
Association for Information Systems Association for Information Systems 

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL) 

ICIS 2019 Proceedings Sustainable and Societal Impact of IS 

Multiple Vickrey Auctions for Sustainable Electric Vehicle Multiple Vickrey Auctions for Sustainable Electric Vehicle 

Charging Charging 

Konstantina Valogianni 
IE University, konstantina.valogianni@ie.edu 

Alok Gupta 
University of Minnesota, alok@umn.edu 

Wolfgang Ketter 
University of Cologne, ketter@wiso.uni-koeln.de 

Soumya Sen 
University of Minnesota, ssen@umn.edu 

Eric van Heck 
Erasmus University, evanheck@rsm.nl 

Follow this and additional works at: https://aisel.aisnet.org/icis2019 

Valogianni, Konstantina; Gupta, Alok; Ketter, Wolfgang; Sen, Soumya; and van Heck, Eric, "Multiple Vickrey 
Auctions for Sustainable Electric Vehicle Charging" (2019). ICIS 2019 Proceedings. 1. 
https://aisel.aisnet.org/icis2019/sustainable_is/sustainable_is/1 

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic 
Library (AISeL). It has been accepted for inclusion in ICIS 2019 Proceedings by an authorized administrator of AIS 
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301383766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/icis2019
https://aisel.aisnet.org/icis2019/sustainable_is
https://aisel.aisnet.org/icis2019?utm_source=aisel.aisnet.org%2Ficis2019%2Fsustainable_is%2Fsustainable_is%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/icis2019/sustainable_is/sustainable_is/1?utm_source=aisel.aisnet.org%2Ficis2019%2Fsustainable_is%2Fsustainable_is%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


Multiple Vickrey Auctions for Sustainable Electric Vehicle Charging

Multiple Vickrey Auctions for Sustainable
Electric Vehicle Charging

Completed Research Paper

Konstantina Valogianni Alok Gupta
IE Business School Carlson School of Management

IE University University of Minnesota
konstantina.valogianni@ie.edu alok@umn.edu

Wolfgang Ketter Soumya Sen
University of Cologne & Carlson School of Management

Erasmus University Rotterdam University of Minnesota
ketter@wiso.uni-koeln.de ssen@umn.edu

Eric van Heck
Rotterdam School of Management
Erasmus University Rotterdam

eheck@rsm.nl

Abstract
Electric vehicles (EVs) are important contributors to a sustainable future. However, un-
controlled EV charging in the smart grid is expected to stress its infrastructure, as it
needs to accommodate extra electricity demand coming from EV charging. We propose
an auctionmechanism to optimally schedule EV charging in a sustainable manner so that
the grid is not overloaded. Our solution has lower computational complexity, compared to
state-of-the-art mechanisms, making it easily applicable to practice. Ourmechanism cre-
ates electricity peak demand reduction, which is important for improving sustainability
in the grid, and provides optimized charging speed design recommendations so that raw
materials are not excessively used. Weprove the optimal conditions thatmust hold, so that
different stakeholder objectives are satisfied. We validate our mechanism on real-world
data and examine how different trade-offs affect social welfare and revenues, providing
a holistic view to grid stakeholders that need to satisfy potentially conflicting objectives.
Keywords: Electric mobility, Green IS, sustainability, intelligent agents, smart markets

Introduction

Electricity grids are undergoing fundamental changes moving toward a new digitized era where consumers
own smart appliances, reside in smart homes and can interact with the grid operator via an ICT infrastruc-
ture (Abe et al. 2011). This new digitized electricity grid is known as smart grid (Amin and Wollenberg
2005). The term smart grid is used to describe a next-generation electrical power system that is typified by
the increased use of communications and information technology in the generation, delivery and consump-
tion of electrical energy. What makes the smart grid different from its predecessor - the traditional grid - is
the large scale integration of renewable sources, the information availability, and the active role electricity
consumers have in it, not only by consuming, but also by producing electricity (photovoltaic panels, wind
turbines, combined heat and power (CHP) units, electric vehicle batteries, etc.).
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The smart grid, because of its digitized nature, can benefit from Information System (IS) solutions at each
stage of the electricity supply chain. For example, on the generation side, advanced solutions have been
introduced in order to benefit from the available information (Choi and Kim 2001), such as mechanisms
to optimally ramp up reserve capacities and prevent black-outs (Maturana and Riff 2007). In addition,
diverse information systems have been proposed in order to facilitate the introduction of renewable sources
creating synergies between locally installed generation and consumption units (micro-grids) (Watson et al.
2010, Rieger et al. 2016, Brandt et al. 2017). On the electricity customer side, there is a strong presence of
automated solutions such as smart meters, smart appliances that ease human decision making. All these IS
solutions set the stage for advanced pricing mechanisms which are able to signal electricity abundance or
shortage and shape the customer consumption behavior (Palensky and Dietrich 2011). In Figure 1, we show
the connection between the physical and digital layer in smart grids. The communication between these two
layers allows for the implementation of advanced management mechanisms at the generation, distribution
and consumption side. We focus on the electric vehicle (EV) integration in the smart grid. EVs are important

Figure 1. Overview of the connection between physical and digital layer in smart grids

elements of the grid for twomain reasons. First, they are significant electricity consumers, suggesting that a
massive EV integration needs to be scheduled properly so that the grid is not overloaded and the EV drivers
are serviced without problems via the existing infrastructure (Ketter et al. 2018). Second, EVs own batteries
which can store electricity. So far, electricity cannot be stored (in large amounts), therefore, the storage
features of EVs are expected to introduce more bilateral flows in electricity grids. Now, EV drivers can
charge their cars from renewable sources, and feed electricity back to the grid when there is a shortage in
supply. Therefore, facilitating a smooth EV introduction in the electricity grid will have significant impact
on the social welfare (Fridgen et al. 2014, Valogianni et al. 2018), contributing to societal sustainability.

We examine the scheduling of EV charging from different stakeholders’ point of view and present design
recommendations. Specifically, we contrast the objectives of grid operators, which are typically non-profit
entities with the objectives of profit or revenue-maximizing entities such as electricity providers. Grid opera-
tors are responsible for ensuring stability and high quality of service in the grid (Wissner 2011, Kanchev et al.
2011), therefore, their main objective is to maximize social welfare. Electricity providers are responsible for
selling electricity to consumers, and make profits through these transactions (Doostizadeh and Ghasemi
2012, Ketter et al. 2016). Therefore, these two objectives might be conflicting and require different design
choices. In this context, we take the stand point of grid operators or electricity providers who auction grid
capacity to EV drivers. Our contribution responds to the following research question:
How should an EV charging auction be designed, ensuring fast allocation of charging requests, while sa-
tisfying social welfare maximization or revenue maximization objectives?

To address this question, we build on Green IS (Dedrick 2010, Watson et al. 2010) and sustainability (Dao
et al. 2011, Malhotra et al. 2013) principles and propose an auction-based mechanism, run by either grid
operators or electricity providers, which uses information available on the smart grid and schedules EV
charging (allocating prices and capacity) in real-time. Auctions, unlike posted-price and capacity allocation
mechanisms, are preferred when the demand is not known or easy to estimate (Bapna et al. 2003, 2008).
Therefore, in this particular problem, inwhich the grid operator or electricity provider does not know at each
point in time how many EVs will require charging, auctions will contribute to allocating the grid resources
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efficiently. Our decision variables determine howmany EV drivers to accept at each point in time, given the
fixed capacity of the grid. Since the grid has fixed capacity, and given the high EV charging demand, some
customers might not be serviced. We examine both social welfare maximization and revenue maximization
objectives and we explore designs that serve each case, as well as the intersection of the two. Furthermore,
our solution requires lower computation time than the state-of-the-art approaches presented in Related
Work sectionmaking it easily applicable in the smart grid. Finally, we conduct a set of simulations calibrated
with real-world data to showcase the practical implications of our mechanism to increase sustainability.

Our paper contributes to the Information Systems - and specifically Green IS - literature (Dedrick 2010,
Watson et al. 2010) by supporting the mutli-dimensional decisions of actors, such as grid operators and
electricity providers, in the fast-evolving digitized electricity markets. We are interested, specifically, in
contrasting the social welfare and the revenue maximization objectives, under the EV charging speed de-
sign lens. The EV charging speed design is an important sustainability dimension in the smart grid, as its
construction requires consumption of raw materials. Therefore, optimized EV charging designs will incre-
ase societal sustainability, without sacrificing user comfort and the grid’s reliable operation. We prove new
theoretical properties related to optimal charging speed design and EV charging request allocation, and we
validate them in simulations calibrated with real-world data. Specifically, we find that the charging designs
that achieve maximum social welfare, and the ones that achieve maximum revenues differ. Therefore, this
trade-off needs to be examined under the sustainability prism. In addition, our mechanism offers fast com-
putable solutions that can directly be applied to practice, since the computation time is a crucial parameter
in the digitized markets. In terms of practical applicability, we test our mechanism with real-world data and
provide insights about the societal impact of our auction mechanism on a large scale.

RelatedWork

Auctions have been used in many different application domains as a means of distributing goods. These
domains vary from eBay (Bajari andHortacsu 2003) and web capacity auctions (Bapna et al. 2003, 2008) to
flowers (Kambil and van Heck 1998) and wireless spectrum auctions (Cramton 1997). Auction mechanisms
used in EV charging assume different objectives and behavioral characteristics on the customer’s side.

Acha et al. (2011) propose a centralized capacity coordination mechanism applicable to EV charging, under
the profit maximization objective. Rigas et al. (2013) introduce a centralized mechanism for matching EV
charging to various charging stations, accounting for spatial and temporal dimensions. Bhattacharya et al.
(2016) extend the concept of second price auctions to be applicable to EV charging. The authors assume
a revenue maximization objective and adopt the Vickrey-Clarke-Groves (VCG) mechanism (Vickrey 1961,
Clarke 1971, Groves 1973) to clear the auction, which increases the computation time. De Craemer et al.
(2014) present a dual implementation for shifting EV charging over time based on a central auctioneer,
whereas Robu et al. (2013) introduce an online auction mechanism for EV charging coordination benefi-
ting from some characteristics of the VCG auctions, adapted to reduce computational complexity. Stein
et al. (2012) extend the previous mechanism by adding pre-commitment attributes in the auction. Kahlen
et al. (2018) propose a centralized fleet management system which is responsible for coordinating the EV
charging, while Vandael et al. (2013) describe a three-step top-down charging coordination mechanism.
Zou et al. (2013) present a cost-minimizing progressive second price auction for efficiently allocating EV
charging requests among multiple bidders. James et al. (2016) describe a profit maximization auction for
EV charging allocation, while respecting capacity constraints. All these approaches propose solutions that
are computationally quite intensive, making their practical applicability difficult in many occasions1. We
propose a solution with a very low computation time, which makes it suitable for large scale EV charging
scheduling without practical barriers.

Furthermore, most of previous work assumes a profit maximizer or a cost minimizer auctioneer, without
contrasting it with the objective of a social planner, such as the grid operator. The smart grid operator (dis-
tribution systemoperator orDSO) is a supervising entity on the smart grid that is responsible formaintaining
its quality of service and reliability. Among its duties is the capacity allocation and congestionmanagement,

1Typically a VCG mechanism in our setting would have a complexity O(n2), while the solution we propose has computational complexity
O(nlog(n)). This means that the typical VCG solution would require more time to be calculated, compared to our solution (n2 > nlog(n)), dependent
on the participants of the auction n (it is a convention to use n in computational complexity theory).
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so that the customers are serviced. Focusing on the EV drivers, the grid operator (DSO) is mainly interested
in servicing all EV drivers in the market without creating bottlenecks and without putting the infrastruc-
ture under strains (Wissner 2011, Kanchev et al. 2011). Miranda et al. (2015) assume an auction servicing
a grid operator (social planner) who aims to fill up a certain grid capacity. They use first price auctions to
allocate the charging requests. Zhou et al. (2015) present a social welfare maximization auction, defining it
as a social cost minimization objective. However, they do not provide any recommendations about optimal
charging speed designs to serve the social planner’s objective. Xiang et al. (2016) propose a social welfare
maximization auction for allocating fast charging requests, however, they define social welfare as maximi-
zing revenues of the presented auction. Similarly, Hu et al. (2014) and Philipsen et al. (2016) propose online
auction mechanisms with low computational complexity, aiming to minimize the cost of the grid operator
(auctioneer), while servicing as many charging requests as possible. de Hoog et al. (2016) present a social
welfare maximization auction mechanism, aiming to service as many EV drivers as possible connected to
the same distribution network.

In Table 1, we present an overview of the EV charging auction literature, on which we are building. We
compare the examined work along 5 dimensions that are important for our contribution.

Table 1. EV charging auction literature overview

Profit/Revenue Grid operator’s Computational Delay Charging infrastructure
Maximization viewpoint complexity Reduction design recommendations

Acha et al. (2011) X - high - -
Bhattacharya et al. (2016) X - high - -
De Craemer et al. (2014) X - medium - -
de Hoog et al. (2016) - X medium - -
Hu et al. (2014) X X low - -
James et al. (2016) X - low - -
Kahlen et al. (2018) X - medium - -
Rigas et al. (2013) X - high - X
Robu et al. (2013) X X medium - -
Stein et al. (2012) X X medium X -
Vandael et al. (2013) X - low - -
Zhou et al. (2015) - X low - -
Zou et al. (2013) X - high - -
Xiang et al. (2016) X - low - -
Philipsen et al. (2016) X X low - -
This paper’s contribution X X low X X

We take the standpoint of a grid operator and an electricity provider and extend theMultiple VickreyAuction
(MVA) mechanism (Bapna et al. 2005) to be applicable to the EV charging domain. In the next section we
explain this mechanism. As part of our contribution, we prove new theoretical properties that hold in the
social welfare and in the revenue maximization case and provide useful insights to energy policy makers
about optimal resource allocation. These properties describe the optimal conditions that must hold in or-
der to maximize social welfare or revenues in the EV charging scheduling problem. Therefore, we present
a benchmark that can be used as the “upper-bound” for applied mechanisms in order to evaluate their per-
formance.

To measure social welfare we use the the delay cost the system (smart grid) suffers in order for all the EV
drivers to be serviced. High social welfare means low overall delay cost. As delay cost, we define the cost
that each individual incurs during the time that s/he is not be able to use the EV, because it is plugged-in.
For some individuals that they need the EV for driving, every hour that they are unable to use their car is
very costly. For other individuals, this charging time might not be of high cost, since they might not need
the car for driving. As system’s delay cost, we define the overall delay cost of all EV drivers who are using
the grid infrastructure for charging. We are following the seminal MVA paper (Bapna et al. 2005), based on
which a social-maximizing entity could be interested in optimally servicing the customer portfolio it is facing
rather than maximizing revenues. Therefore, this social-maximizing entity is interested in maximizing the
number of jobs accepted, instead of the revenues. In our case, a grid operator – being a non-profit entity
– is interested in a well-functioning grid, rather than ensuring revenue maximization for other involved
parties. This serves as the basis for our social welfare assumption. Similar modeling assumptions regarding
social welfare and delay costs have been made in the literature in other contexts (Gupta et a. 2000, Bapna
et al. 2005). As a future extension, we are planning to examine richer representations of social welfare by
including the surplus of all entities involved in the auction.
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Our goal is to assist the auctioneer in making better decisions with respect to scheduling EV charging under
the two different objectives presented in the first two columns of Table 1, and with respect to designing the
charging speeds so that these objectives are satisfied to different extents. Since these two objectives are very
different, they lead to different results. However, stakeholders with these two different objectives exist in
the smart grid and have to collaborate. Therefore, the scope of our work is to show that despite the different
results of the two objectives, there is grounds for both objectives to be satisfied to a certain extent.

We adopt the main Green IS principles (Dedrick 2010, Dao et al. 2011, Watson et al. 2010) according to
which using the abundance of information in our society, we can schedule electricity consumption more
efficiently. This optimized use of electricity can lead to higher sustainability levels, since less raw materials
will be required for grid capacity expansion to accommodate extra demand. Specifically, in the EV charging
domain, using available information for improving decision making is expected to bring significant benefits
to the grid (Fridgen et al. 2014). We contribute to the academic literature by proposing a novelmechanism to
schedule EV charging, with low computational complexity that can serve as an “upper bound” benchmark for
applied mechanisms. We incorporate the delay costs in the EV drivers’ decision function and we prove the
theoretical properties that guarantee optimal scheduling under the social welfare and revenuemaximization
objective. In addition, we validate our mechanism on real-world data and we are able to provide useful
insights to the policymakers about effective EV charging scheduling and charging level design.

Model Formulation and Structural Analysis

We approach the whole EV charging capacity allocation as a knapsack problem with the grid capacity being
the “knapsack” in our case2. Currently, there are different EV charging speeds available in the smart grid
and these charging speeds have a different effect on the electricity peak demand. These charging levels are
offered through charging poles, and it can be that adjacent charging poles offer different charging speeds.
We will refer to these levels as charging speeds, since they practically represent different classes of service.
Once an EV is plugged in and allocated to a charging speed, this charging speed cannot vary over time and
it is constant throughout the whole charging session. A direct analogy can be found in the grid computing
and internet literature (Bapna et al. 2008), where different classes represent different internet speeds.

Our goal is to allocate the EV drivers’ requests for charging to different charging speeds so that the grid
satisfies either social welfare or revenue maximization objectives. We use the overall delay cost the bidders
suffer as a proxy for welfare, since the lower the delay cost themore satisfied the bidders are with the service.
By delay we define the time that an EV is plugged in for charging, and cannot be used by its owner for driving.
The benefits to the grid are measured by the electricity peak demand reduction, since the peak demand is
the main determinant for installing new infrastructure (Strbac 2008). Thus, reducing peak demand means
reducing the need for extra infrastructure and therefore, higher sustainability on the grid (Watson et al.
2010).

Assumptions

Our set-up assumes i ∈ {1, ..., N} EV drivers (bidders) and an auctioneer (smart grid operator or electricity
provider) who receives requests for charging. These requests include a total charging need in kWh, ωi and
an arrival and a departure time, tia and tid, respectively. Each request for an amount ωi is accompanied with
a bid for this amount bi and a cost δi over the delay s/he might suffer. We assume that bids and delay costs
are analogous, bi ∼ δi, as an EV driver who has a high delay cost (urgency to get her EV charged), would be
willing to bid higher for an amount ωi. The requested electricity ωi can be charged at one of the charging
speeds (in kW) rj , j ∈ {1, ..., z} depending on the bids. When a request for charging ωi is allocated to a
charging speed rj then, the binary variable xi,j becomes equal to 1 indicating this allocation. Respectively,
after such an allocation, the completion time of this charging request is τj(ωi) and holds only if xi,j = 1
(otherwise τj(ωi) does not exist):

τj(ωi) = t0,i +
ωi

xi,j · rj
, xi,j ̸= 0 (1)

2In practice, we are not using the whole grid capacity as the knapsack. Instead, we are using a percentage of it, i.e., 50%− 80%, since the grid should
not be operating at the maximum capacity utilization.
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Wedenote as τj(ωi) the delay eachEVdriver ihas to suffer until s/he gets the car charged (so that the amount
ωi is loaded) and is measured as the time the EV gets plugged in till the time it is charged and ready to be
used by the EV driver. This delay includes the time t0,i that the car i is plugged in but not getting charged
(since the grid capacity is used by other EVs) and the time ωi

xi,j ·rj that it takes to get charged at a certain
charging speed rj . Each delay has a different cost for each EV driver, therefore we denote this cost by δi and
increasing delay cost indicates increasing urgency for charging completion. This implies that EV drivers
with high delay costs are willing to pay a higher price for EV charging. Therefore, we assume that there is
a direct analogy between the bids and the delay costs. In other words, EV drivers that submit high delay
costs to the auctioneer have a higher valuation of the requested service and are paying a higher price for this
service. If a request ωi is allocated to a high speed rj , the duration for its completion decreases. Therefore,
urgent requests must be allocated to high charging speeds. The urgency of a request is indicated by the delay
cost, δi. Each EV driver (bidder) i has a utility function over a request ωi such that:

U(ωi, τj(ωi), δi, bi) = γi · ωi − δi · τj(ωi)− bi (2)

By γi we denote the weight each EV driver i puts on receiving an electricity amount ωi and this weight is
not dependent on the speed this request gets allocated. The variable bi is the bid each EV driver submits
for an amount ωi and is directly analogous to the delay cost, i.e, bi ∼ δi. We introduce the coefficient δi
to denote the emphasis (cost) each EV driver puts on this delay. For some EV drivers a potential delay
might not be important since they have no urgency in using their EV, whereas for others this delay might
be important since they need their EV for driving. The described auction is run every epoch (the duration
of the epoch is selected by the auction designer) and we assume that EV drivers who are not serviced in one
epoch, appear in the next onewaiting to get serviced. We assume no knowledge about the EV driver portfolio
each auctioneer is facing, making our mechanism more dynamic and not dependent on specific customer
portfolio assumptions.

Multiple Vickrey Auction

The nature of our particular application requires real-time decision-making capabilities, since the smart grid
is a fast changing environment with lots of information flows, such as electricity prices, capacity available,
EV driver preferences, availability of electricity. Therefore, it is important for the auctioneer to be able to
allocate capacity andpayments to theEVdrivers in real time. Prior research in other applicationdomains has
used the Vickrey-Clarke-Groves (VCG) mechanism for payment and capacity allocation (Dash et al. 2007,
Dimakis et al. 2006, Krishna 2002). This mechanism ensures incentive compatibility and is, therefore,
preferred in set-ups where the EV drivers’ true valuations are not known. However, it has a downside which
is its high computational complexity (Nisan et al. 2007). Therefore, it might create significant burdens in
applying this mechanism in real-world problems with a lot of bidders, where computation of the solution in
real time is required.

Typically, in the smart grid large numbers of EV drivers bid for electricity at each point in time. Therefore,
despite the incentive compatibility, the VCG mechanism is not suitable for this particular case. It is inte-
resting to mention that a typical VCG solution for 100 bidders would require ∼ 10, 000 time units (in CPU
cycles) to be calculated (computational complexity O(n2)), while our solution would require ∼ 200 time
units (in CPU cycles) (computational complexityO(nlog(n))). The reason that the VCGmechanism is more
computationally intensive than the MVA is that in the VCGmechanism each payment for each bidder needs
to be computed differently, and each bidder pays a different price. Specifically, by definition, a VCG pay-
ment allocation forN bidders needs to completeN computations wherein each time one of theN bidders is
not participating in the action. Therefore, there must be N × N computations completed. Thus, following
the computational complexity theory notation, this leads to a complexity of O(n2). In contrast, in an MVA
payment allocation withN bidders, a sorting of the bids is sufficient to determine the payments, as all accep-
ted bidders pay as price the first not accepted bid. Considering that a sorting mechanism, typically, has a
complexity of O(nlog(n)) explains the greater complexity of VCG (Nisan et al. 2007). Taking into account
the aspirations for large EV numbers in the grid by 2030 by the Paris Declaration on Electro-Mobility and
Climate Change (100 million by 2030) (UNFCCC 2015), one can understand that VCG mechanism will cre-
ate burdens in reducing congestion in the grid. Therefore, we build on an alternative, more computationally
tractable mechanism the Multiple Vickrey Auction (MVA) approach proposed by Bapna et al. (2005). We
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modify this auction mechanism to be applicable in our particular set-up and prove new theoretical proper-
ties. According to MVA, if there arem units of a good for sale, then them highest bids win and the (m+1)st

bid becomes the price paid for each of the units sold (uniform pricing).

This mechanism while computationally tractable, does not ensure incentive compatibility. However, for
large number of bidders, which is the case in our market, incentive compatibility is not an issue due the law
of large numbers. Practically, because of the large numbers of bidders involved, the impact of each bidder’s
misaligned incentives will be negligible. In other words, an untruthful bidder, bidding at a higher price than
his/her true valuation, will have no actual gain from this untruthful behavior, because s/hemight get a slight
priority over the other bidders but this will lead him/her paying a higher price. Therefore, the actual gainwill
be non-existent or negligible in an auction with a lot of participants (Gupta et al. 2000). Usually, in complex
market mechanisms, such as the Federal Communications Commission (FCC) wireless spectrum auctions,
the incentive compatibility is not of real concern, because there is no actual gain at an individual level due to
the large number of bidders. Furthermore, Bapna et al. (2005) prove that MVA is posterior regret-free or
(ex-post incentive compatible) in social welfare maximization settings and therefore, there is no actual gain
for the bidders if they are untruthful. More importantly, an auctioneer gains more significant advantages by
being able to compute the allocation in real-time than by guaranteeing incentive compatibility.

Multiple Vickrey Auction for Social Welfare Maximization

Adapting the MVA logic to our set-up, we formulate the grid operator’s problem as a welfare maximization
problem. Grid operators are responsible for ensuring stability and high quality of service in the grid, hence,
they act as social planners (Wissner 2011, Kanchev et al. 2011). Sincewe defined the social welfare as reduced
delays, the grid operator’s problem is practically the aggregate delay cost minimization problem. The delay
cost minimizing knapsack formulation with uniform pricing is presented below:

min
xi,j

∑
i

∑
j

δi · τj(ωi) ⇔ min
xi,j

∑
i

∑
j

δi · (t0i +
ωi

xi,j · rj
) (3)

where τj(ωi) is the delay eachEVdriver i suffers after being allocated to a charging speed rj , with a respective
delay cost δi. Here, the objective is to minimize the overall delay cost, therefore, this is the quantity being
minimized. However, the delay costs are analogous to the price bids, thus, the bidding behavior is taken
into account via the delay costs submitted by the bidders. The constraints of our problem are:

xi,j ·
δi
ωi

>
δi+1

ωi+1
∀i ∈ {1, ..., N} and ∀j ∈ {1, ..., z} (4)∑

j

xi,j ≤ 1 ∀i ∈ {1, ..., N} (5)∑
i

∑
j

xi,j · rj ≤ C (6)

xi,j = {0, 1} ∀i ∈ {1, ..., N} and ∀j ∈ {1, ..., z} (7)
δi
ωi

≥ 0 ∀i ∈ {1, ..., N} (8)

Constraint (4) ensures that the EV drivers are allocated to charging speeds based on their delay cost over
charging amount declarations - and consequently their bid over quantity submissions - in ascending order.
The EV driver who values the service the most gets the highest quality of service (charging speed). Con-
straints (5) and (6) indicate that the variables xi,j are binary and denote whether a service is allocated to an
EV driver or not. Constraint (7) ensures that the grid is stabilized by not exceeding the capacity available (in
our case we set C lower than the actual maximum capacity available to allow for a buffer on the grid, since it
should not be operating at maximum capacity utilization). Equation (8) indicates the assumption that delay
costs, processed by themechanism, have always positive values (negative delay costs are not accepted by the
auction).

Multiple Vickrey Auction for Revenue Maximization

If a revenue-maximizing entity, such as an electricity provider, would use our mechanism, then the MVA
formulation would be as follows:

max
xi,j

∑
i

∑
j

xi,j · pj (9)
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where pj is the price of each charging speed level rj . Subject to constraints:

xi,j · pj ≤
bi+1

ωi+1
∀i ∈ {1, ..., N} and ∀j ∈ {1, ..., z} (10)∑

j

xi,j ≤ 1 ∀i ∈ {1, ..., N} (11)∑
i

∑
j

xi,j · rj ≤ C (12)

xi,j = {0, 1} ∀i ∈ {1, ..., N} and ∀j ∈ {1, ..., z} (13)
pj ≥ 0 ∀i ∈ {1, ..., N} (14)

Constraint (10) ensures that the bids bi for different service amounts ωi are selected in ascending order in
service classes j, setting as price per class pj the bid of the last EV driver not accepted in this class bi+1

ωi+1
. In

this formulation, the bidding behavior of each bidder is taken into account directly via their bids bi+1

ωi+1
, as

shown in constraint (10). Based on this constraint, the bids over requested charging bi+1

ωi+1
are sorted in an

ascending order, and the highest classes accept the highest of them. The first not accepted bid in each class
j determines the price for this class pj . Constraint (14) ensures that the price pj in each class j has a positive
value.

Theoretical Results

First, we present the theoretical properties of the proposed mechanism in the form of propositions. These
propositions outline the optimal scheduling that can be achieved in the grid and the optimal charging speed
design, and serve as theoretical benchmarks. The proofs of all theoretical results can be provided upon
request due to space limitations.

Optimal number of service levels

We examine the optimal number of service levels from a revenue and a social welfare maximization point
of view. Proposition 1 shows the optimal number of service levels from a revenue maximization point of
view. As we show in Propositions 2 and 3, there is a difference in the preferred service levels depending
on the grid operator’s objective. In the Simulation section, we examine this trade-off using real-world data
for our calibration. In this paper, we do not account for installation costs of the different service levels, as
these costs are fixed investment costs that are incurred by the grid only once. Our mechanism needs to be
able, given a certain overall capacity, to accommodate EV charging demand, and decide which is the optimal
allocation of this available capacity into different service classes. Thus, our mechanism is assumed to be put
in place after these fixed costs are being incurred, having as its objective to maximize the variable benefits
collected each time the auction is run.

For Proposition 1 to hold, we make the assumptions that at least one of the requested amounts of electricity
ωi is smaller than one of the available capacitiesCj . If not, no charging request will be cleared by the auction
and the overall revenue collected will be zero.

Proposition 1. Havingmultiple charging speeds (classes), is optimal froma revenuemaximization point
of view.

Proposition 1 assumes that same number of bidders is accepted both in the auction with one charging speed
level and in the auction with multiple charging speed levels implemented In Example 1, we illustrate the
rationale of Proposition 1.

Example 1. Assume a system with N = 4 bidders in a single-class MVA auction, with bids b1 = 4, b2 = 2,
b3 = 12, b4 = 7monetary units for charging requests ωi = 1, ∀i ∈ N . Let us assume that the auction can
accept the 3 bidders with the highest bids. Then, the price they all had to pay would be the bid of the fourth
bidder which is 2. Therefore, the overall revenue the system would collect, would be 3 · 2 = 6 monetary
units. In a two-class MVA auction, assuming again that in total 3 bidders can be accepted, 2 in the first class
and 1 in the second class, the price for the first class would be 7 monetary units and for the second class 4
monetary units. The overall revenue the system would collect would be 2 · 7 + 4 = 18monetary units.
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Proposition 1 shows that the revenue collected by implementing multiple classes is higher or equal to the
scenario of implementing only one charging speed class. Therefore, a revenue maximization entity would
benefit from multiple charging speed classes. Next, we show that the lowest delay cost in the system is
caused by having only one charging speed level, which corresponds to the highest charging speed. This is
noteworthy, given the nature of our problem. It, practically, means that it is optimal for the grid operator
to have only the fastest charging speed in place, and schedule the EV drivers in this single class. We prove
the optimality of the single charging class, from a social welfare maximization point of view, both in the
case that the EV drivers have the same delay costs δi = δ ∀i ∈ {1, ..., N} and in the case that EV drivers
have different delay costs δi. The delay costs are the main differentiating factor across EV drivers, therefore,
we need to account for both cases that EV drivers have the same (Proposition 2) and different delay costs
(Proposition 3).

Proposition 2. Having one charging speed (class), corresponding to the fastest charging speed, is opti-
mal from a social welfare maximization point of view, when EV drivers have the same delay costs δ.

Example 2. We assume a single-class MVA system with a charging class r1 = 5kW and two bidders with
the same delay costs δ = 5 and charging requests ω1 = 5kWh and ω2 = 6kWh, respectively. The overall
delay cost the system will suffer will be 3.2 · 5 = 16, since the first bidder needs 1h to charge fully and the
second needs to wait for an 1h for the first bidder to complete charging and 1.2h to charge. If the second
bidderwas scheduled first, the overall delay cost the systemwill suffer would be: 3.4·5 = 17, since the second
bidder needs 1.2h to charge fully and the first one needs to wait for 1.2h and 1h to complete the charging. In
the same example, if the system was a two-class MVA with two charging classes r1 = 5kW and r2 = 4kW ,
then the overall delay cost the system will suffer will be 3.5 · 5 = 17.5, if we schedule the first bidder in r1,
whereas, if we schedule the second bidder r1, it will be 3.65 · 5 = 18.25. In both cases, the delay cost suffered
by the system is greater in the two-class MVA, and, therefore, it is more beneficial for the grid to have a
single-class MVA in place.

Proposition 3. Having one charging speed (class), corresponding to the fastest charging speed, is opti-
mal from a social welfare maximization point of view, when EV drivers have different delay costs δi.

Example 3. Continuing onExample 2, but now assuming different delay costs among bidders: δ1 = 5 and
δ2 = 3, in a single-class MVA, the overall delay cost the system will suffer is 1 · 5+2.2 · 3 = 11.6, if bidder 1 is
scheduled first. If bidder 2 is scheduled first, the overall delay cost the systemwill suffer is 1.2·3+2.2·5 = 14.6
In the same example, if the systemwas a two-class MVAwith two charging classes r1 = 5kW and r2 = 4kW ,
then the overall delay cost the system will suffer will be 1 · 5+2.5 · 3 = 12.5, if we schedule the first bidder in
r1, whereas, if we schedule the second bidder in r1, it will be 1.2 · 3+ 2.45 · 5 = 15.85. Similarly to Example
2, it is more beneficial for the grid to have a single-class MVA in place. Furthermore, Examples 1, 2 show
that depending on the sequence the bidders are scheduled, the overall delay cost of the system is different.

Bidder scheduling within service classes

Propositions 2 and 3 show that, both in the case that the customers have the same or different delay cost, it is
optimal to have only one service class (charging speed) and this service class needs to be the highest charging
speed, so that the overall delay in the electricity market is minimized. In this single-class MVA, however,
prioritization among bidders is required, since, as shown in Examples 1,2, different prioritzation yields
different overall delay cost. In Propositions 4, 1 and 2 we show how prioritization among bidders should
take place, so that the social welfare to be maximized.

Proposition 4. When delay costs δi and charging requests ωi differ among bidders, the bidders should
be scheduled in a descending order of ratio δi

ωi
, so that social welfare is maximized.

Example 4. Let us assume two bidders with different delay costs δ1 = 5 and δ2 = 3, and different charging
requests ω1 = 5kWh and ω2 = 6kWh in a single-class MVA of r1 = 5kWh. If bidder 1 is scheduled first the
overall delay cost the system will suffer is 1 · 5+ 2.2 · 3 = 11.6. If bidder 2 is scheduled first the overall delay
cost the system will suffer is 1.2 · 3 + 2.2 · 5 = 14.6. So, it is more beneficial for the system to schedule first
the bidder with the highest ratio δi

ωi
.
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Below, we present two observations following from Proposition 4.

Observation 1. When delay costs δi differ among bidders, and charging requests are the same ω, the
bidders should be scheduled in descending delay cost δi order, so that social welfare is maximized.

Example 5. Let us assume two bidders with different delay costs δ1 = 5 and δ2 = 3, and the same charging
request ω = 5kWh in a single-class MVA of r1 = 5kWh. If bidder 1 is scheduled first the overall delay cost
the system will suffer is 1 · 5 + 2 · 3 = 11. If bidder 2 is scheduled first the overall delay cost the system will
suffer is 1 · 3+ 2 · 5 = 13. So, it is more beneficial for the system to schedule first the bidder with the highest
delay cost.

Observation 2. When delay costs are the same δ, and charging requests ωi differ among bidders, the
bidders should be scheduled in an ascending charging requestωi order, so that socialwelfare ismaximized.

Example 6. Let us assume two bidders with the same delay costs δ = 5, and charging requests ω1 = 5kWh
and ω2 = 6kWh in a single-class MVA of r1 = 5kWh. If bidder 1 is scheduled first the overall delay cost the
system will suffer is 1 · 5 + 2.2 · 5 = 16. If bidder 2 is scheduled first the overall delay cost the system will
suffer is 1.2 · 5 + 2.2 · 5 = 17. So, it is more beneficial for the system to schedule first the bidder with the
lowest charging request.

Simulation Environment

To evaluate the proposed auction mechanism in realistic conditions, we build a simulation environment, in
which the auctioneer has limited capacity C and the EV drivers bid for amounts of electricity so that they
charge their cars. Depending on the modeling assumptions one can set set this limited capacity C lower
than the actual available capacity, since it is not beneficial for the grid’s reliability to be functioning at the
actual maximum capacity (C can be set to the 80% or 50% even of the maximum capacity). The auctioneer
uses the model presented by (3)-(8) to schedule EV charging. Below, we present the steps followed by our
simulation in each run.
Parameters: Time horizon T , time granularity (epoch duration) ∆t, number of EV drivers N , maximum
capacity available C
Step 1: The grid auctioneer initiates the auction by auctioning available capacity C for the epoch t with
duration∆t.
Step 2: Each i ∈ {1, ..., N} customer participating in the auction is placing her bid bi for an amount of
electricity ωi for the epoch t, together with her delay cost di for this time period.
Step 3: The auctioneer runs the auction presented by (3)-(8) for epoch t.
Step 4: The first m highest bids are accepting in the auction and the bid of the m + 1st bid becomes the
price all of them customers pay for their requested amount of electricity ωi.
Step 5: The overall amount of electricity of all accepted EV drivers comprises the electricity demand the
grid faces during time t and is denoted as yt =

∑m
i=1 ωi.

Step 6: The price during time period t each accepted EV driver pays is pt = bm+1.
Step 7: The auctioneer repeats Steps 1-6 until the number of epochs t reaches a maximum defined by the
time horizon T .

The simulation parameters, such as capacityC, horizon T , number of customersN do not affect the stability
of the result, as they are exogenously determined before the auction begins and are not influencing the
dynamics of the auction. For example, for customers N and capacity C, the auction mechanism will try to
service as many of theseN customers as possible, given the capacity C. The horizon T does not influence the
result, as the auction takes place during every epoch t, which has smaller duration than T .

To evaluate ourmechanism’s performancewe are interested in two criteria: its ability to reduce peakdemand
on the grid supporting its stability and reliability and its ability to service asmany EV drivers as possible with
theminimumdelay cost possible. For the first criterionweuse the absolute peak in the demandand the peak-
to-average ratio (PAR or crest factor) metric and for the second criterion we examine how many customers
are delayed. The first criterion is important from a sustainability point of view, as less grid infrastructure
would be required, and the second is important from a social planning point of view.
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Let y = (y1, ...., yT ) denote the temporal vector of the electricity demand curve, the absolute peak in the
demand is ypeak = max

t∈T
yt and indicates themaximumdemand value during horizon T . A good performance

of our mechanism would mean low ypeak. Similarly, the peak-to-average ratio (commonly found as crest

factor) is calculated as PAR =
ypeak

yrms
=

max
t∈T

yt

√
1
T

∑T
t=1 y2

t

. PAR indicates how extreme the peaks in a waveform

are. PAR reduction is important because much of the cost of electricity supply is driven by peak demand. In
order to have higher stability in the electricity grid, we need a PAR value close to 1.

A social welfare maximizing entity, such as a grid operator, aims for overall low delay cost of all the bidders
serviced via the auction mechanism, while servicing as many bidders as possible. Therefore, to assess the
impact of our method on the social welfare, we introduce the total delay cost suffered by the bidders divided
by the bidders m serviced by the auction: SW =

∑
i

∑
j δi·τj(ωi)

m . This metric allows, not only to assess the
delay cost as an absolute number, but also, the mechanism’s ability to service as many bidders as possible
and improve social welfare. It is desirable for SW to be as low as possible, since that would be high number
of serviced bidders at overall low delay cost.

Data Description

For each simulation run as described by Steps 1-7, the requested amount of electricity ωi per EV driver i is
required, as well as their corresponding bids bi and delay costs δi.

To calibrate the charging requests ωi per customer i we use real-world charging data obtained from the
Netherlands during the period January 2013 - December 2013. This data set includes charging observations
from 1500 charging poles in the whole country. It has recordings of 10,462 EV drivers and includes in total
231,976 transactions with the grid operator. Our data set includes detailed requests from EV owners to the
grid for charging. Each EV driver has a unique ID, and each transaction with the grid is time-stamped and
accompaniedwith the requested amount of electricity. In each simulation run, we draw randomlyN number
of these requests.

Since currently there is no optimal resource allocation mechanism implemented on the grid operator’s side,
our data does not include bids for price and delay cost. Therefore, for the EVdrivers’ price and delay cost bids
we assume that they come froma beta distribution parametrized in variousways, δi ∼ Betaα,β , bi ∼ Betaα,β .
The beta distribution is chosen because for various parametrizations of α and β it yields different commonly
used distributions such as uniform, Gaussian, etc. The probabilities of each bid, bi ∈ (0, bmax] or delay cost,
δi ∈ (0, δmax] drawn from this distribution are:

f(bi;α, β) =
1

B(α, β)
· bα−1

i · (1− bi)
β−1 or f(δi;α, β) =

1

B(α, β)
· δα−1

i · (1− δi)
β−1 (15)

where B(α, β) is the beta function B(α, β) =
∫ 1

0
uα−1 · (1 − u)β−1du. By bmax and δmax we denote the

maximum values of bids and delay costs in an auction.

Benchmarks

To validate our method’s performance with regard to its ability to reduce peak demand and delays we run
simulations, as described by Steps 1-7, and compare their outcome with the benchmarks described below.

Real-world Charging

First, we compare our mechanism with the way EV charging is currently scheduled by the grid operator.
This benchmark depicts the current (real-world) situation where the EV drivers can charge their cars based
on their preferences, without any incentives provided by the grid toward reducing peak demand or delays.
We refer to this benchmark as real-world charging. We calibrate it with real-world charging data obtained
from the Netherlands during the period January 2013 - December 2013. This data set includes charging
observations from 1500 charging poles in the whole country. It has recordings of 10,462 EV drivers and
includes in total 231,976 transactions with the grid operator. In Figure 2(a), we display the box plot of the
steady state EV charging demand over a 24h horizon. In Figure 2(b), we display some (anonymized) average
daily charging profiles drawn randomly from our data set. We observe that the peak hours overlap for these
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EV drivers, which is indicated by the high EV charging demand values during the time 15:00-21:00. This is
an indication that the grid will benefit from a mechanism to prevent congestion and alleviate these peaks.
This benchmark is not suitable for measuring the overall system delay, as in this mechanism all customers
are serviced and there is no built-in possibility to reject customers if they are overloading the grid.

2-class MVA

Secondly, to evaluate our mechanism’s ability to reduce delays in the system, we implement the same MVA
mechanism (described by equations (3)-(8)) but with two charging levels (service classes) available. In this
2-class MVA mechanism, for the second service level holds r2 = r1

2 . We show that with the 2-class MVA
the delays are increased and as a result more customers remain unserviced. It would not be possible to use
the real-world charging for this comparison, since real-world charging is totally uncontrolled without any
capacity constraints and therefore, no delays occur. Instead the grid suffers high peak demand.

(a) (b)

Figure 2. (a) EV Charging over a 24 hour horizon (b) Typical average daily charging profiles

Empirical Evaluation

To empirically test the performance of our mechanism, we implement the simulation environment as des-
cribed in Steps 1-7. Our goal is to measure the impact of our mechanism on grid’s peak demand and overall
delay, as well to provide design recommendations. The first is of high importance to grid operators since
reduced peak demand is coupled with a reliable and properly functioning grid. The second is important for
maximizing social welfare and ensuring that as many EV drivers as possible are serviced by the grid. The
latter is crucial for auctioneers that have different objectives and require an optimal auction design.

Impact on Peak Demand and Demand Volatilty

To measure our mechanism’s ability to reduce peak demand in the grid, we benchmark it against the real-
world charging. Specifically, we run the auction for 24 epochs (each epoch lasts 1h). We randomly draw
M number of bidders per auction, each of whom has different charging requests and different arrival and
departure times. We show how the aggregate charging demand is distributed over time using the real-world
charging benchmark, andwe compare this with applying theMVAmechanism. We run 100 experiments and
in each experiment both the single-class MVAmechanism and real-world charging are used. In Figure 3 we
show the demand redistribution in the 100 experiments (the error bars show the 95%confidence interval). In
this simulation experiment, we assumed a social welfare maximization objective, with one service class. To
make a fair comparison of the two results, we assumed themaximum capacity of the service class to be equal
to the mean demand of the real-world benchmark, so that there is the same amount of electricity compared
in both scenarios. Figure 3 shows that with the single-class MVA the variability of the demand gets reduced
significantly. This is attributed to the hard capacity constraint imposed by the grid operator. Furthermore,
since the grid operator ismaximizing social welfare, s/hewill strive to accept asmany bidders as possible. To
quantify the above comparison, we calculate the peak-to-average ratio (PAR) and the peak demand metrics
for both charging mechanisms. We observe that the PAR is reduced in the MVA case compared to the real-
world charging, since a direct capacity constraint is imposed together with a social welfare maximization
objective. A PAR reduction by 44.12% indicates that the grid operator is able to achieve a less volatile, hence
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more predictable electricity demand. Demand predictability is crucial in grid balancing, since grid operators
that cannot match the expected demand with the existing supply have to resort to expensive solutions, such
as buying electricity in the reserve market to prevent black- or brown-outs.
A peak reduction of 42.76% means that the grid operator is able to reduce the instantaneous peaks in the

Average Average Max Max
PAR Peak PAR Peak

Real-world 2.04 91.31 12.87 565.65
single-class MVA 1.14 52.27 1.15 59.99
Reduction (%) 44.12 42.76 91.06 89.39

Figure 3. Electricity demand comparison after adopting MVA and real-world charging

demand by 42.76%. The peak demand is an important metric for the grid operator, since this metric is the
determinant of the capacity installed. Specifically, if there is a high peak that lasts for a very short period of
time, the grid needs to be able to service this peak and, therefore, needs to have sufficient capacity available.
Furthermore, this peak demand is usually covered by expensive peak power plants, which operate using
mostly fossil fuels. Thus, reducing peak demand supports the physical infrastructure of the smart grid and
increases the sustainability levels.

Social Welfare Increase

Grid operators are, typically, social welfare maximizers, as opposed to other grid stakeholders, such as elec-
tricity providers, who are revenuemaximizers. Therefore, in the single-classMVA presented before, the grid
operator strives to minimize the overall delay cost. Comparing the single-class MVA with the 2-class MVA,
we show how ourmechanism reduced the delay cost in the system and as a result the social welfare wasmax-
imized. We run 100 experiments and in each experiment both single-class and 2-class MVAmechanism are
implemented. Each auction lasts 24 epochs of 1 hour duration and in each auction we draw randomly M
participants from the data set.

In Figure 4, we present the distribution of the SW metric in single-class MVA and 2-class MVA, over all our
simulated results. This figure empirically shows that by implementing a 2-class MVA the ratio of overall
delay costs over all serviced bidders is 1.53 (µ = 1.53, σ = 0.0285), which is higher compared to the single-
class MVA (µ = 1.36, σ = 0.0261). Therefore, from a social welfare point of view, it is beneficial for the grid
operator and the EV drivers to have only one class of service (charging speed) implemented. Ideally, this
charging speed should be the highest possible allowed by the infrastructure, so that the delays suffered are
minimum.

Average SW Maximum SW

2-class MVA 1.53 1.59
single-class MVA 1.36 1.43
Reduction (%) 11.02 10.17

Figure 4. Ratio of overall delay cost over number of serviced bidders (SW ): single-class
MVA and 2-class MVA
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Optimal Number of Service Classes - Revenue Maximization

Proposition 1 shows that it is optimal from a revenue maximization point of view to have multiple service
classes, as opposed to the social welfare maximization case. Furthermore, Proposition 1 analytically gua-
rantees the superiority of a multiple class service design, provided that the same number of bidders can be
serviced by all designs. However, it is not clear how the revenues will change once bidders start getting
rejected from the auction.

We show in Figure 5 how the revenue of the same auction changes as the number of service classes z offered
by the grid grow. We make the assumption that there is overall capacity C split in z number of service
classes. Furthermore, we assume that each service class j ∈ {1, ..., z} differs from the next higher class
by the same capacity increment. Figure 5 is in accordance with past literature on MVA (Bapna et al. 2005)
which has showed that the revenue collected from MVA mechanisms is non monotonic. In this auction,
there are 79 bids submitted for one epoch t and the overall capacity C of all service classes is 150 kW. The
maximum revenue is collected when z = 9 service classes are implemented. Figure 5 shows that the overall
revenue increases to a maximum and then it starts decreasing. The reason for this decrease is that once the
number of service classes z grows, the capacity of those classes decreases, therefore, fewer bidders can be
accepted. This rejection of bidders has a positive effect on the overall collected revenue up to a point where
the maximum possible revenue is achieved, but after this point the overall trend is decreasing. Therefore, it
is beneficial for revenue maximization entities to run such simulations to understand the limits of charging
speed designs and the impact of the associated bidder rejection. In this scenario, if an auctioneer had opted
for more than z = 9 service classes, she would have lost revenues. Furthermore, she would require a higher
investment, therefore, this result can inform stakeholders about optimal charging speed designs that cannot
be theoretically calculated.

Furthermore, in Figure 5, we display the overall number of bidders accepted in the auctionwhile the number
of classes z increases. We observe that themaximumnumber of bidders accepted in an auction is 44 and this
number is only achieved for z = 1 and z = 2. The revenue in the case of z = 2 is higher than the case z = 1.
This result verifies Proposition 1, according to which even when accepting the same number of bidders, the
collected revenue will be higher when the number of service classes z grows. Second, this figure shows that
while the number of classes z grows, the overall number of accepted bidders decreases, as there are bidders
rejected, because their requests cannot be allocated due to their size ωi or their bid bi.

Figure 5. Revenue and number of accepted bidders for different number of classes z

Optimal Number of Service Classes - Revenue andWelfare Maximization

Propositions 1, 2 and 3 show that in a revenue maximization scenario it is optimal to have multiple service
classes, whereas in a social welfare maximization scenario one service class yields the highest social welfare.
Therefore, it is not possible to satisfy both objectives. However, through simulation experimentation an
auction designer can find the optimal number of service classes that satisfy both objectives to some extent.
Figure 6 displays the pattern of social welfare and revenue while the number of service classes z grows.
To measure social welfare we use the metric 1 − SW

Maximum SW (right axis in Figure 6), which indicates that
a higher value brings lower delay overall delay and higher number of bidders serviced. To measure the
revenue, we use the normalized revenue metric Revenue

Maximum Revenue (left axis in Figure 6). Similarly to the
previous simulation experiment 79 bids are submitted and the overall capacity C of all service classes is
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150 kW. Figure 6 shows that there is a declining trend of the social welfare while the number of the classes
implemented increases, while for two service classes (z = 2) the revenue and social welfare metrics meet.
Therefore, our simulation results enrich the theoretical propositions, as they can help grid stakeholders to
decide how different objectives can be mutually satisfied without sacrificing significantly social welfare or
revenues.

Figure 6. Revenue and social welfare for different number of classes z

The benefits of our approach are diverse. First, it ensures peak demand and volatility reduction, which can
be translated to reduced need for installing physical grid capacity, hence, increased societal sustainability.
Second, by estimating via simulations the optimal number of charging speeds, grid stakeholders can save
costs from installing excessive numbers of charging speeds, as well as conserve raw materials that would
be required to be consumed to put this charging infrastructure in place. Finally, by examining the trade-off
between revenue maximizing entities and social planners, grid stakeholders can estimate the revenues that
might be potentially lost if the social welfare maximization objective is satisfied (e.g. for z = 1 in Figure 6),
and compensate for these lost revenues via other sources (such as taxation). In this way, grid operators have
a more complete view of both conflicting objectives in the grid, and can compensate for potential losses on
each side (social planning or revenue maximization).

Conclusions & FutureWork

We present an auction mechanism to optimally allocate smart grid resources so that EV charging is coordi-
nated, and grid sustainability is supported. Our mechanism has low computational complexity, making it
easily applicable in practice when large numbers of EV charging requests need to be allocated in real-time.
Furthermore, our mechanism can be tailored to cater to the needs of different grid stakeholder’s providing
a more holistic view of the EV charging scheduling. Specifically, we compare the revenue and social wel-
fare maximization objectives and derive theoretical properties regarding the optimal charging speed design.
This set of results can provide useful recommendations to grid infrastructure stakeholders that can optimize
the charging speed design accordingly, without consuming excessive rawmaterials. Finally, we validate our
theoretical results in simulations calibrated with real-world data and we derive specific charging speed de-
sign recommendations that could not be analytically calculated. Analyzing this trade-off between conflicting
objectives, we allow for diverse objective satisfaction without sacrificing significant benefits, such as social
welfare or collected revenues.

In the future, we plan to integrate bidirectional flows in our mechanism, as right now it only assumes char-
ging and not discharging to the grid (vehicle-to-grid). Furthermore, currently, we plan to elicit the delay
costs from real-world interaction with users via a mobile-app, as we are currently drawing them from a set
of statistical distributions. Finally, we are planning to enrich our social welfare modeling by including the
surplus of all entities involved in the auction.
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