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Abstract

Notwithstanding the various benefits ascribed to using Data Analytics (DA) tools in
support of decision-making, they have been blamed for their potential to generate
discriminatory outputs. Although several purely technical methods have been proposed
to help with this issue, they have proven to be inadequate. In this research-in-progress
paper, we aim to address this gap by helping users detect discrimination, if any, in DA
recommendations. By drawing upon the moral intensity literature and the literature on
explaining black box models, we propose two decisional guidance mechanisms for DA
users: (i) aggregated demographic information about the data subjects (ii) information
on the variables that drive the DA output and the extent of their contribution along with
information about demographics of the data set being analyzed. We suggest that these
mechanisms can help decrease users’ readily acceptance of discriminatory DA
recommendations. Moreover, we outline an experimental methodology to test our
hypotheses.

Keywords: Data Analytics, discrimination, decisional guidance, demographic
transparency, ethical decision-making, moral intensity, features importance

Introduction

Data Analytics (DA) tools are being increasingly used in organizations to better analyze the tremendous
amounts of available data (“Big Data”), make data-driven decisions, and eventually enhance financial and
strategic performance (Cérte-Real et al. 2017; Davenport and Bean 2018; Ghasemaghaei et al. 2018). DA
tools are typically a combination of several processes and tools, including SQL queries, statistical analysis,
data mining, fact clustering, and data visualization. Despite their observed benefits, the use of DA tools to
support managers’ decision-making has raised concerns including issues associated with privacy, control,
and discrimination (Newell and Marabelli 2015; O’Neil 2016). In 2015 Gartner predicted that “by 2018
half of business ethics violations will occur through the improper use of Big Data Analytics” (Gartner
2015). Our focus in this study is on developing and testing methods to reduce the incidence of managers
readily adopting possible discriminatory DA recommendations.

Whereas it is suggested that technology has been employed to mitigate the problem of discriminatory
decisions made based on personal prejudice (Gates et al. 2002; Tene and Polonetsky 2013), the issue has
not been resolved by using DA tools. On the contrary, it has been argued that using such tools and
techniques can contribute to discrimination in societies (Johnson 2014; Lyon 2003; Newell and Marabelli
2015). For instance, it was shown that COMPAS, a predictive tool designed to generate scores for the risk
of recidivism (i.e., the chance of a person committing another crime within two years if released) has a
strong racial bias (Courtland 2018).
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It is worth noting that such discriminatory outputs of DA tools are not produced because of the user or the
DA tools basing the recommendation on sensitive variables (e.g., sex and race). In addition, excluding
those sensitive variables from the analysis and/or only using them for training DA models do not resolve
the problem of DA tools generating discriminatory recommendations (Lipton et al. 2018). In fact, biased
or non-representative data and/or inadvertent modeling procedures in the DA tools are the main culprits
to blame (Zliobaité and Custers 2016). Existing research identifies three main reasons for the generation
of discriminatory recommendations by unbiased DA algorithms: (i) relations between non-sensitive and
sensitive attributes in data that lead to non-sensitive attributes acting as proxies for sensitive variables;
(ii) erroneous/biased data labeling; as historical data is used to build and train DA models and therefore,
discriminatory data can bring about discriminatory models (Custers 2013); and (iii) flaws in the data
collection process that lead to some groups of individuals being over- or under-represented in the data
sets used to train or test DA models (Barocas and Selbst 2016; O’Neil 2016; Schermer 2011).

As such, even fair and well-intentioned individuals can make a discriminatory decision drawing on a
discriminatory recommendation generated by a DA tool. It should be noted that recommendations that
treat a demographic class (e.g., females) less favorably than other class(es) are considered potentially
discriminatory. However, according to civil rights legislations, such recommendations are actually
discriminatory only when there is no legitimate business reason to explain the discrepancy (Yinger 1998).
For instance, when making a recommendation about hiring salespeople, if a DA tool mainly puts forth
names of male applicants, the recommendation is considered as potentially discriminatory. If it is found
out, however, that there are legitimate business necessities behind such a situation (e.g., when driving a
truck is a requirement for the job and fewer females have a license to drive trucks), then it can be
concluded that the recommendation is not discriminatory against females. Similarly, throughout this
paper, the notion of discriminatory recommendation refers to a recommendation that is potentially
discriminatory and needs to be investigated further.

To date some technical methods have been suggested to discover and remove discrimination in DA
recommendations (e.g., Dwork et al. 2012; Pedreschi et al. 2008). However, research is yet to find
methods that eliminate such discrimination altogether (Zliobaité and Custers 2016). Therefore, recent
scholarly and practitioners’ (e.g., Holstein et al. 2018; McDonald 2016) and governments’ (Executive
office of the [US] president 2014; Federal Trade Commission 2016) publications have raised concerns and
awareness about the potential of making discriminatory decisions when using DA tools. Furthermore, in a
statement on algorithmic transparency and accountability, the Association for Computing Machinery
recently asserted “institutions should be held responsible for decisions made by the algorithms that they
use, even if it is not feasible to explain in detail how the algorithms produce their results” (Dopplick 2017).
However, due to the complexity and opacity of DA tools and techniques, mostly in organizations
understanding the causes and consequences of particular patterns found by DA tools are neglected and
finding significant connections is considered as sufficient (Newell and Marabelli 2015). Thus, a DA
recommendation, even if unethical or discriminatory, is often readily approved by users (Ebrahimi and
Hassanein 2019).

Therefore, the main objective of this study is to devise decisional guidance (Silver 1991) tools to support
DA users in being able to discern traces of discrimination, if any, in DA recommendations. To achieve this
goal, we will pursue the following research objectives: (i) to employ decisional guidance tools that provide
DA users with aggregated demographic information regarding the human subjects of the DA
recommendations; (ii) to design and develop decisional guidance tools that provides DA users with
information about the contribution of each feature (i.e., variable) used in the generation of a DA
recommendation as well as the distributions of these variables across various demographic classes; (iii) to
develop and empirically validate a theoretical research model explaining the impact of using the
decisional guidance tools above on users’ perceptions, their ability to identify potentially discriminatory
DA recommendations, and finally their behavior in terms of accepting/rejecting these recommendations.

The remainder of this research-in-progress paper will unfold as follows. First, the theoretical background,
the research model and proposed hypotheses are described. The methodology in support of the
experimental design, data collection, and pertinent analyses is presented in the third section. Finally,
concluding remarks, and potential contributions to theory and practice close the paper.
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Theory and hypotheses development
The ethical decision-making process and Moral Intensity

Before proceeding, we wish to note that, in line with much prior ethical decision-making research, we use
the terms moral and ethical interchangeably. So, for example, we consider the terms “moral recognition’
and “ethical recognition” to be synonyms. To study the un/ethical behavior of approving/rejecting a
discriminatory recommendation generated by DA tools, we draw on theories in the business ethics
literature, where ethical behavior has been described as a systematic framework that involves making
principled assessment in questionable situations (Rest 1986). Individuals engage in ethical behavior after
they realize that the situation at hand has an ethical aspect (Craft 2013). This realization is called
recognition of the moral issue or moral recognition. A person who fails to recognize the moral aspects of a
particular issue will not activate her/his moral decision-making schemata and will make the decision
based on other schemata such as economic factors, etc. (Douglas et al. 2001; Jones 1991). Recognition of
the moral issue, then, prompts the decision maker to make a judgment of what potential action is most
moral, establish a moral intent, and finally engage in a moral behavior (Rest 1986).

However, individuals do not automatically know that they are facing an ethical dilemma and that they
should choose to act ethically (Trevino and Brown 2004). Jones (1991) proposed that the moral intensity
of an issue influences moral issue recognition. Moral intensity of an issue is comprised of six factors:
magnitude of consequences (i.e., sum of harms done to the victims), social consensus (i.e., social
agreement that a proposed behavior is evil), probability of negative effect (i.e., likelihoods that the issue
occurs and causes the anticipated harm), temporal immediacy (i.e., shorter interval between when the
decision is made and when the consequences occur), proximity (i.e., the degree to which the decision-
maker feels close to the victims), and concentration of effect (i.e., when the consequences affect fewer
individuals as opposed to the same consequences being more broadly distributed) (Jones 1991).

Theoretical Model and Hypotheses

Figure 1 presents the proposed research model. As the figure depicts, two decisional guidance
mechanisms (i.e., demographic transparency and Feature importance + demographic distributions) are
suggested to increase moral recognition and moral behavior (i.e., decrease the acceptance of a DA
discriminatory recommendations). Two moral intensity factors (i.e., probability of effect and magnitude
of consequences) are suggested to play a mediating role in this process. Next, we elaborate on the logic of
our proposed research model.

Demographic Transparency

The majority of discrimination measures rely on the outcome of a decision as opposed to the process of
decision-making (Zliobaite 2015). One such measure used in several studies is called extended lift (elift),
which measures how the probability of granting a benefit to an individual changes as a result of their
belonging to a protected group (Pedreschi et al. 2008). More specifically, extended lift is defined as the
ratio between the proportion of individuals from a protected class obtaining a benefit over the overall
proportion of them in the data set.

Similarly, to detect traces of discrimination in a recommendation put forth by a DA tool, we draw on the
notion of elift and suggest providing DA users with demographic transparency (DT), a decisional guidance
mechanism that depicts statistics about the proportion of members of each demographic class (e.g.,
females and males) in both the original pool of all subjects and the DA recommended sample (to receive a
specific benefit). For instance, imagine the case of internal applications for a position in an organization.
If a DA tool is used to analyze the existing data and make recommendations, DT will provide the user with
the proportion of female and male applicants in both the original pool of all applicants and the
recommended sample of applicants to be further interviewed (see Figure 2 for an example of DT). We
suggest that if the recommendation includes discrimination against a demographic group (e.g., females),
receiving DT along with the recommendation will likely increase the user’s perception of the probability of
the negative effects. As defined by the moral intensity literature, the probability of negative effect assesses
the likelihood that the decision outcome will actually take place and whether it will cause the anticipated
harm (Haines et al. 2008). In the context of this study, the probability of a negative effect refers to the
probability of the data analytics recommendation being discriminatory against a demographic class (e.g.,
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females) and the negative effects of accepting/approving the recommendation on the members of that
class. This is since if there is a substantial increase (decrease) in the proportion of males (females) in the
sample recommended by the DA compared to the full data set of all applicants, then there is a possibility
that females are being treated unfairly. Such a situation can take place due to several reasons such as
when the data includes historical records of discrimination against women and the analysis includes
variables (e.g., prior annual reviews, prior promotion decisions) in the analysis that bring in the prejudice
of previous decision makers in the organization or variables that more adversely impact females than
males (e.g., tenure as females are more likely to go on parental leave than males). Therefore,

H1: In the context of a potentially discriminatory DA recommendation, providing users with
demographic transparency charts will be positively associated with users’ perception of the probability
of negative effects.

In addition to increasing perceptions of negative effects, we suggest that providing DA users with
aggregated demographic information in the form of DT will bring about an increase in users’ perceptions
of the magnitude of the negative consequences. Magnitude of consequences of the moral issue is defined
as the sum of the harms (or benefits) done to victims (or beneficiaries) of the moral act in question (Jones
1991). In the context of a discriminatory DA recommendation, demographic transparency presents DA
users with the proportion and number of individuals from a protected class (e.g., females), who are denied
a benefit. Therefore, DA users are more likely to have a sense of the sum of the harms approving such a
recommendation can cause. Thus, we hypothesize:

H2: In the context of a potentially discriminatory DA recommendation, providing users with
demographic transparency charts will be positively associated with users’ perception of the magnitude
of the negative consequences.

Features Importance and Demographic Distributions

DA users’ readily acceptance of potentially discriminatory recommendations put forth by DA tools stems
from the fact that in an organization only a few individuals actually understand the DA algorithms and
what has been included in them (Lipton 2016; Newell and Marabelli 2015). Thus, to most users, a DA tool
is a “black box”. Methods have been suggested to explain a black box algorithm through an interpretable
and transparent model that mimics the behavior of the black box and is easily understood by humans.
Although several approaches (e.g., decision trees) have been proposed for explaining black box algorithms
embedded in DA tools, they are not widely used (Johansson and Niklasson 2009).

Decision trees, decision rules, and features importance (FI) are the most frequently used approaches to
generate interpretable models (Freitas 2014; Guidotti et al. 2018). Some researchers, however, have
raised concerns about the interpretability of decision trees. This is due to the fact that in most real-life
applications, the size of decision trees can grow very fast; and given the capacity of human cognition, they
might become uninterpretable (Huysmans et al. 2011; Lipton 2016). Further, decision trees do not reveal
the relative importance of features (i.e., variables) used in a model. These shortcomings may explain why
decision trees are not widely used (Johansson and Niklasson 2009). Generally speaking decision rules
have the same shortcomings as decision trees (Henelius et al. 2014). Thus, we argue that decision trees
and decision rules are not well-suited for helping users to easily identify traces of discrimination in DA
recommendations. On the other hand, Fl is a simple yet effective way to provide explanations for black
box models. It works by sharing with users the weights of the features used by a black box model (Lou et
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al. 2013; Vidovic et al. 2016). These weights are the coefficients of a linear model that is generated as an
interpretable model approximating a black box model. Such weights convey to users the relative
importance of the main features used by a DA algorithm to generate a specific recommendation. One
advantage of FI is being an agnostic explanator. In other words, the frameworks used to generate them
often work on almost all types of black box models (e.g., Naive Bayes, Neural Networks) (Guidotti et al.
2018). Thus, in this study we employ FI as a concise and easily comprehensible method as the basis for
our decision guidance tool to empower DA users to detect discriminatory DA recommendations.

We further suggest that if the information about FI is accompanied by data that delineates the
distribution of each of the important features for each demographic class (e.g., females and males) in a
demographic category (e.g., sex), then DA users are more likely to notice the possibility of potential
discrimination in a DA recommendation. More specifically, if the distribution(s) of one/several important
feature/s in the disadvantaged class (e.g., females) is significantly different from the corresponding
distribution(s) in the other class(es), then DA users are more likely to have higher perceptions of the
probability of the negative consequences of putting the recommendation in question into action. For
instance, imagine the case of a DA making recommendations regarding which employees will receive a
promotion in an organization. An example of FI + demographic distribution for this case is depicted in
Figure 3. As can be seen in the figure, performance evaluation has 31% contribution to the
recommendation. The distribution of this feature across the two demographic classes of males and
females are shown in the diagram. Since the distribution of the performance evaluation feature is
substantially different between the two classes, it can be concluded that the recommendation might
include potential discrimination against females. It is noteworthy that such a distribution should be
provided for other demographic categories (e.g., race and age) and for all the important features. In light
of the above discussion, we hypothesize a relationship between providing FI + demographic distributions
and DA users’ perceptions of the probability of negative effects, if any. Therefore,

H3: In the context of a potentially discriminatory DA recommendation, providing users with Feature
importance and demographic distributions for each feature will be positively associated with users’
perception of the probability of negative effects.

Moreover, providing FI + demographic distributions, we suggest, can increase DA users’ perceptions of
the magnitude of negative consequences of a potentially discriminatory recommendation. This results
from the fact that by reviewing this information, a DA user can estimate the proportion and number of
individuals from a protected class who are treated unfairly by one/a few features included in the DA
algorithm. For instance, by receiving FI + demographic distributions depicted in Figure 3, a DA user can
see that about half of the female employees have received lower evaluation of performance than their male
counterparts. Given the importance of this feature in generating the recommendation about employees to
receive a promotion, the DA user will likely have a higher perception of the magnitude of negative
consequences of approving the recommendation for female employees. Thus:

H4: In the context of a potentially discriminatory DA recommendation, providing users with Feature
importance and demographic distributions for each feature will be positively associated with users’
perception of the magnitude of the negative consequences.

Distribution of Performance Evaluation for Male and
Female Employees

70 (95%)
of females
employees

80 (95%) of
males

employees
T 02
Feature Contribution \
Education ] 0.15 015 Females
Working Experience I 0.21 01 Males
Performance Evaluation 0.31
005
Evaluation of Potential for Growth 0.33 H““““ || |||
I
0
o 1 2 3 4 [ 7 8 9 10

Performance Evaluation

Figure 3. Sample of a FI + Demographic Distribution
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Ethical Recognition and Approval of the Discriminatory Recommendations

Jones (1991) argued that the moral intensity of an issue influences decision makers’ recognition of it as a
moral problem and their subsequent behavior. Jones posited that issues that involve a high probably of
causing harm (i.e., probability of effect) and the issues that can bring about large amounts of harm (i.e.,
magnitude of consequences) are more likely to be recognized most readily as moral issues. The concept of
probability of (negative) effect is consistent with other theories in the business ethics literature. For
example, Hunt and Vitell's (1986) notion of probabilities of consequences, which is a component of an
individual's teleological evaluation of issues. Following Jones, several studies that empirically examined
the relationship between probability of negative effects and moral recognition found significant effects
(e.g., May and Pauli 2002; Singhapakdi et al. 1996). Similarly, we expect a DA user who realizes the
possible negative effects of approving a discriminatory DA recommendation to be more likely to form a
moral recognition about the situation at hand. Therefore,

H5: In the context of a potentially discriminatory DA recommendation, the greater the perceived
probability of negative effect, the more likely that a DA user will recognize the moral issue at hand.

Magnitude of consequences, the other dimension of moral intensity that is of interest in this study,
suggests that as consequences of an issue becomes more severe, a decision maker is more likely to
recognize the ethicality of the issue (Jones 1991). Previous empirical research has confirmed that a
relationship exists between magnitude of negative consequences and a decision-maker’s moral
recognition and behavior (e.g., Singhapakdi et al. 1996; Watley and May 2004). Likewise, when a DA user
realizes that approving a DA recommendation can have negative consequences for a protected group (e.g.,
several females being denied a chance to receive a promotion), s/he is more likely to recognize the fact
that s/he is facing an issue with moral facets. As such, we hypothesize that:

H6: In the context of a potentially discriminatory DA recommendation, the greater the perceived
magnitude of consequences, the more likely that a DA user will recognize the moral issue at hand.

Ethical reasoning has been described as a systematic framework that involves making principled
assessment in questionable situations (Ferrell et al. 1989; Rest 1986). Therefore, when individuals realize
an ethical situation, they consider and evaluate courses of actions based on their morality. Such
assessments subsequently affect their ethical intentions and actions (Loe and Weeks 2000; Rest 1986).
Therefore, it is reasonable to expect that users who become morally aware of a potentially discriminatory
recommendation of a DA system they are using are more likely not to accept that recommendation
compared to users who are not aware. Hence,

H7: In the context of a potentially discriminatory data analytics recommendation, users’ recognition of
the moral issue is negatively associated with their acceptance of the recommendation.

Methodology

The proposed research model will be empirically validated through an online experimental study
involving middle managers who use DA tools for decision-making at work. It is noteworthy that the real
purpose of the study will not be revealed to participants until after they complete the experiment.
Specifically, participants will be told that the purpose of the experiment is to better understand how data
analytics users interact with DA tools. They will be asked to work with the tool and decide whether they
approve its recommendation.

A full-factorial design will be employed using all four combinations of the two treatments: the presence or
absence of DT charts and the presence or absence of FI along with demographic distributions of each of
the features. A fictitious DA tool will be designed for the experiment. The tool, drawing on various
objective and subjective factors, will make classification recommendations for promotions in an
organization. However, a few of the subjective factors (e.g., annual reviews) will include traces of
historical discrimination against a group of employees and therefore will bring in the discrimination to
the generated recommendation (Barocas and Selbst 2016). As a result, the proportion of members of the
disadvantaged group who are recommended for promotion will be significantly lower than that for the
other groups.

Participants in the control group will not receive any decisional guidance while participants assigned to
groups with DT and/or FI will receive the respective decisional guidance information along with the DA
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recommendation. Participants will then be asked to make a decision about whether they accept the
recommendation. Subsequently, they will answer a survey about the reason/s for their decision,
manipulation checks, and their perceptions of the other variables in the model. To ensure content validity,
scales for all constructs will be selected from the extant literature with appropriate adaptation to context.
Recognition of the moral issue will be measured using a 3-item scale from Reynolds (2006) and the two
moral intensity constructs (i.e., probability of negative effect and magnitude of negative consequences)
will each be measured using a 2-item scale adapted from Singhapakdi et al. (1996) and Frey (2000).

Power analysis indicates that 172 subjects (43 subjects for each group) would assure a sufficient statistical
power of 0.80 to detect a medium effect size (f= 0.25) (Cohen 1988). To account for potential outliers and
spoiled or incomplete responses, 200 participants will be recruited. Structural Equation Modeling (SEM)
will be used to validate the proposed model. Further, ANOVA analysis will be performed to compare the
differences between the four treatment groups in regard to the mediating and endogenous variables.

Conclusion

Potential Contributions

This study will be one of the first empirical studies to focus on examining the issue of discriminatory
decision-making using DA tools and strives to tackle the problem by focusing on the human aspects of
decision-making using such tools. Thus, this research will advance the DA literature by proposing
decisional guidance tools to address the issue by focusing on the cognition and attitude of the human
decision maker. The methods proposed in this research provide means for reducing the likelihood of
discriminatory decision-making while using DA tools’ recommendations without compromising
individuals’ privacy as individual sensitive data (e.g., sex, race) is not revealed to users but is only
presented in an aggregated form. Moreover, this research focuses on inducing an ethical behaviour in DA
users (i.e., rejecting a DA recommendation they find potentially discriminatory) by enhancing the moral
intensity of the situation. This study thereby not only contributes to the DA literature but also to the social
psychology literature by extending the theory of moral intensity to a new context. This study also
promises strong implications for practitioners who are ultimately responsible for any discriminatory
decisions they may make relying on DA recommendations. The outcomes of this research are especially
important given the complete reliance of organizational decision makers on DA tools to deal with
complexities and uncertainties in the era of big data. As such, the outcome of this study is beneficial for
those well-intentioned practitioners who seek to lower the incidents of discriminatory decision-making in
their corporations. Finally, this study also benefits DA developers who seek to gain a competitive
advantage by making their tools more attractive to organizational users.

Limitations

Notwithstanding its significance and contributions, several limitations exist for this study. It is
noteworthy that more than one definition for fairness exists in the literature. In this study we adopt the
group fairness (aka statistical parity) definition. Future research is warranted to devise decisional
guidance based on other notions of fairness (e.g., individual fairness). Moreover, the participants for this
study will be selected from North American data analytics users. Thus further research should be
conducted prior to generalizing the findings of this research to other cultures.

Future Plans for the Study

In the subsequent phases of this research, the proposed research model will be empirically validated. To
that end, the experimental DA tool as discussed in the methodology section, will be developed. Moreover,
ethics approval from the ethics research board at the first authors’ university will be secured.
Subsequently, prior to data collection, a pilot study with 40 middle managers will be conducted. We hope
to have the preliminary results of this study ready for presentation at ICIS2019.

References

Barocas, S., and Selbst, A. D. 2016. “Big Data’s Disparate Impact,” California Law Review (104), pp. 671—
732.
Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences, Hillsdale, NJ: Lawrence

Fortieth International Conference on Information Systems, Munich 2019 7



Empowering Users to Detect Data Analytics Discriminatory Recommendations

Earlbaum Associates.

Corte-Real, N., Oliveira, T., and Ruivo, P. 2017. “Assessing Business Value of Big Data Analytics in
European Firms,” Journal of Business Research (70:1), pp. 379—390.

Courtland, R. 2018. “Bias Detectives: The Researchers Striving to Make Algorithms Fair.,” Nature
(558:7710), pp. 357—360.

Craft, J. L. 2013. “A Review of the Empirical Ethical Decision-Making Literature: 2004—2011,” Journal of
Business Ethics (117:2), pp. 221-259.

Custers, B. 2013. “Data Dilemmas in the Information Society: Introduction and Overview,” in
Discrimination and Privacy in the Information Society, B. Custers, T. Calders, B. Schermer, and T.
Zarsky (eds.), Berlin Heidelberg: Springer-Verlag, pp. 3—26.

Davenport, R. B. T. H., and Bean, R. 2018. “Big Companies Are Embracing Analytics, But Most Still Don’t
Have a Data-Driven Culture,” Harvard Business Review.

Dopplick, R. 2017. “New Statement on Algorithmic Transparency and Accountability by ACM U.S. Public
Policy Council.” (https://techpolicy.acm.org/2017/01/new-statement-on-algorithmic-transparency-
and-accountability-by-acm-u-s-public-policy-council/).

Douglas, P. C., Davidson, R. A., and Schwartz, B. N. 2001. “The Effect of Organizational Culture and
Ethical Orientation on Accountants’ Ethical Judgments,” Journal of Business Ethics (34:2), pp. 101—
121.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. 2012. “Fairness through Awareness,” in
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, Cambridge,
Massachusetts: ACM, pp. 214—226.

Ebrahimi, S., and Hassanein, K. 2019. “Can the Use of Data Analytics Tools Lead to Discriminatory
Decisions?,” in Proceedings of the 52nd Hawaii International Conference on System Sciences,
Grand Wailea, Maui: IEEE, pp. 6739—-6748.

Executive office of the [US] president. 2014. “Big Data: Seizing Opportunities, Preserving Values,” White
House, Executive Office of the President.

Federal Trade Commission. 2016. “Big Data: A Tool for Inclusion or Exclusion.”

Ferrell, O. C., Gresham, L. G., and Fraedrich, J. 1989. “A Synthesis of Ethical Decision Models for
Marketing,” Journal of Macromarketing (9:2), pp. 55—64.

Freitas, A. A. 2014. “Comprehensible Classification Models: A Position Paper,” ACM SIGKDD
Explorations Newsletter (15:1), ACM, pp. 1-10.

Frey, B. F. 2000. “The Impact of Moral Intensity on Decision Making in a Business Context,” Journal of
Business Ethics (26:3), pp. 181-195.

Gartner. 2015. “Gartner Says, By 2018, Half of Business Ethics Violations Will Occur Through Improper
Use of Big Data Analytics.” (https://www.gartner.com/en/newsroom/press-releases/2015-10-07-
gartner-says-by-2018-half-of-business-ethics-violations-will-occur-through-improper-use-of-big-
data-analytics, accessed January 5, 2019).

Gates, S. W., Perry, V. G., and Zorn, P. M. 2002. “Automated Underwriting in Mortgage Lending: Good
News for the Underserved?,” Housing Policy Debate (13:2), pp. 369—391.

Ghasemaghaei, M., Ebrahimi, S., and Hassanein, K. 2018. “Data Analytics Competency for Improving
Firm Decision Making Performance,” Journal of Strategic Information Systems (27:1), pp. 101-113.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D. 2018. “A Survey of
Methods for Explaining Black Box Models,” ACM Computing Surveys (CSUR) (51:5), ACM, pp. 1—
43.

Haines, R., Street, M. D., and Haines, D. 2008. “The Influence of Perceived Importance of an Ethical
Issue on Moral Judgment, Moral Obligation, and Moral Intent,” Journal of Business Ethics (81:2),
Springer, pp. 387—399.

Henelius, A., Puolamaéki, K., Bostrom, H., Asker, L., and Papapetrou, P. 2014. “A Peek into the Black Box:
Exploring Classifiers by Randomization,” Data Mining and Knowledge Discovery (28:5-6),
Springer, pp. 1503—-1529.

Holstein, K., Vaughan, J. W., Daumé 111, H., Dudik, M., and Wallach, H. 2018. “Improving Fairness in
Machine Learning Systems: What Do Industry Practitioners Need?,” ArXiv Preprint
ArXiv:1812.05239.

Hunt, S. D., and Vitell, S. 1986. “A General Theory of Marketing Ethics,” Journal of Macromarketing
(6:1), pp. 5-16.

Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., and Baesens, B. 2011. “An Empirical Evaluation of
the Comprehensibility of Decision Table, Tree and Rule Based Predictive Models,” Decision Support

Fortieth International Conference on Information Systems, Munich 2019 8



Empowering Users to Detect Data Analytics Discriminatory Recommendations

Systems (51:1), pp. 141-154.

Johansson, U., and Niklasson, L. 2009. “Evolving Decision Trees Using Oracle Guides,” in IEEE
Symposium on Computational Intelligence and Data Mining (CIDM), IEEE.

Johnson, J. A. 2014. “The Ethics of Big Data in Higher Education,” International Review of Information
Ethics (21:1), pp. 3—10.

Jones, T. M. 1991. “Ethical Decision Making by Individuals in Organizations: An Issue-Contingent
Model,” Academy of Management Review (16:2), pp. 366—395.

Lipton, Z. C. 2016. “The Mythos of Model Interpretability,” ArXiv Preprint ArXiv:1606.03490
(558:7710), pp. 357—360.

Lipton, Z., McAuley, J., and Chouldechova, A. 2018. “Does Mitigating ML’s Impact Disparity Require
Treatment Disparity?,” in Advances in Neural Information Processing Systems 31 (NIPS 2018),
Montréal, Canada.

Loe, T. W., and Weeks, W. A. 2000. “An Experimental Investigation of Efforts to Improve Sales Students’
Moral Reasoning,” Journal of Personal Selling & Sales Management (20:4), pp. 243—251.

Lou, Y., Caruana, R., Gehrke, J., and Hooker, G. 2013. “Accurate Intelligible Models with Pairwise
Interactions,” in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, pp. 623—631.

Lyon, D. 2003. Surveillance as Social Sorting: Privacy, Risk, and Digital Discrimination, London:
Routledge.

May, D. R., and Pauli, K. P. 2002. “The Role of Moral Intensity in Ethical Decision Making: A Review and
Investigation of Moral Recognition, Evaluation, and Intention,” Business & Society (41:1), Sage
Publications Sage CA: Thousand Oaks, CA, pp. 84—117.

McDonald, C. 2016. “Is There a Sexist Data Crisis?,” BBC News, United Kingdom.
(http://www.bbc.com/news/magazine-36314061).

Newell, S., and Marabelli, M. 2015. “Strategic Opportunities (and Challenges) of Algorithmic Decision-
Making: A Call for Action on the Long-Term Societal Effects of ‘Datification,” Journal of Strategic
Information Systems (24:1), pp. 3—14.

O'Neil, C. 2016. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens
Democracy, New York, NY: Crown Publishing Group.

Pedreschi, D., Ruggieri, S., and Turini, F. 2008. “Discrimination-Aware Data Mining,” in Proceedings of
the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM,
pp. 560-568.

Rest, J. R. 1986. Moral Development: Advances in Research and Theory, New York: Praeger.

Reynolds, S. J. 2006. “Moral Awareness and Ethical Predispositions: Investigating the Role of Individual
Differences in the Recognition of Moral Issues,” Journal of Applied Psychology (91:1), pp. 233—243.

Schermer, B. W. 2011. “The Limits of Privacy in Automated Profiling and Data Mining,” Computer Law &
Security Review (27:1), pp. 45-52.

Silver, M. S. 1991. “Decisional Guidance for Computer-Based Decision Support,” MIS Quarterly (15:1), pp.
105—-122.

Singhapakdi, A., Vitell, S. J., and Kraft, K. L. 1996. “Moral Intensity and Ethical Decision-Making of
Marketing Professionals,” Journal of Business Research (36:3), pp. 245—255.

Tene, O., and Polonetsky, J. 2013. “Judged by the Tin Man: Individual Rights in the Age of Big Data,” J.
on Telecomm. & High Tech. L. (11), HeinOnline, pp. 351-368.

Trevino, L. K., and Brown, M. E. 2004. “Managing to Be Ethical: Debunking Five Business Ethics Myths,”
The Academy of Management Executive (18:2), pp. 69—83.

Vidovic, M. M.-C., Gornitz, N., Miller, K.-R., and Kloft, M. 2016. “Feature Importance Measure for Non-
Linear Learning Algorithms,” ArXiv Preprint ArXiv:1611.07567.

Watley, L. D.,, and May, D. R. 2004. “Enhancing Moral Intensity: The Roles of Personal and
Consequential Information in Ethical Decision-Making,” Journal of Business Ethics (50:2), pp. 105—
126.

Yinger, J. 1998. “Evidence on Discrimination in Consumer Markets,” Journal of Economic Perspectives
(12:2), pp. 23—40.

Zliobaite, 1. 2015. “Measuring Discrimination in Algorithmic Decision Making,” Data Mining and
Knowledge Discovery (31:4), pp. 1060—1089.

Zliobaité, I., and Custers, B. 2016. “Using Sensitive Personal Data May Be Necessary for Avoiding
Discrimination in Data-Driven Decision Models,” Artificial Intelligence and Law (24:2), pp. 183—
201.

Fortieth International Conference on Information Systems, Munich 2019 9



	Empowering Users to Detect Data Analytics Discriminatory Recommendations
	

	Empowering Users to Detect Data Analytics Discriminatory Recommendations
	Empowering Users to Detect Data Analytics Discriminatory Recommendations
	Introduction
	Introduction
	Theory and hypotheses development
	The ethical decision-making process and Moral Intensity

	Theory and hypotheses development
	Theory and hypotheses development
	The ethical decision-making process and Moral Intensity
	Theoretical Model and Hypotheses
	Theoretical Model and Hypotheses
	Demographic Transparency
	Demographic Transparency
	Features Importance and Demographic Distributions
	Features Importance and Demographic Distributions
	Ethical Recognition and Approval of the Discriminatory Recommendations
	Ethical Recognition and Approval of the Discriminatory Recommendations
	Ethical Recognition and Approval of the Discriminatory Recommendations


	Methodology
	Methodology
	Conclusion
	Conclusion
	Potential Contributions
	Potential Contributions
	Limitations
	Limitations
	Future Plans for the Study
	Future Plans for the Study

	References
	References

