI Stock) 0.0031 0.00011 -0.0017 0.0026 
 (0.0068) (0.0071) (0.0034) (0.0035) 
ln(Patent Stock)  0.0095  -0.013*** 
  (0.0065)  (0.0032) 
Public Status 0.096*** 0.095*** 0.042*** 0.043*** 
 (0.017) (0.017) (0.0086) (0.0086) 
ln(Firm Age) 0.059*** 0.055*** -0.040*** -0.034*** 
 (0.011) (0.011) (0.0053) (0.0055) 
ln(Number of Employees) 0.00020 0.00023 0.0039*** 0.0038*** 
 (0.0024) (0.0024) (0.0012) (0.0012) 
     
Observations 4,988 4,988 4,988 4,988 
R-squared 0.79 0.79 0.63 0.64 
Year FE YES YES YES YES 
Firm FE YES YES YES YES 

 
 

Table 4. AI on Development of Novel Drugs with Chemical Structure Information  
at Pre-clinical Stage 

 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
DV Novelty: 

0.9-1 
Novelty: 

0.9-1 
Novelty: 
0.8-0.9 

Novelty: 
0.8-0.9 

Novelty: 
0.7-0.8 

Novelty: 
0.7-0.8 

Novelty: 
0.6-0.7 

Novelty: 
0.6-0.7 

Novelty: 
0.5-0.6 

Novelty: 
0.5-0.6 

           
ln(AI Stock) 0.0080 -0.0070 0.00045 3.75´10-5 -0.0018 -0.0026 0.00090 -8.73´10-5 0.019*** 0.015** 
 (0.0064) (0.0066) (0.00061) (0.00063) (0.0019) (0.0020) (0.0042) (0.0044) (0.0055) (0.0057) 
ln(Patent Stock)  0.047***  0.0013**  0.0025  0.0031  0.013** 
  (0.0060)  (0.00058)  (0.0018)  (0.0040)  (0.0052) 
Public Status -0.068*** -0.073*** 0.0017 0.0015 0.0028 0.0025 -0.014 -0.014 -0.026* -0.028** 
 (0.016) (0.016) (0.0015) (0.0016) (0.0049) (0.0049) (0.011) (0.011) (0.014) (0.014) 
ln(Firm Age) 0.074*** 0.053*** 0.0020** 0.0014 0.0099*** 0.0088*** 0.020*** 0.018*** 0.034*** 0.028*** 
 (0.010) (0.010) (0.00095) (0.00099) (0.0030) (0.0031) (0.0066) (0.0069) (0.0086) (0.0089) 
ln(Number of Employees) -0.0075*** -0.0073*** 6.56´10-5 7.02´10-5 0.00035 0.00036 -0.0021 -0.0021 -0.0019 -0.0018 
 (0.0022) (0.0022) (0.00021) (0.00021) (0.00067) (0.00067) (0.0015) (0.0015) (0.0019) (0.0019) 
           
Observations 4,988 4,988 4,988 4,988 4,988 4,988 4,988 4,988 4,988 4,988 
R-squared 0.43 0.44 0.13 0.13 0.19 0.19 0.54 0.54 0.77 0.77 
Year FE YES YES YES YES YES YES YES YES YES YES 
Firm FE YES YES YES YES YES YES YES YES YES YES 

 
 
We find that the effect of AI is small and statistically insignificant for novelty value above 0.6. However, at 
the middle range at around 0.5 to 0.6, we find a significantly positive relationship between AI and number 
of drugs developed. A one percentage increase in firm’s AI innovation stock is associated with about 
0.02% increase in the number of drugs with novelty range between 0.5 and 0.6. These results suggest that 
a firm’s AI innovation investment can primarily help the development of medium-novel drugs more than 

 
16 We also examine the impact of AI on the drug novelty in the decile range from 0 to 0.5, but AI’s effect is all 
insignificant. 
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completely novel ones or incremental drugs. Robust standard errors are clustered by firms to mitigate the 
serial correlation among within-cluster errors. Overall, these results support Hypothesis 3. 
 

Table 5. AI on Development of Drugs with Chemical Structure Information at Pre-clinical 
Stage, 2SLS and CEM 

 
 (1) (2) (3) (4) (5) (6) 
DV ln(Number of Drugs) ln(Number of 

Drugs, 
Novelty: 0.5-1) 

ln(Number of 
Drugs, Novelty: 

0.5-0.6) 

ln(Number 
of Drugs) 

ln(Number of 
Drugs, 

Novelty: 0.5-1) 

ln(Number of 
Drugs, Novelty: 

0.5-0.6) 
       
ln(AI Stock) 0.38** 0.27** 0.18* 0.048*** 0.019* 0.016** 
 (0.17) (0.13) (0.093) (0.015) (0.010) (0.0081) 
ln(Patent Stock) -0.052 -0.018 -0.032 0.020** 0.017** 0.015*** 
 (0.046) (0.035) (0.025) (0.0099) (0.0066) (0.0052) 
Public Status -0.093*** -0.079*** -0.017 0.045** 0.027** 0.013 
 (0.032) (0.027) (0.019) (0.019) (0.013) (0.010) 
ln(Firm Age) 0.14*** 0.084*** 0.046*** -0.031 -0.035** -0.0054 
 (0.023) (0.018) (0.013) (0.026) (0.017) (0.014) 
ln(Number of Employees) -0.0065** -0.0058*** -0.0014 0.010*** 0.0051** 0.0037** 
 (0.0029) (0.0022) (0.0015) (0.0035) (0.0023) (0.0018) 
       
Observations 4,988 4,988 4,988 5,464 5,464 5,464 
R-squared    0.63 0.61 0.57 
Year FE YES YES YES YES YES YES 
Firm FE YES YES YES YES YES YES 

 
To alleviate the endogeneity concern that innovative firms may choose to develop AI capabilities, we use 
instrumental variables derived from the citation-network as described in the method section. We refer to 
neighboring firms’ (firms that cite each other in patents) AI capability to instrument for one’s own AI 
capability. The associated F-statistics in the first stage pass the weak instrument test. The 2SLS estimates 
show consistent results that AI capabilities positively affect the number of new drug candidates a firm 
develops, and the novelty of these drugs is more likely to be medium, ranging from 0.5 to 0.6 in their 
novelty scores (Column 1 to Column 3 in Table 5). Lastly, we use the Coarsened Exact Matching and 
continue to find a positive relationship between a firm’s AI investment and the number of drug candidates 
produced (Column 4 to Column 6 in Table 5). 
 
Conclusion and Discussion 
 
In this study, we examine the impact of AI technologies in facilitating the drug discovery process for 
global pharmaceutical firms. Previous literature shows that the decline in R&D productivity in the 
pharmaceutical industry is strongly correlated to high-risk innovation investments or the creation of 
incremental drugs with minimal therapeutic benefits (Pammolli et al. 2011). A recent statistic suggest that 
only 2.5% of all drug candidates explored in the early research stages survive beyond the pre-clinical stage 
(Giovannetti and Morrison 2000; Kapoor and Klueter 2015), and the risks of failure in later stages 
continue to be staggering because of large financial investments. AI technologies including predictive data 
analytics could potentially alleviate these risks by accelerating the speed and scale at which to firms can 
process large-scale biomedical or chemical data and potentially facilitating the discovery of new and more 
novel drug candidates. Using AI patents to approximate a firm’s ability in AI, we show that AI can indeed 
accelerate the identification of novel drug candidates but only at the discovery and pre-clinical trial stage; 
we do not observe that AI has any effects in the later stages of drug development during phase I-phase III 
of the human clinical trials nor does it help with FDA approval or commercial launch. This suggests that 
though AI offers tremendous opportunities and can be applied to all stages of drug discovery and 
development process (Vamathevan et al. 2019), AI’s primary effect on drug development is at the earliest 
stage which can benefit more from exploratory data analysis in searching for potential drug targets. 
However, AI has limited effects on developmental stages that involve predicting complex interactions in 
human body, engaging and tracking human subjects and complying with external health regulations. 
These results suggest that AI can partially augment human intelligence in drug discovery where analytics 
is useful, but cannot capture all aspects of the complex biological system that evolves and changes rapidly, 
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replace human engagement and communicate with patients and regulators that are necessary to complete 
clinical trials and to comply with FDA regulations (Dougherty and Dunne 2012; Junod 2014). 
 
Future research should further identify the bottlenecks in drug discovery and investigate the extent to 
which AI, and other technological advances, such as monitoring and tracking technologies in the personal 
health industry, can reduce these bottlenecks. Note that (Sertkaya et al. 2016) suggests the top three cost 
drivers cross all three phases in clinical trial are clinical procedure costs, administrative staff costs, and 
site monitoring costs. Although there are interests in integrating of mobile and wearable technologies into 
clinical trial programs, the progress has been slow due to regulatory and technological challenges in 
patient data management. As AI advances continues to accelerate, it is possible that AI could be applied in 
creative ways to help addressing challenges in the later stages of the drug development process. In 
addition, our study only examines the novelty of small molecule drugs with known chemical structures 
and formed by chemical synthesis, but not large molecule drugs (known as biologics) that would require a 
different novelty measure. Since the share of biologics has increased in the recent years and has started to 
receive growing interest from the pharmaceutical industry, understanding how AI can affect biologics can 
also be a fruitful future research direction. 
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