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Abstract 

The growing consumption of fossil fuels and its negative environmental consequences 
have been a major concern during the last few decades. In line with that, public transport 
operators face global pressure to replace diesel buses by battery-electric buses (BEBs) in 
many countries. However, BEBs need to be recharged several times throughout the day 
to avoid running out of energy due to their limited driving range and slow charging rate. 
Accordingly, operating BEBs is substantially more sensitive to unanticipated delays and 
excess energy consumption, which raises serious challenges with respect to charging 
schedules. Moreover, BEBs are only a truly sustainable alternative if they are powered 
by renewable energy generators (REGs), which have intermittent and uncertain 
generation. Thus, we design and propose a real-time decision support system to overcome 
these uncertainties and maximize the utilization of REGs and minimize the impact on the 
grid while guaranteeing a feasible operation for the BEBs. 

Keywords:  Sustainable public transport, Electrified transit bus networks, Battery electric 
buses, Renewable energy, Real-time decision support system 

 

Introduction 

Although the industrial and technological progress of the last decades has often significantly improved 
people’s daily lives, it also had negatively impacted the global environment. For instance, the continuously 
growing consumption of fossil fuels increased the global levels of carbon emissions substantially. As a result, 
many negative environmental issues, such as global warming and air pollution, have intensified 
significantly (IPCC 2018). Cities and urban centers around the world are major contributors to global 
emissions, and also the places where the impact of climate change and pollution will often be felt the most. 
According to Dodman (2009), urban areas cover only 2% of the land, and yet contribute up to 75% and 80% 
to global energy consumption and greenhouse gas emissions, respectively. These alarming numbers show 
the urgent need to take serious action to transform urban areas into more sustainable regions powered by 
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renewable energy sources. To achieve this objective, recent international agreements impose restrictions 
on various economic sectors to limit their fossil fuel consumption and switch to clean and renewable sources 
of energy.  

Incorporating and integrating distributed renewable energy generation within cities offers many new and 
highly promising opportunities (Kammen and Sunter 2016). However, the limited land space available to 
install renewable energy generators as well as the intermittency and uncertainty of renewable energy 
sources represent big challenges to that integration. Moreover, planning for operations within smart cities 
incorporate several complexities and affects various private and governmental parties with potentially 
many conflicts of interests. Namely, some decisions might be more beneficial or disadvantageous to some 
parties compared to others. Accordingly, the planning should aim for maximizing the sustainability of 
operation while guaranteeing certain levels of benefits for all the involved parties within the process. Thus, 
it is required and expected from operations research to be intensified within the next few years and benefit 
from the emerging big data and Internet of Things (IoT) technologies to help solving this important 
challenge and contribute to the various levels of planning to facilitate the transition to a sustainable smart 
cities (Qi and Shen 2019). In line with that, the emerging Smart City paradigm—including the infusion of 
public services and infrastructure with digital technologies and advanced information systems—presents 
various opportunities to address these challenges. 

One of the greatest challenges is faced by energy-dependent economic sectors, which will have to adapt 
their services to new operational needs and restrictions imposed by the intermittent and uncertain nature 
of renewable energy generation. One of the most important sectors is transportation, which is estimated to 
require investments of 15.7 trillion USD in order to limit the temperature increase to 2oC by 2050 
(International Energy Agency. 2012). Therefore, we focus on urban mobility since it is an important driver 
of various emissions and pollutants. Within urban areas, public transportation plays a critical role in 
creating greener and more sustainable cities. Having a fully electrified efficient public transportation 
network would reduce greenhouse gas emissions within smart cities. Thus, we specifically focus on the 
problem of electrifying transit bus networks of public transportation services within smart cities.  

We specifically investigate the challenges that public transport operators (PTOs) face in replacing their 
diesel bus (DB) fleets with battery electric buses (BEBs) that are integrated with renewable energy sources. 
BEBs have a limited driving range and much longer charging time compared to DBs. As a result, BEBs need 
to recharge their batteries throughout the day during their layovers in between trips to avoid running out 
of energy. Accordingly, operational delays and uncertainties highly affect the BEB operation as they disrupt 
the during-day-charging schedule. Moreover, this charging process would ideally be fully handled by 
renewable energy generators (REGs) which are also highly susceptible to uncertainties. Thus, in this work 
we investigate how smart cities’ real-time data collected from different sources and online information 
systems can be used to ensure the feasibility of BEB operation and maximize the utilization of REGs. This 
could be done by a BEB real-time decision-support system (BRDSS) that monitors the random operating 
conditions and optimizes the charging schedule accordingly. Our BRDSS incorporates real-time data, 
prediction algorithms, and optimization methods.  

In the next sections, we provide an overview of the previous research on transportation and its integration 
with renewable energy resources within smart cities. Then, we describe the details of the problem, and 
present our BRDSS. Afterwards, we introduce a real-world case study on the transit bus network in a big 
European city. Finally, in the last section, we present preliminary results and provide an outlook on the next 
steps within this project. 

Related Work 

Previous research has investigated how advanced information systems can leverage the performance and 
efficiency of decision making in various fields. Within the energy field, Watson et al. (2010) provide an 
extensive overview of how energy informatics can have a big influence on reducing the energy consumption, 
CO2 emissions and increasing the efficiency of matching the supply and the demand. Bichler et al. (2010) 
underline the benefits and opportunities of adopting real-time intelligence in highly dynamic energy 
markets. Brandt et al. (2018) highlight how information systems can improve cyberphysical systems, 
focusing on smart grid applications. Moreover, Valogianni et al. (2014) present a charging algorithm for 
smart electric vehicles that leverages learning agents to effectively reduce the induced peaks due to charging 
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demand. Hence, although various studies have examined the potentially high value of information systems 
in various smart city-related applications, no previous studies investigated how it can be also beneficial in 
enhancing the energy transition process in public transport sector. 

Transit bus networks used to run for decades operating conventional DBs which represent a significant 
source of air pollution and greenhouse gas emissions in urban areas and city centers. Electrifying transit 
bus networks by replacing DBs with BEBs raises many new challenges due to BEBs’ shorter driving ranges 
and slower rates of charging. As a result, BEBs should recharge their batteries throughout the day during 
their stops to avoid running out of energy. Furthermore, previous studies show that there is substantial 
uncertainty regarding energy consumption of BEBs and its dependence on several factors such as route type 
and topologies, driving behavior, and number of stops (Kontou and Miles 2015). Moreover, the vehicle’s 
size and the heating and air ventilation system are proven to have a significant effect on the BEBs’ energy 
consumption (Zhou et al. 2016). As a result, the operation of BEBs is less robust against uncertainties when 
compared to its conventional counterparts, as an unexpected delay that causes a missed charging event or 
excess energy consumption may lead to operational infeasibility.  

Moreover, electrifying the transit bus network without using sustainable renewable energy for charging 
BEBs would only imply shifting the emissions geographically outside city centers. Thus, ideally all the 
energy provided to the transit bus network would be provided by renewable energy resources. Due to their 
intermittency, employing renewable energy resources for charging BEBs adds more uncertainty to the 
operation of electrified transit bus networks. Various previous studies investigated how to optimally 
coordinate electric vehicles (EVs) charging and renewable energy generation. Schuller et al. (2015) use 
mixed integer programming to minimize the usage of energy generated from conventional sources to charge 
EV fleets. Their result show that the yearly average utilization of the renewable energy resources can be 
more than doubled with coordinated charging compared to the uncoordinated one. Yang et al. (2015) 
present a review of the different techniques used to solve that problem. They conclude that the conventional 
optimization techniques can be sufficient to provide good solutions in normal settings. However, they have 
limitations in dealing with more complicated problems with multiple objectives or stochasticity. Finally, 
Mwasilu et al. (2014) and  Hu et al. (2016) conclude in their studies that the complete integration between 
EV and smart grid operations would only be possible through advanced real-time information and 
communication technologies. This emphasizes the notion that such an information system that uses live 
data to integrate energy generation and bus operations and regularly re-optimizes both systems is critical 
to the success of complex smart city applications. 

Naturally, previous studies that leveraged real-time optimization with EVs, renewables, or the smart grid 
in general yielded better results than offline systems. In the general field of smart grids and renewables, 
Gan et al. (2013) use a real-time load control technique to shift the loads to the periods of renewable energy 
generation by minimizing the expected variance between the updated predictions. Their results show the 
superiority of the real-time algorithm compared to the static one. Mohamed and Mohammed (2013)  
propose a real-time energy management algorithm to charge an energy storage system with online 
prediction for wind energy generation and load power. They use an energy storage system that can be used 
during peak times to feed power to the grid to increase its reliability. In the specific field of EVs, Deilami et 
al. (2011) propose a real-time energy management technique that is used to charge plug-in EVs to minimize 
the total generating and loss costs. Ardakanian et al. (2014) develop a real-time algorithm to coordinate EV 
charging given the available capacity in the grid. Their results show that the coordinated strategy can charge 
ten times the number of EVs compared to the uncoordinated one.  

Within the transportation field and public transit bus network studies, various previous studies tackled the 
problem of optimizing the charging schedule. Pelletier et al. (2018) use a mixed integer linear formulation 
to minimize the charging costs under varying electricity prices for electric freight fleets while modelling the 
battery degradation process. Their results show that the tradeoffs between various factors such as grid 
restrictions, charging costs, and maximum power demand. Leou et al. (2017) develop a mathematical 
formulation to minimize energy charging costs in transit BEB networks under varying electricity prices. The 
results of these studies show the importance of optimizing charging schedules of large EVs fleets. However, 
none of the previous studies investigated the problem of optimizing the charging schedule while integrating 
with renewable energy resources under uncertainty. In order to deal with that stochasticity arising from 
operational delays, contingencies, unplanned excess energy consumption, or generated renewable energy 
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randomness, we propose a real-time decision support system that monitors the transit BEB network and 
renewable resources operating conditions to regularly re-optimize both systems.  

A Real-time BEB Decision Support System for Sustainable Public 
Transport 

A transit bus network consists of service lines which are defined by origin-destination pairs of terminal 
stations. The frequency of the trips at each line is determined by passengers’ travel demand throughout the 
day. With the electrified transit network, BEBs need to recharge their batteries during their layovers in 
between the trips at the terminal stations. Thus, the trip schedule should grant sufficient layovers for all the 
buses at those terminal stations that have charging facilities. Afterwards, a charging schedule is required in 
order to decide where, when and for how long each BEB is going to charge its battery. We develop the 
charging schedule with the objective of ensuring the feasibility of all BEBs’ operation and maximizing the 
utilization of REGs. At the end of day’s operation, all BEBs go the central garage for overnight charging in 
order to fully recharge their batteries before the beginning of the next day’s service. 

Ideally, all charging of the BEBs in the transit network would be handled by REGs. However, that might not 
be possible due to the huge load of charging BEBs, and the limited and intermitted generation of REGs. As 
a result, in the critical situation of anticipating a BEB to run out of energy with no sufficient renewable 
energy generation to recharge it in time, we allow for conventional charging from the grid. In order to 
minimize the additional strain that is experienced by the grid, the BRDSS attempts to charge from the grid 
at those times and locations at which it aligns well with the general demand-supply patterns. We use online 
pricing signals from the grid as a proxy for the grid situation at different locations throughout the day. 

In addition, due to unforeseen operational delays, BEBs may miss some planned charging events. 
Unanticipated delays and weather conditions may also lead to unplanned excess energy consumption. 
Therefore, it might be needed to modify the charging schedule during the day to take corrective actions and 
compensate for that lost charging. Real-time online adaptation of the charging schedule is also required to 
redistribute the locations and the times of the charging events according to the varying and hardly 
predictable conditions of the REGs and the grid. Finally, we propose using energy storage system (ESS) to 
mitigate the effect of these uncertainties and increase the utilization of the REGs and minimize the impact 
on the grid. 

To handle this large and sophisticated system, we propose designing an IS artifact (Hevner et al. 2004) to 
control the various components within the system and optimize the operation. Figure 1 shows the 
framework of our proposed BEB real-time decision support system. Before the start of each day’s service 
operations, the charging strategy is optimized based on the predicted REGs’ output, BEBs’ delays and 
energy consumption, and the status of the grid at different times throughout the day. During the day, real-
time information is collected from the various sources within the system. Real-time data of the state of 
charge (SoC) and delay data from the BEBs, the SoC of the ESS at different locations, the REGs’ output, the 
status of the grid, and weather data are gathered by the BRDSS. Afterwards, the BRDSS uses the real-time 
weather data to make better predictions of the REGs’ output during the next few hours. It also uses the real-
time BEBs’ operational delays data to enhance the predictions of future delays during the rest of the day. 
Then, the BRDSS optimization algorithm runs to optimize the charging schedule to make the decisions 
about each BEB’s charging location, duration and time, as well as the ESS charging and discharging times 
and durations.  

In the extreme cases of uncertainties, the BRDSS is also responsible of sending warning signals to the traffic 
control operators in the network in case of anticipating a BEB is expected to run out of energy under the 
current circumstances. Hence, the traffic control operators are responsible for making the decision of 
pulling-in that BEB and replace it with a fully charged one. Based on that decision, the BRDSS then re-
optimizes the charging schedule. Finally, the central BRDSS shares the updated charging schedule to all the 
charging facilities at different locations in the network.  



 Enabling Sustainable Public Transport through Real-time Decision Support 
  

 Fortieth International Conference on Information Systems, Munich 2019 5 

 

Figure 1. BRDSS general framework 

Methodology 

To evaluate the proposed framework, we develop a discrete-event simulation using Python’s SimPy library. 
Moreover, the simulation is integrated with an optimization model that is responsible for optimizing the 
charging schedule by solving a mixed-integer linear programming problem using the CPLEX solver. As 
shown in Figure 2, the simulator is used to evaluate the network while incorporating different charging 
strategies under stochastic operating conditions. The simulator takes as an input the network structure, 
charging locations, numbers and power of chargers, and the trip assignment schedule. The simulator’s 
output is our main performance measures which are how well the BEBs’ charging schedule is integrated 
with the grid and coordinated with the renewable energy generation, and the reliability of the network’s 
operation. Our main charging strategy is the smart online optimized (SONO), which adjusts and re-
optimizes the charging schedule each hour based on the real-time data collected from the network. To assess 
the benefit of our proposed real-time system, we compare to the SONO strategy to an offline optimized and 
two heuristic charging strategies. The offline optimized (OFO) charging strategy sticks to the day ahead 
optimal plan regardless of any deviations that may occur due to uncertainties. The two heuristic charging 
strategies are first-in-first-serve (FIFS) and lowest-charge-highest-priority (LCHP). The FIFS arranges the 
BEBs in the queue according to their arrival time. On the other hand, the LCHP arranges them according 
to their SoC. Thus, a BEB with a lower SoC has a higher priority to charge. Replacing a BEB that is charging 
with another arriving one with a lower SoC is also allowed, if the charging BEB’s current SoC is above a 
certain threshold. 
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Figure 2. The layout of the simulation/optimization tool 

Practical Case Study and Primarily Results 

To evaluate our proposed BRDSS framework, we carry out this study in cooperation with the main PTO in 
a large European city. The city has a wide transit bus network that consists of 61 lines, which are going to 
be fully electrified within the next couple of years, while seven two-way essential lines are going to be 
electrified before 2020. Eleven terminal stations serve these lines, with charging facilities installed at six of 
them with a charging power of 240 kW. Forty-seven BEBs are going to operate on these lines with a battery 
capacity of 240 kWh each. Five additional BEBs are going to be kept as backup in case of contingencies. All 
the BEBs are going to charge during the night at the central garage using chargers with 50 kW charging 
power.  

We assume an average energy consumption of 1.5 kWh/km. We also assume that a delayed trip would 
consume more energy and vice versa. To make our simulation results more realistic, we also consider the 
passive energy consumption, which is the energy consumed at the layovers due to the heating, ventilation, 
and air conditioning systems. We also consider the setup time, which is the time required to connect the 
BEBs to the chargers, and which is set to one minute in our study. Finally, we add a minimum charging 
time of one minute after excluding the setup time. Thus, a BEB does not charge if its layover at a station is 
shorter than this time. 

It is worth mentioning that for all the strategies we test, we do not allow for the start of a trip to be delayed 
to allow for charging. Thus, the priority of starting a trip on time is always higher than charging. We add 
that restriction as there is a predetermined trip frequency per line, based on the agreement between the 
PTO and the municipality, which must be realized. Due to the less efficient charging beyond the 90% SoC, 
we add an upper limit for the SoC and do not allow for charging beyond that limit during the day. For the 
optimal strategies, we also add a lower limit SoC. Thus, the optimized schedule keeps all the BEBs’ SoC 
during the day above that limit in the deterministic settings.  

In our preliminary analysis, we do not include the REGs and the ESS. Hence, we analyze the network under 
stochasticity in the trip delays for three weeks. We carry out the analysis with the maximum number of 
chargers at the terminal stations which corresponds to the maximum number of simultaneously located 
BEBs at each location. Thus, in the deterministic settings, any BEB arriving at a terminal station with 
charging facilities will be able to find a free charging slot. Our preliminary results show the potential value 
of the BRDSS and its higher ability to maintain the operational feasibility.  Figure 3 shows the overall energy 
costs. Given that energy costs are higher if there is excess demand, lower costs correspond with our charging 
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schedule being better integrated with the energy grid’s needs. The results show that the SONO strategy 
outperforms the FIFS and is able to reduce the impact on the grid by around 20%.  

 

Figure 3. Impact on the grid with the different charging strategies 

Figure 4 shows the lowest SoC occurring during the day among the whole fleet, which is a measure for the 
reliability. The results show that the FIFS has the highest reliability. This happens in the case of having the 
maximum number of chargers, so the FIFS will charge all the BEBs whenever they are at terminal stations 
with chargers. Although this yields higher levels of reliability, it has a substantial negative impact on the 
grid as shown previously in Figure 3, and result in potentially unnecessary charging during the day. The 
results also show the superior reliability of the SONO compared to the OFO strategy. Figure 4 also shows 
an infeasibility occurring to a BEBs on the 18th day with the SONO strategy. However, that should not be a 
problem with the presence of backup BEBs and the real-time monitoring system. The option of replacing a 
BEB, which is expected to run out of energy within the next few hours, with a fully charged one from the 
garage will be added to our final system with the SONO strategy. 

 

 

Figure 4. The lowest SoC among the BEB fleet 

Conclusions and Future Work 

Our preliminary results show the high potential benefits of the BRDSS. The results show its higher ability 
in balancing the tradeoff between the operational feasibility and the impact on the grid. Thus, the real-time 
optimized strategy yields higher levels of reliability compared to the offline one, and is better aligned with 
the grid compared to the greedy heuristic strategy. In our final complete study, we will include the REGs 
and their uncertainty as well as the ESS, at which we also expect a superior performance from the real-time 
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SONO compared to the other strategies. Thus, it is expected from the SONO strategy to reach better 
coordination between the charging events and the actual renewable energy generation periods due to the 
online updates of the predicted REGs’ output. Accordingly, it is also expected that the SONO will be smarter 
in making the decisions regarding charging and discharging the ESS. Thus, it should charge it either when 
there is an excess renewable energy generation or if needed when the grid’s energy prices are very low. 
Finally, the SONO should realize all of that while ensuring higher levels of reliability as our primarily results 
show. We expect to finish our study by October 2019 and present the final results and findings at ICIS in 
December. 

However, beyond the scope of this project, there are several additional paths for future research. At the 
operational level, we consider the trip schedule as an input to our problem. Thus, in case of predicted 
infeasibility during the day, we assume having enough standby BEBs to replace the infeasible ones for the 
rest of the day operation, and we do not consider fixing the problem by adapting the trip schedule. 
Additionally, due to the lack of data, we are also unable to assess the value of predicting the operational 
delays in the trips. We also do not consider the option of selling the renewable energy generated to the grid. 
Moreover, it is worth mentioning that the BEB fleet could be integrated even more tightly with the 
management of the power grid. BEB fleets, with their large amount of energy stored in the batteries, could 
be regarded as a virtual power plant that can be used to actively balance the grid at peak times. Previous 
studies in the field of EVs have shown the potential advantages of applying that two-way integration (Kahlen 
et al. 2018). At the strategic level, our study further illustrates how separate infrastructures and service 
systems become more and more entangled as cities become smarter. Information systems will play a critical 
role in facilitating this integration by allowing for communication between these systems, leveraging 
advanced analytics techniques to minimize the impact of uncertainty, and enabling automated control of 
the overall harmonized system. 
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