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Abstract

Customer scoring models are the core of scalable direct marketing. Uplift models pro-
vide an estimate of the incremental benefit from a treatment that is used for operational
decision-making. Training and monitoring of uplift models require experimental data.
However, the collection of data under randomized treatment assignment is costly, since
random targeting deviates from an established targeting policy. To increase the cost-
efficiency of experimentation and facilitate frequent data collection and model training,
we introduce supervised randomization. It is a novel approach that integrates existing
scoring models into randomized trials to target relevant customers, while ensuring con-
sistent estimates of treatment effects through correction for active sample selection. An
empirical Monte Carlo study shows that data collection under supervised randomization
is cost-efficient, while downstream uplift models perform competitively.

Keywords: Uplift Modeling, Causal Inference, Experimental Design, Selection Bias

Introduction

Direct marketing plays a key role in consumer markets. The continuous growth of e-commerce, accounting
for 1.8 trillion Euros globally in 2019 (Statista 2019), is accompanied by simultaneous growth in online
and email advertising. Spending on traditional print advertising like catalog marketing has shown a similar
growth (Statista 2017). At the core of scalable directmarketing, campaign analysts employmodels to predict
future customer behavior and target responsive clients (Olson and Chae 2012).

For example, a decision tree could be trained to predict the probability for a customer to purchase in the
next week based on known characteristics. The expected behavior of the customer could then be used to
inform operational decision-making in that customers with a probability below average are targeted with
an incentive. However, the predictive model is agnostic to the marketing policy, the overall effectiveness
of the marketing action and the effect of the marketing action on individual customers. Outcome models
provide an estimate of customer behavior, but fail to provide an estimate of the potential change in customer
behavior, which is the goal of marketing intervention.

A growing research stream advocates that the decision which customers to target should be addressed di-
rectly through causal inference in the form of uplift models (Gubela et al. 2017; Devriendt et al. 2018). In-
stead of predicting customer behavior, uplift models estimate the causal effect of a marketing action on an
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individual customer given their characteristics. In the above example, an uplift tree could be trained to pre-
dict the increase in probability for a customer to conduct a purchase in the next week if a catalog was sent.
Uplift models thus provide an estimate of the incremental benefit from the marketing treatment, which can
explicitly be used as a direct criterion for operational decisions by comparing it to the incremental cost.
Conceptually, uplift models align with the actual decision problem of choosing the action with the highest
incremental gain for each customer.

Uplift models are trained on experimental data and estimate the treatment effect by comparing the observed
behavior of a group of individuals who have received the treatment, the treatment group, and a distinct
group of individuals who have not received the treatment, the control group. Similarly, experimental data
is required to evaluate the performance of uplift models (Radcliffe 2007). In contrast, non-causal models of
customer behavior are trained and evaluated on customers of which all or none have received the treatment.
Collecting experimental data in randomized experiments is well established in practice in the form of A/B
tests. Although used to evaluate the gross benefit of campaigns, A/B tests are not commonly used for uplift
modeling to estimate individualized treatment effects (Ascarza 2018).

During experiments, random assignment of individuals to either the treatment or control group is crucial
to train unbiased uplift models. However, data collection through randomized experiments is costly, since
random targeting withholds marketing spending on some customers that would be targeted under the es-
tablished targeting policy and applies spending on customers that would otherwise not be targeted. The
deployment of uplift models exacerbates data collection costs since decision support systems typically re-
quire continuous or frequent evaluation and occasional retraining on recent observations, which in turn
require fresh experimental data.

We propose a novel approach for the collection of experimental data for uplift modeling based on the com-
bination of cost-optimized randomization at the time of data collection and selection bias correction during
model building, which we refer to as supervised randomization. In a nutshell, supervised randomization
introduces a stochastic component to the existing targeting model and extends the standard experimental
design with full randomization by considering customers that are rejected by the targeting policy.
Our contribution is two-fold. First, we show that supervised randomization can be used to integrate existing
scoring models into randomized trials. The integration of existing scoring models into group assignment
increases the cost-efficiency of experimentation and facilitates continuous data collection during regular
business operation. Continuous data collection is critical for non-disruptive experimentation, monitoring
the performance of uplift models under deployment and recurring model training. Facilitating model train-
ing and monitoring has the additional benefit to improve the acceptance of causal models by management
and stakeholders.
Second, we introduce inverse probability weighting and doubly robust estimation as methods to control for
biased treatment assignment to the uplift literature. Uplift models have so far relied on the assumption of
data collected under full or imbalanced randomization in randomized controlled trials. We show that recent
advances in the econometrics literature extend the applicability of uplift models to cases with non-standard
treatment assignment. The bias-corrected uplift models are shown to perform competitively on simulated
data.

Background

Consider a marketing action applied to an individual user i as a treatment intended to change an observed
outcome Yi. LetDi ∈ 0, 1 be an indicator if the individual has been treated and denote the outcome with and
without treatment as Y 1

i and Y 0
i , respectively. Then the individual treatment effect is the incremental gain

caused by a marketing action Y 1
i − Y 0

i . Because a customer either does or does not receive the marketing
action, the actual treatment effect is not observable. We can, however, estimate the treatment effect on
the population or on the individual level. We denote the average campaign uplift as average treatment effect
(ATE) and the customer-level uplift τ = E[Y 1

i −Y 0
i |x = Xi] as individualized treatment effect (ITE) (Powers

et al. 2018; Knaus et al. 2019), sometimes alternatively denoted conditional average treatment effect (CATE)
in the econometrics literature. Furthermore, we refer to amodel used to estimate the outcome Yi as outcome
model and amodel used to estimate the treatment effect τ as a causal model, as amore general alternative to
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the termupliftmodel. The operational decision problemposed in upliftmodeling is to decide if an individual
customer should receive the marketing treatment. The decision is automated through the targeting policy,
a mapping from the estimated ITE to the binary decision of whether to treat the individual.

Three assumptions are needed for causal inference following the potential outcome theorem (Rosenbaum
and Rubin 1983). First, the Stable Unit Treatment Value Assumption (SUTVA) guarantees that the poten-
tial outcome of a customer is unaffected by changes in the treatment assignment of other customers. This
assumptionmay be violated when treatment effects propagate through the social network of customers (As-
carza et al. 2017). In settings of low value or low involvement products, research on treatment effects in
marketing typically assumes that no interaction takes place (Hitsch and Misra 2018) or that the indirect
effect of treatment on other customers is at least substantially smaller than the direct effect of the treatment
(Imbens and Wooldridge 2009).

The second assumption is conditional unconfoundedness, i.e. the independence between the potential out-
comes and the treatment assignment given the observed covariates (X) (Rosenbaum and Rubin 1983).(

Y 1
i , Y

0
i

)
⊥⊥ Di|Xi = x. (1)

The third assumption, called overlap, guarantees that for all x ∈ supp(Xi) the probability to receive treat-
ment e(x) = P(D = 1|Xi = x) is bounded away from 0 and 1:

0 < e(x) < 1. (2)

When the treatment assignment process is under the control of the experiments as in the customer targeting
setting, conditional independence and overlap can be ensured by design through fully randomizing treat-
ment assignment with treatment probability e(x) = e ∈ (0; 1). Randomized experiments assign individuals
at random to one of at least two conditions, where each condition entails a specific treatment. In controlled
experiments, one condition is the control condition in which individuals receive no treatment. In combina-
tion, randomized controlled trials (RCT) are the gold standard of data collection for causal inference. We
refer to uniform treatment assignment as full randomization. Supervised randomization provides a frame-
work that preserves the advantage of the randomized experimental design but allows some control over the
probability of treatment assignment on the individual level.

Literature Review

The unbiased training of causal models and targeting policies requires data that fulfills the assumptions of
the potential outcome theorem. In addition, the unbiased evaluation of causal models and policies also re-
quires experimental data and metrics developed for counterfactual prediction (Radcliffe 2007; Hitsch and
Misra 2018). Violation of the unconfoundedness (Eq. 1) and overlap assumptions (Eq. 2) in observational
studies cannot be substituted by collecting more data in the form of more covariates or more observations
(Gordon et al. 2019). Randomized experiments are thus considered a prerequisite to uplift modeling. How-
ever, the design and costs of RCT are often not discussed in the literature. We aim to fill this gap by propos-
ing a more efficient design for randomized experiments. We first summarize recent developments in causal
machine learning, related research on efficient experimental design and methods to correct for treatment
assignment in observational studies.

Causal machine learning methods can be divided into direct and indirect approaches. Direct estimation al-
gorithms construct a feasible loss to estimate a model for the ITE. Indirect approaches model the expected
customer response conditional on the treatment group and estimate the ITE as the difference between ex-
pected responses. This study employs a robust, indirect two-model logistic regression and a state-of-the-art,
direct causal forest for the empirical comparison and provides a discussion of these models below. For an
in-depth discussion and benchmark of recent methods for ITE estimation see Powers et al. (2018), Knaus
et al. (2019), and Künzel et al. (2019).

Indirect approaches estimate the treatment effect via estimating the response with and without treatment
using common statistical learners. The two-model approach (Radcliffe 2007), or K-model approach in set-
tings with more than one treatment, estimates a separate model for the outcome in the treatment group and

Fortieth International Conference on Information Systems, Munich 2019 3



Affordable Uplift

control group data and estimates the ITE as the difference between the predicted outcomes. The two-model
approach is flexible with regard to the underlying outcome models. K-nearest neighbors learners (Gubela
et al. 2019) and deep neural networks (Farrell et al. 2018) have demonstrated promisingmodel performance
in the two-model framework. While recent research advocates discretizing the outcome variable to use clas-
sification models in continuous settings (Gubela et al. 2017), the two-model approach extends naturally to
both categorical and continuous outcomes. This facilitates the use of classification and regression models
to forecast, for example, purchase completion or customer spending, respectively.

A number of well-knownmachine learning algorithms have been extended to estimate the ITE directly with-
out the need to model the customer response (e.g. Lo 2002; Zaniewicz and Jaroszewicz 2013). Note that the
average treatment effect within a subgroup provides a useful estimate of the treatment effect for individ-
uals within that subgroup. Hence, algorithms that split the data into groups to calculate estimates on the
subset are inherently applicable to causal modeling and modifications of the k-nearest neighbor estimator
(Hitsch and Misra 2018) and tree-based models (Rzepakowski and Jaroszewicz 2012; Athey and Imbens
2016) have been applied to estimate individualized treatment effects. Causal tree models modify the Classi-
fication and Regression Tree by a splitting criterion maximizing the expected variance in treatment effects
between leaves (Athey and Imbens 2016). Within each terminal node conditional on the covariate splitting,
the conditional average treatment effect can be estimated and provides an ITE for the observations falling
into that node.
Causal trees can be combined into ensembles through bagging or boosting. Powers et al. (2018) propose a
gradient-boosted ensemble of causal trees and an algorithm using multivariate adaptive regression splines.
Causal forests are similarly flexiblemodels and have been shown to be consistent and asymptotically normal
for a fixed covariate space (Athey et al. 2019).

Both direct and indirect approaches to ITE estimation share the need for experimental data. The collection
of experimental data has not been explicitly explored in the uplift literature. However, concerns over the or-
ganizational difficulty and the opportunity cost of running randomized controlled trials have led to research
on the optimal use of available data and efficient experimental design in related fields.
A popular strategy for the evaluation of multiple targeting policies is to avoid experimentation for each can-
didate policy and instead to estimate each policy’s performance using one existing, fully randomized exper-
iment. The cost-efficient evaluation is possible through extrapolation from observations where the policy
recommendation matches the observed random treatment assignment, weighted to match the actual popu-
lation (Swaminathan and Joachims 2015; Athey and Wager 2017; Hitsch and Misra 2018). This evaluation
strategy requires existing experimental data, while our goal is to decrease the cost of collecting experimental
data through efficient randomization. Approaches to efficient evaluation and efficient randomization are
therefore complementary.

Application Source Access Observations
Treatment /

Control Ratio

Direct mail in office supplies Kane et al. (2014) Closed 460,000 17:1

Mail promotion Hansotia and Rukstales (2002a) Closed 550,000 10:1

Cross-selling mail in insurance Guelman et al. (2014) Closed 34,370 9:1

MSN subscription Chickering and Heckerman (2000) Closed 110,000 9:1

Criteo online advertising campaign Diemert et al. (2018) Open 29,105,905 7:1

Direct mail in financial services Kane et al. (2014) Closed 1,144,000 5:1

Simulation study Lo (2002) Closed 100,000 4:1

Customer retention mail in insurance Guelman et al. (2015) Closed 11,968 2:1

Catalog marketing Hitsch and Misra (2018) Closed 441,000 2:1

E-mail promotion in merchandising Hillstrom (2008) Open 64,000 2:1

E-mail promotion in holiday marketing Hansotia and Rukstales (2002b) Closed 282,277 1:1

Table 1. Randomized treatment data in marketing
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The experimental design of previous studies indicates awareness of data collection costs. Table 1 shows
the marketing goal, data accessibility, number of observations and the imbalance between treatment and
control group sizes of experimental campaigns in customer targeting applications. The large number of ob-
servations in recent studies is unsurprising since common technologies in e-commerce settings (e.g., web
cookies) facilitate the collection of large data volumes of customer interactions in online shops. However,
large-scale experimentation imposes substantial costs by randomly withholding profitable treatment for a
sizeable control group. We reason that large experiment sizes indicate that companies perceive potential
gains from causal modeling and are willing to collect data on a sufficient scale. Since the costs of experimen-
tation are a result of the randomization of treatment assignment, we propose that supervised randomization
can lead to cost reductions that are economically relevant in practice given the scale of experimentation. The
savings potential increases with the targeting cost and will thus be most effective for catalog or telephone
marketing, where resource-intensive treatments drive cost, and in customer churnmanagement, where tar-
geting customers may increase awareness of contract expiration and induce churn in otherwise passive cus-
tomers.
We further observe that 10 of 11 datasets show a substantial difference in size between the treatment and con-
trol group, which we denote imbalanced full randomization. The imbalance implies that companies assign
customers to the treatment group with probabilities 2-17 times higher than assignment to the control group.
The observed imbalanced experimental design ismore efficient than equal assignment to treatment and con-
trol group when the marketing action is expected to be profitable on average and treatment is the dominant
targeting strategy. Companies are thus conducting active cost management of random experiments based
on an assessment of overall treatment effectiveness. Our approach follows the samemotivation, but extends
cost management to the individual level based on an assessment of the individual treatment effectiveness.

The design of randomization on the individual level is more thoroughly discussed in the medical literature
(Schulz andGrimes 2002). On the one hand, administering a pharmaceutical to a randompatient can induce
severe health issues, so randomized trials pose a risk for patient health. On the other hand, new treatment
may prove to be a substantial improvement over comparative options, so that withholding treatment can
be seen as suboptimal care. The latter concern for optimal treatment of patients has motivated research on
adaptive randomization procedures, where patients are more likely to be assigned to treatment for which
positive outcomes have been previously observed over the course of the study (Lachin et al. 1988; Rosen-
berger and Lachin 1993). Response-adaptive randomization in medical trials differs from our approach in
that we use a scoring model to adjust treatment probability conditional on customer characteristics rather
than observing treatment outcomes during the trial.

The trade-off between collectingmore data to improve the scoringmodel and applying an existing treatment
policy deterministically corresponds to the exploration-exploitation problem in reinforcement learning and
multi-armed bandit approaches. Supervised randomization is related to the ε-greedy algorithm (Schwartz
et al. 2017), extended by heterogeneous exploration probabilities εi = 1−e(x). In comparison to upper con-
fidence bound sampling or Thompson sampling (Schwartz et al. 2017) which favor exploration of uncertain
predictions, supervised randomization favors exploration close to the decision boundary of the policy and
facilitates straightforward logging of the true treatment probability.
This study considers supervised randomization for continuous evaluation and periodical updating of treat-
ment effect models. We do not adapt the scoring model and conditional treatment probabilities during the
duration of the experiment as opposed to online learning of the treatment effect model under reinforcement
learning. We leave a more in-depth comparison for future research.

Supervised randomization introduces dependency between the covariates and treatment assignment in the
data as a side effect of adjusting treatment probabilities on the individual level. This violates the conditional
independence assumption and without correction would lead to biased treatment estimates known as se-
lection bias. An intuitive interpretation is that selection bias is due to the covariates being non-identically
distributed between the treatment and control group because group assignment is itself based on the ob-
served covariates. Statistical analysis of the average or individualized treatment effect on data that violates
the unconfoundedness assumption thus requires correction for the effect of the covariates on the individual
probability to receive treatment. To the best of our knowledge, methods to systematically correct for selec-
tion bias have not yet been studied in the uplift community. Instead, research on uplift modeling assumes
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the feasibility of randomized control trials where there is no such selection bias by design, but ignores the
associated costs of data collection in practice.
However, selection bias corrections are well-understood and common for research using observational data,
where random treatment assignment is not ethical or feasible. The most common technique for selection
bias correction are the inverse probability weighting estimator (Horvitz and Thompson 1952) (IPW) and its
extension to the doubly robust (DR) estimator (Robins et al. 1994). Selection bias correction has recently
been integrated into popular ITE estimators, which are applied in the observational studies prevalent in
economics research (Athey et al. 2019; Künzel et al. 2019).

Within the field of information systems, the IPW correction is used in observational studies (e.g., Caliendo
et al. 2012) and research on recommender systems and reinforcement learning. In recommendation set-
tings, explicit and some forms of implicit feedback can be understood as the outcome of a non-randomized
experiment, where users evaluate a subset of items that they select based on their preferences. The customer
feedback can be corrected by weighting the feedback by the probability of a customer to interact with an item
before rating it (e.g., Schnabel et al. 2016).
Reinforcement learning researchmakes regular use of existing log data, which is cost-efficient to collect and
available at scale, but not fully randomized. Under some conditions, unbiased training or evaluation of a
learning algorithm is possible using IPW to correct for the treatment policy at the time of data collection
(e.g., Swaminathan and Joachims 2015). Interestingly, if treatment under the existing policy is stochastic
with a known probability and the treatment probability is logged, the resulting process can be seen as an
online version of the supervised randomization process.

For observational data, the treatment probability used to correct for the selection bias is unknown and IPW
thus follows a two-step process. In the first step, the treatment probabilities used for IPW correction are es-
timated from the observed data. In the second step, the treatment probability estimates are used to correct
subsequent estimates of treatment effects. The approach proposed here is substantially different from the
common applications of IPW in the first step. Under supervised randomization, the true treatment prob-
ability for each observation is actively controlled and thus known, eliminating the need for estimation and
the potential for estimation error through unobserved variable bias or model misspecification.

Efficiently Randomized Experimental Design

Within this study, we take a holistic viewof the causalmodeling process emphasizing the interaction between
data collection andmodel building. Data collection through a randomized controlled trial is a necessary part
of the causal modeling process. To collect RCT data, the established targeting policy is temporarily replaced
by randomized treatment assignment. However, the replacement of an efficient targeting strategy by a ran-
dom assignment has negative side effects in practice, even when restricted to a subset of customers. First,
randomized treatment assignment carries opportunity costs resulting from targeting the wrong customers.
Compared to an existing effective targeting strategy, profitable customers are less likely to be targeted while
less profitable customers are more likely to be targeted. Second, customers may misconceive data collec-
tion periods as a decrease in service or advertising quality. Since customers are not informed about the
temporary replacement of the targeting model, they will attribute the random treatment assignment to the
targeting efforts of the company.

Instead of replacing the established targeting policy with randomized treatment allocation, we propose to
introduce a stochastic component to the existing targeting model as supervised randomization. Under su-
pervised randomization, treatment assignment is largely driven by the effective targeting model but suffi-
ciently randomized to allow the estimation and evaluation of causal models. Embedding the existing target-
ing model into the experimental design has three merits.
First, supervised randomization increases the return on treatment during experimentation when compared
to full randomization. Supervised randomization allows us to actively decrease the cost of running ran-
domization experiments by treating profitable customers identified by the targeting model with a higher
probability than customers identified as less profitable by the scoring model.
Second, supervised randomizationwith conservative propensitymapping could facilitate continuous experi-
mentation. Since both training and evaluation of causalmodels require experimental data, regular repetition
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of experimental data collection is necessary when causal models are deployed. Continuous experimentation
could reduce variability in service from the perspective of the customer and streamline data collection for the
company by avoiding interference with operation to run experiments and reducing the need to justify and
approve the need of data collection at intervals. These goals are shared with reinforcement or bandit learn-
ing with the important difference that our approach facilitates model estimation through standard machine
learning or uplift methodology.

Supervised randomization

Supervised randomization introduces heterogeneity in treatment probabilities into a randomized controlled
experiment. We discuss the proposed approach as an extension to A/B testing through the introduction of
a targeting model in several steps. We describe the process for one treatment and one control group in the
online context where customers arrive in sequence, but note that the same process extends tomore than one
treatment group and other static settings.
A/B testing for treatment evaluation is an instance of randomized controlled experiments with a single treat-
ment. Each arriving customer is randomly assigned to the treatment or control group. The probability to
receive treatment is identical for all customers e(x) = e with the probability for assignment to the control
group 1 − e. The probability of treatment assignment can be equal e = 1 − e = 0.5 or imbalanced towards
the preferred strategy for e ∈ (0; 1). As discussed in the literature review, imbalanced probabilities are used
to control the costs of the experiment in practice. For the case of multiple treatments, a different probability
can be assigned to each treatment.

During regular business operation, the existing scoring model assigns a score S(x) to each customer, where
S(x) could be an estimate of the conversion probability or the ITE. The model score S(x) is compared to
a threshold θ to classify customers into groups, where the group high potentials consists of the customers
with the higher score, e.g., the highest probability to respond positively to the treatment. The high po-
tential group would be targeted during regular operation, while the low potential group would receive no
treatment. Figure 1a visualizes a scoring model during A/B testing. For the purpose of experimental data
collection, the classification and deterministic targeting is replaced by random targeting. Independent of
group assignment, each customer has an equal probability to receive treatment e(x) = e.

The proposed process of supervised randomization (Algorithm 1) integrates the scoring model into the ran-
domized treatment assignment. As an intermediate step, let the treatment probability be dependent on the
classification by the targeting strategy as depicted in Figure 1b. Different to the A/B test described in Figure
1a, where the targeting policy does not affect the treatment assignment, we now treat high potential cus-
tomers with probability eh and low potential customers with probability el, where eh ̸= el and el, eh ∈ (0; 1).
Note that eh and el do not need to sum up to 1. We increase the treatment probability in the high poten-
tial group relative to the low potential group by choosing eh and el so that eh > el. Thereby, more high
potential customers than low potential customers are treated, in accordance with the scoring model and
approximating the regular targeting policy. Simultaneously, we preserve a degree of randomization in the
treatment/control assignment, since each customer has some probability to be assigned to the treatment
or control group, respectively. The randomization is required to fulfill the overlap assumption (Eq. 2) and
should be large enough in practice to ensure coverage over the range of customer characteristics in both the
treatment and control group. By violating the overlap assumption and setting eh = 1 and el = 0, we recover
the deterministic targeting policy of the classification model, where only customers in the high potential
group are treated. Note that if we choose a constant treatment probability eh = el, the process simplifies to
an A/B test on the whole population as shown in Figure 1a.

We can further approximate individualized targeting by introducing more groups, each with a unique treat-
ment probability ek. Define a set of thresholds [θ1, θ2, . . . , θK ] and corresponding treatment probabilities
[e1, e2, . . . , eK ] to target customer i with probability ek for which θk−1 < S(xi) ≤ θk. As above, we require
ek ∈ (0; 1) and

∑
k ek = 1. By increasing the number of thresholds K, we approximate a continuous map-

pingM : S(x) → e, where each customer is assigned an individual treatment probability ei proportional to
the individual model score.
The specific mapping frommodel scores to treatment probability should follow the requirements of the ap-
plication. We propose to determine the mapping by defining a set of k equal-sized intervals on the range
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Figure 1. Experimental design of full randomization (left) and supervised randomization
(right). Note the heterogeneity in treatment probability for supervised randomization.
Rand. indicates random assignment

of the model score in the training data [min(S(Xtrain)),max(S(Xtrain))] and assigning a linearly increasing
treatment probability ek to each interval, while setting the lowest treatment probability at e1 = 0.05 and
the highest at eK = 0.95. Note that asymmetric mappings result in a controlled shift of average treatment
probability. The design of the mapping thus allows the straightforward extension to imbalanced supervised
randomization.

Algorithm 1: Supervised Randomization for a Controlled Experiment withK Treatments

Input: Scoring model S(·); Treatment probability mappingM(·)
Output: Treatment probability ei,k; Treatment assignmentDi ∈ {0, 1, . . . ,K}; Outcome Yi

for i = 1, …, N do
Observe customerXi

Calculate customer score si,k = S(Xi)
Set treatment probability ei,k = M(si,k)

Draw treatmentDi ∼ Categorical(ei,k)

if Di == 0 then
Do not treat individual i
Observe outcome Yi(0)

else
for k in 1, . . . ,K do

if Di == k then
Treat individual i with treatment k
Observe outcome Yi(k)

end
end

end
end
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We reiterate that supervised randomization (Algorithm 1) randomly assigns each customer to the treatment
or control group, but adjusts the probability of this assignment based on the output of a scoring model, so
that customers with higher score are treated with higher probability. The assigned individual treatment
probabilities are logged and used in the subsequent analyses.

Inverse probability weighting

Using the targeting model to adjust the individual probability to receive treatment introduces a sampling
bias into the experiment. The sampling bias is a direct result from the violation of independence between
treatment probability and the individual characteristics via the scoring model. This type of selection bias
commonly occurs in observational studies, where customers self-select into the treatment group, or in nat-
ural experiments. In both situations, the sample shows measurable distributional differences between the
control and treatment group. Subsequent evaluation or model building need to correct for the selection bias
to ensure unbiased estimates of the treatment effect. We will discuss IPW as a method that is easily inte-
grated into model building and evaluation and discuss the doubly robust estimator as a recent extension.
For a comprehensive overview of approaches including IPW see Knaus et al. (2019). The idea underlying all
approaches is to weight each observation in the treatment or control group by the inverse of its respective
probability to be assigned to the observed group.

In contrast to observational studies where the treatment probability is estimated, the true probability at
which customers receive the treatment is assigned actively based on a scoring model and a set of observed
variables and is consequently known exactly under supervised randomization. Without the need to estimate
the treatment probability from the data, we avoid confoundedness due to unobserved variables or misspec-
ification of the propensity model by design.

IPW restores the hypothetical distribution as it would look like in a fully randomized experiments by weight-
ing every customer with regard to the individual treatment probability. Intuitively, customers who were
assigned by chance to the treatment group, even though their characteristics result in a low treatment prob-
ability, are underrepresented in the treatment group. IPW assigns these customers a higher weight. For
example, if the probability of being in the treatment group for a customer is e(x) = 0.2 then the observed
outcome if this customer received treatment is multiplied by 1/e(x) = 1/0.2 = 5. Vice versa, if the same
customer was assigned to the control group, which happened with a probability of 1− e(x)) = 0.8, the cus-
tomer’s outcome in the control group is weighted by 1/0.8 = 1.25.
The IPW corrected ATE can then be estimated as:

ÂTEIPW =
1

N

(
N∑
i=1

DiYi

e(Xi)
−

N∑
i=1

(1−Di)Yi

1− e(Xi)

)
. (3)

In observational studies, the propensity scores are unknown and need to be estimated from observed covari-
ates. The doubly robust (DR) estimator is consistent and unbiased if only one of the models, the regression
or the propensity score, is correctly specified (Lunceford and Davidian 2004):

ÂTEDR =
1

N

n∑
i=1

DiYi − (Di − e(Xi)) g1 (Xi)

e(Xi)
− 1

N

n∑
i=1

(1−Di)Yi + (Di − e(Xi)) g0 (Xi)

1− e(Xi)
. (4)

Here gD (Xi)=E(Y |D,Xi = x) aremodels of the outcome variable on x, estimated separately forD ∈ {0, 1}.

Adjusting for the propensity score under full randomization has no effect on the point estimate for the aver-
age treatment effect. However, there is some evidence that even in fully randomized experiments the large-
sample variance of the estimate can be reduced by using estimated propensity scores to control for random
imbalance in covariates as well as orthogonalization with themean as in the doubly robust (Williamson et al.
2014).
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Empirical Evaluation

We evaluate the proposed randomization procedures through a simulation study designed to represent a
directmarketing setting, which is a common application of upliftmodeling inmarketing (see Radcliffe 2007;
Devriendt et al. 2018).1

Since IPW correction with the true propensity score is feasible, ATE and ITE estimates are consistent under
supervised randomization. The goal of the empirical study is to compare the increased conversion rate and
cost savings due to supervised randomization with the loss in efficiency due to a less balanced sample. The
efficiency of each randomization procedure has two dimensions, that is, 1) monetary cost of the experiment
and 2) the quality of models trained on the data collected during the experiment measured on downstream
tasks.
First, the campaign profit during the experiment provides a metric on which to compare the opportunity
cost of different experimental designs. We compare the campaign profit under supervised randomization to
the baseline of full randomization, which provides optimal data quality, and expect opportunity costs to be
lower under the proposed supervised randomization.
Second, we evaluate the data generated from the experiment by comparing the predictive performance of ITE
estimators trained on data under supervised randomization to the same estimators trained on data under
full randomization. Our metrics of model performance are the mean absolute error to the true treatment
effect (MAE), which is known in this simulation study but unknown in real-world settings, and the Qini
coefficient, which is a standard metric in the uplift literature. The Qini coefficient is a rank metric similar to
model lift based on the group-wise difference in conversion rates for customers ranked by their estimated
treatment effect (Radcliffe 2007).

Simulation design

We compare the ATE and ITE estimates on experimental data collected under full and supervised random-
ization. An online evaluation of randomization procedures is challenging since it requires running a ran-
domized experiment for each experimental design. We therefore evaluate the supervised randomization
design in an offline study and leave online testing for future research. Our empirical Monte Carlo study uses
real data to the extent possible to ensure a realistic setting in which we simulate the treatment effect and
have full control over the treatment assignment (Nie and Wager 2017; Knaus et al. 2019). The UCI Bank
Marketing dataset (Moro et al. 2014) provides data on 45,211 customers of a Portuguese bank through 17
continuous or categorical variables covering individual socio-demographic and financial information, cam-
paign details and macroeconomic indicators. All customers were subject to a phone marketing campaign
promoting a term deposit and the target variable indicates if a customer has agreed to a deposit following
the campaign.

Based on the available data, we simulate the individual treatment effect and hypothetical outcomes following
the procedure of Nie and Wager (2017). The treatment effect in real data can be a complex, non-linear
function of a subset of observed variables and unobserved variables (Farrell et al. 2018). Therefore, we
simulate the treatment effect as a combination of the twelve variables containing personal ormacroeconomic
information. The treatment effect as a non-linear combination of covariates is then modelled by a neural
network of one hidden layer with the number of nodes equal to the number of input variables and sigmoid
activation, initialized with random weights drawn from a standard Gaussian. To simulate the existence of
unobserved covariates, e.g. due to privacy concerns, we remove variables with personal information on the
customers’ age and marital status from the subsequent analysis.
In marketing settings, we further expect the ATE to be positive but small and the ITE to be mostly non-
negative as marketing theory suggests a direct marketing campaign to increase overall conversion, with
potentially zero but rarely negative impact on customers (Hitsch and Misra 2018). We center the simulated
ITE distribution at an ATE of 5% and scale the standard deviation to 0.04 for 89% of simulated ITE to be
positive. For our application, an ATE of 5% implies that the telephone campaign will convince an additional
5% of randomly targeted customer to register a term deposit. Because all customers in the observed data
have received the marketing treatment, we simulate the potential outcome without treatment by flipping

1The R code for the empirical evaluation is available at https://github.com/Humboldt-WI/supervised_randomization.
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outcome labels for observations chosen randomly in proportion to their treatment effect as inNie andWager
(2017).

Supervised randomization integrates an existing customer scoring model into the experimental design. A
more accurate estimate from the existing model increases the extent to which potential cost savings are
realized during experimentation. Noisier estimates of the scoring model lead to treatment assignment that
is less profitable but has less influence on downstream tasks. In particular, supervised randomization with
a noisy scoring model samples more evenly in the covariate space, thus mitigating the efficiency loss in
downstream tasks, assuming a stochastic estimation error. We control the quality of the existing targeting
model by simulating a noisy causal model with predictions τ̂i = τi+ε and ε ∼ N (0, σ). We report results for
σ=0.025, such that customers with ITE equal to the ATE have a 95% chance to receive a prediction in the
range [0,0.1] between the true and predicted treatment effect to provide a conservative estimate of the cost
savings from supervised randomization. We split the data into four folds for cross validation and randomly
assign treatment to each observation in the training data according to full or supervised randomization.
For ITE estimation, we then estimate the ITE model on the training data and evaluate its prediction on the
holdout fold. Since the random treatment assignment introduces additional randomness into the evaluation,
we repeat the treatment assignment 50 times for each holdout fold and report the average over a total of 200
repetitions.

Statistical model performance analysis

We first establish the effectiveness of supervised randomization independent of any application-specific cost
setting. We evaluate the cost efficiency during experimentation through a comparison of conversion rates,
ATE estimates based on their variance and ITE estimates based on uplift-specific performance metrics.

For cost efficiency, Table 2 reports the mean target fraction and conversion rate for full randomization at
equal probability, full but imbalanced randomization with treatment probability 0.66 and the proposed su-
pervised randomization procedure. We provide statistics on targeting no or all customers for context. How-
ever, targeting no or all customers and other non-randomized targeting strategies do not allow experimental
data collection. In other words, settings None and All are inapplicable in practice for targeting policy eval-
uation or treatment effect estimation.

None Full Supervised Full (Imb.) All

Targeted Fraction of Customers 0.000 0.500 0.500 0.666 1.000

Conversion Rate 0.109 0.135 0.143 0.143 0.160

Table 2. Ratio of targeted customers and corresponding conversion rate under each random-
ization procedure. None/All denote targeting no/all customers for reference

The target fractions for full randomization is 0.5 by definition and for imbalanced full randomization 0.66
by design. Small deviations from the target fraction are possible since treatment assignment is randomized
on the individual level. The direction and ratio of the imbalance between the size of treatment to control
group are in practice set by the experimenter to match the expected average treatment effect or marketing
requirements, e.g. campaign budget. We chose a ratio of 2:1 in favor of targeting a larger group of customers
following the most common design observed for customer targeting data in related research (see Table 1).

The conversion rate under each randomization provides an indirect measure of the campaign success with a
higher conversion rate as an indicator of monetary returns. The increase in conversion rate from targeting
no customers at 10.9% to targeting all customers at 16% reflects the simulated positive average treatment
effect, specifically that customers are on average 5 percentage points more likely to convert after receiving
the marketing treatment. During a fully randomized experiment, we observe an increase in the overall con-
version rate by 2.6 percentage points to 13.5%. At the same fraction of customers targeted, the proposed
supervised randomization increases the conversion rate by another 0.8 points to 14.3%. The improvement
due to supervised randomization is the direct result of adjusting each customer’s probability to be treated
based on the targeting model and targeting customers with a high predicted treatment effect.
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The benchmark strategy, imbalanced full randomization, increases treatment probability for all customers
indiscriminately. The increase in individual treatment probability results in a conversion rate increase by0.8
percentage points, identical to the increase under full randomization, but at a higher fraction of customers
targeted. The managerial implication is that supervised randomization achieves the same conversion rate
as current best practice, while reducing the targeting rate with its associated costs by 24%.

The higher conversion rate from targeting randomization towards relevant customers comes at the downside
of collecting less data for customer groupswith very high or very low treatment probability. While we can use
the logged treatment probabilities to optimally correct for the sampling bias that is introduced by supervised
randomization, estimates of the treatment effect will exhibit higher uncertainty through higher variance.
Figure 2 shows the estimated ATE under each randomization procedure. We see that 1) deviations from full
randomization in the form of imbalanced full randomization and supervised randomization return unbiased
estimates and 2) the overall variance from the true value and the number of extreme deviations increases
when moving from full randomization to supervised randomization.
A Kruskal-Wallis test verifies that there is no significant difference in the mean point estimate among the
four settings (df=3, χ2 = 1.00). We are thus able to verify the theoretical exposition and to show that the
selection bias introduced by supervised randomization can be corrected for by applying either IPW or DR as
described above. The additional uncertainty due to supervised randomization is less pronouncedwhenusing
DR to correct for heterogeneous treatment probabilities instead of IPW. DR estimates exhibit a significantly
lower variance when compared to IPW estimates, based on a Levene-test for homogeneity of variance (df=1,
F=10.29).
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Figure 2. Estimated average treatment effect averaged over 200 iterations for each random-
ization procedure. The dashed horizontal line denotes the simulated true average treatment
effect, dots within each boxplot denote the mean estimated ATE

As uplift applications are concerned with the estimation of individualized treatment effects for customer
scoring, we proceed to evaluate themodel performance of two causalmodels on the data collected under each
randomization procedure. We select the two-model approach using logistic regression and the causal forest
and report the performance of using the ATE as a constant prediction for reference. Since our focus is on the
comparison of the randomization procedures rather than a comparison of ITE estimators, we manually set
the parameters for the causal forest as follows: number of variables tried at each split (mtry) = 7, number of
trees = 500, minimum node size = 20 and sample fraction for honest tree building = 0.5. Model predictions
are evaluated using the mean absolute error to the true ITE and the Qini score on holdout data.

We identify two takeaways in Table 3. First, the causal forest outperforms the two-learner approach on both
MAE and Qini. The performance difference is consistent over all randomization procedures with the causal
forest resulting in aMAE lower by about 0.008 points and aQini higher by 0.001 points. Second, we observe
that deviating from full randomization to supervised randomization leads to the expected decrease in model
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ATE Two-Model (LR) Causal Forest

MAE Qini MAE Qini MAE Qini

Full 0.0324 - 0.0353 0.0045 0.0276 0.0056

Full (imb.) 0.0324 - 0.0357 0.0045 0.0275 0.0057

Supervised 0.0325 - 0.0383 0.0041 0.0295 0.0047

Table 3. Average profit-agnostic performance of causal models for each randomization pro-
cedure. We evaluate the models using the MAE to the (simulated) true treatment effect
(lower is better) and the Qini coefficient (higher is better)

performance. Under supervised randomization, the difference to full randomization for the two-model ap-
proach is 0.003 points MAE and 0.0004 points Qini and for the causal forest 0.002 points MAE and 0.001
points Qini. Imbalanced full randomization at e = 0.66 shows no substantial performance decrease com-
pared to balanced full randomization, although additional experiments indicate lower performance at higher
levels of imbalance. The subsequent profit-based analysis aims to provide a comprehensible evaluation of
the observed differences in a business context.

Profit analysis

Weproceed to empirically show the extent towhich supervised randomization can reduce the cost of running
a randomized experiment and the size of the expected trade-off measured by the performance of models
trained on the collected data. The profit setting for telephone marketing is described by the gross profit
resulting from a conversion and the variable contact cost of making a call to the customer. If we assume a
constant interest margin for the bank, the gross profit from a one-year term deposit Ω is equivalent to the
net interest marginm and the deposit amount A, Ωi = mAi.
The incremental gross profit due to amarketing campaign is defined as change in the conversion probability,
the treatment effect, to earn the gross profit on conversion minus the contact cost c, i.e. ∆Ωi = τimAi − c.
Given an accurate estimate of the treatment effect τi, the decision to target a specific customer is profitable
when the predicted incremental gross profit for the customer is positive, i.e. τ̂imAi − c > 0.

To simplify interpretation, we consider cost ratios in the range of [5, 10, . . . , 50] to 1. Evaluation over a range
of cost settings ensures the robustness of our results and allows generalization to a variety of profit and cost
scenarios that may arise across banks or industries, e.g. for catalog marketing. We can empirically confirm
the plausibility of the range of cost ratios by analyzing the ratio of customers which are targeted under each
cost setting. For cost ratios below 10:1 and above 50:1, individual targeting policies are dominated by indis-
criminate targeting of no or all customers, respectively. The cost ratio corresponds to different values of the
interest marginm and deposit amount A at standardized contact cost. Assuming a constant amount of the
term depositA for each customer, the cost ratio can be interpreted as the ratio between the gross profit over
a range of interest marginsm standardized to contact costs of c = 1 per contact.

We evaluate the cost-saving potential of using supervised randomization during experimentation based on
the campaign profit resulting from a randomized experiment for each randomization procedure. We report
the campaign profit per prospective customer and the difference in campaign profit relative to full random-
ization in Table 4. As above, we include targeting no customers and targeting all customers for reference,
but stress that non-randomized targeting strategies do not allow experimental data collection, making them
inapplicable for causal modeling in practice.

The empirical results in Table 4 support the proposition that supervised randomization increases the cam-
paign profit during experimentation relative to full randomization for the full range of conversion values
we consider in this study. In relative terms, supervised randomization increases the experimental campaign
profit by 7.1-9.4% compared to full randomization and by 2.9-8.2% compared to imbalanced randomization.

For a conversion value of AC 10, we observe a marginal profit of AC0.85 per customer under full randomiza-
tion and a marginal profit of AC0.93 under supervised randomization. The absolute increase in campaign
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Conversion Campaign profit per customer (AC )

Value (AC ) None Full Supervised Full (Imb.) All

10 1.09 0.85 0.93 0.76 0.60

15 1.64 1.52 1.65 1.48 1.40

20 2.18 2.19 2.37 2.19 2.20

25 2.73 2.86 3.09 2.91 3.00

30 3.27 3.54 3.80 3.62 3.80

35 3.82 4.21 4.52 4.34 4.60

40 4.36 4.88 5.24 5.05 5.40

45 4.91 5.56 5.96 5.77 6.20

50 5.45 6.23 6.67 6.48 7.00

Table 4. Campaign profit (per customer) for randomized experiments under each random-
ization procedure and across purchasemargins. None/All denote targeting no/all customers
for reference. Full (Imb.) denotes full randomization with a treatment probability of 66%

profit is more pronounced when the cost ratio is higher. A value ofAC50 corresponds to amarginal profit per
customer ofAC6.23 under full randomization compared toAC6.67 under the proposed supervised randomiza-
tion. Cost savings per customer compared to full randomization amount to AC0.08 and AC0.44, respectively.
We translate the per customer savings to an experimental campaign of 40,000 prospective customers, who
are randomly targeted. This is the size of the observed telephonemarketing campaign and, with less observa-
tions than 9 of the 11 experimental marketing campaigns summarized in Table 1, may provide a conservative
estimate. The total cost savings per experiment when replacing full randomization with supervised random-
ization translate toAC3,200 for a marginal profit ofAC 10,AC 10,400 for a marginal profit ofAC30 andAC 17,600
for a marginal profit of AC50. Experiment costs and the related savings arise whenever data is collected for
policy evaluation or (re-)estimation of the customer scoring model.

For conversion values greater or equalAC20, targeting all customers ismore profitable than not targeting any
customer. The imbalanced full randomization, which we identify as standard in practice, is more profitable
than full randomization only at values above AC20. At these values, imbalanced randomization achieves
savings of 0 to AC0.25 per customer compared to full randomization for conversion values between AC20
and AC50, respectively. Compared to imbalanced full randomization, the proposed supervised randomiza-
tion generates additional cost savings per customer of about AC0.18 for all values between AC20 and AC50.
Again translated to an experiment campaign of 40,000 prospective customers, the total cost savings per
experiment of supervised randomization when compared to the industry-standard range from AC7,200 for a
marginal profit ofAC20 toAC7,600 for amarginal profit ofAC50. Note that it is possible to combine supervised
randomization with imbalanced targeting. Increasing the average treatment probability through a custom
treatment probability mapping may further increase campaign profit in settings where treatment is highly
profitable.

Having discussed the expected cost savings during experimentation, we next discuss the opportunity costs
on downstream tasks associated with the increase in model uncertainty under supervised randomization.
We first report the campaign profit per customer when customers are targeted by the two-model approach
or causal forest and each model is trained on experimental data collected under the different randomization
procedures.

Table 5 shows that the expected decrease in profit for scoring models trained on data collected under super-
vised randomization is small but observable in the order of 1% of the absolute campaign profit per customer.
For a basket margin of AC30, the two-model logistic regressions achieve a campaign profit of AC3.83 per cus-
tomer under full randomization and a campaign profit ofAC3.80 under supervised randomization, a decrease
of 0.8%. The causal forest achieves a campaign profit of AC3.89 when trained on data from experiments un-
der full randomization with a decrease by 1.3% to AC3.84 under supervised randomization. Compared over
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Conversion Two-Model (Logit) Causal Forest

Value (AC ) Simple Simple (Imb.) Supervised Simple Simple (Imb.) Supervised

10 1.06 1.06 1.06 1.09 1.09 1.09

15 1.65 1.65 1.65 1.66 1.67 1.65

20 2.33 2.33 2.32 2.36 2.36 2.33

25 3.07 3.06 3.05 3.11 3.12 3.08

30 3.83 3.82 3.80 3.89 3.89 3.84

35 4.60 4.60 4.57 4.67 4.67 4.62

40 5.38 5.38 5.35 5.45 5.45 5.41

45 6.16 6.16 6.13 6.24 6.24 6.20

50 6.95 6.95 6.91 7.03 7.03 7.00

Table 5. Campaign profit using targeting models trained on data collected under each ran-
domization procedure. We evaluate the campaign profit per customer over a range of cost
ratios

all values, supervised randomization induces a decrease in per customer profit between AC0 and AC0.04 for
the two-model approach and AC0 and AC0.05 for the causal forest compared to full randomization.

Conclusion

Customer targeting is a continuously growing and widely studied application of scoring models. While re-
search has focused on the prediction of future customer behavior to inform decision-making, a growing
research stream has established uplift models to estimate the causal effect of a marketing action on each
customer based on observed customer characteristics. The training and evaluation of causal models require
data collected through experiments, in which customers are randomly assigned to treatments. However,
experimental data collection incurs high costs by temporarily replacing an established targeting policy with
random targeting.

We propose supervised randomization as a solution to reduce the cost of experimentation by integrating
an existing scoring model into the experimental design. By mapping model scores to individual treatment
propensities, we are able to targetmore profitable customers whilemaintaining stochastic treatment assign-
ment. An empirical Monte Carlo study on telemarketing shows that supervised targeting can reduce the cost
of an experimental campaign on 40,000 prospective customers by 7.1-9.4% compared to full randomization
and 2.9-8.2% compared to imbalanced randomization, depending on the specific profit-cost ratio.

Activemanagement of treatment assignment during experimentation leads to an overrepresentation of prof-
itable customers in the treatment group, which causes selection bias when standard estimators are applied
to estimate treatment effects. We consequently summarize inverse probability weighting and doubly robust
estimation as well-studied methods to correct for selection bias when estimating average and individual-
ized treatment effects. We show that the estimated treatment effects are unbiased and provide indicators of
the increase in uncertainty related to supervised randomization. Empirical evaluation indicates that higher
uncertainty of the scoring model may lead to a decrease in campaign profit by 0.8-1.3% depending on the
specific profit-cost ratio. Further evaluation in real-world experiments is necessary to establish net cost
savings in practice.

Overall, we argue that the methodology developed in the medical and econometric literature has not yet
been fully studied and applied in the uplift setting. Doubly robust estimation serves as one example of a
wider set of tools to correct for selection issues in the data. We further identify experimental data collection
as a fundamental part of causal modeling. We expect that supervised randomization provides a first step
towards a wider analysis of practical experimental design.
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