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Abstract 

Data transformation and schema conciliation are relevant topics in Industry due to the 
incorporation of data-intensive business processes in organizations. As the amount of 
data sources increases, the complexity of such data increases as well, leading to complex 
and nested data schemata. Nowadays, novel approaches are being employed in 
academia and Industry to assist non-expert users in transforming, integrating, and 
improving the quality of datasets (i.e., data wrangling). However, there is a lack of 
support for transforming semi-structured complex data. This article makes a state-of-
the-art by identifying and analyzing the most relevant solutions that can be found in 
academia and Industry to transform this type of data. In addition, we propose a Domain-
Specific Language (DSL) to support the transformation of complex data as a first 
approach to enhance data wrangling processes. We also develop a framework to 
implement the DSL and evaluate it in a real-world case study. 

Keywords:  Data Wrangling, Complex Data, Data Transformation, Semi-structured Data, Data 
Preparation 

Introduction 

The continuous technological advances in Industry are leading to data-driven business processes. These 
changes (Gerbert et al. 2015) are motivated by the concept of Industry 4.0, whose objective is to improve 
their production processes by means of Cyber-Physical Systems. These systems enable companies to 
capture real-time data on any aspect related to these productive processes. On the other hand, Industry 4.0 
promotes companies to a broader integration with their external environment. Therefore, the necessity of 
integration of internal data with data from external sources (e.g., data from other organizations, open data, 
social network data) arises (Obitko and Jirkovský 2015). The ultimate objective is to process this data in 
order to discover knowledge, improve the decision making, and optimize production processes. Big Data 
technologies are an essential part in this industrial context (Gerbert et al. 2015) since data to be processed 
fulfill the three Big Data dimensions (a.k.a., the three V's) (Lee 2017): volume (they are massively 
generated), velocity (creation rates increase as Cyber-Physical Systems and IoT are included in production 
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processes), and variety (data become more heterogeneous as the amount of data sources increase). This 
new context has promoted the creation of new solutions adapted to the complexity of data. 

Data complexity and heterogeneity are a prominent challenge. When the amount of data and the creation 
rate increase drastically, data heterogeneity tends to rise as well, resulting in non-structured data models 
with nested and complex schemata (hereinafter, complex data). Derived from the data complexity, data 
integration becomes also in a prominent challenge of Big Data management (Ceravolo et al. 2018; Jin et al. 
2017; Stefanowski et al. 2017), since it involves combining diversified sources in a unified view supporting 
data analytic or reporting procedures (Dong and Srivastava 2015). Data integration requires, therefore, 
several transformations to be made, changing data values and structure but keeping at the same time the 
validity and consistency of data or event enhancing their value. For this reason, data transformation, as a 
part of the data preparation process, is considered the most time-consuming stage of data analytics (Guo et 
al. 2011). 

In traditional data warehousing, this process has been extensively analyzed, proposing integration tools for 
data transformation by using the Extract-Transform-Load (ETL) approaches. Regarding the complex data, 
various query languages can be found in industry (Beyer et al. 2011; Florescu and Fourny 2013) to facilitate 
the transformation, integration and querying of data sources with complex data in ETL processes.  
However, with the emergence of the Big Data paradigm, actors focusing on the commoditization of Big Data 
technologies are addressing the fast roll-out of Big Data pipelines proposing visual data flow orchestrators 
(Milutinovic et al. 2017) and catalogs of congruent services (Ardagna et al. 2018). The aim is the 
introduction of the as-a-service approach in Big Data technologies, supporting the composition of services 
in an easy way and offering, at the same time, a guarantee about the consistency of the proposed 
compositions (Ardagna et al. 2018). In this sense, data wrangling has become one of the most employed 
techniques to facilitate the transformation and mapping of data from a raw format into the format required 
by data analysis processes in Big Data context. The current trend is to provide self-service data preparation 
(Hellerstein et al. 2018). It points at easing the data preparation process for non-expert users through data 
profiling and the automation of the tasks. Therefore, this assistance comes along with user-friendly 
Domain-Specific Languages, user interfaces, and features for data cleaning and data quality improvement. 

Nowadays, several data wrangling solutions can be found in Industry. Although some of them are able to 
work with complex data, they are entirely focused on a table-oriented data model, flattening data into static 
structures avoiding nested data. It implies that operations must be directly applied over top-level attributes 
(i.e., columns). This operative inevitably difficulties the transformation of complex structures, requiring 
nested attributes to be shift to top-level positions. Consequently, (i) the number of operations needed to 
transform the format and/or schema of a dataset becomes significantly high depending on the depth of the 
nested attributes and the target schema, and (ii) the definition of the transformation operations becomes 
non-easy-to-use and anti-intuitive, being far away from the shape of the target schema, and hence, being 
more error-prone and hindering debugging operations. In this context, the identification of languages for 
data transformation that support complex operations by a concise syntax is of paramount importance for a 
flexible handling of data sources (Arputhamary and Arockiam 2015). Moreover, linking these operations to 
their effects on performances, in relation to the data structure, is crucial to increase the awareness of 
designers about the effects of their specifications.  

Trying to reduce the existing gap in complex data transformation in data wrangling, this paper pursues to 
cover two main aspects: (i) discuss the approaches in the industry, and the academia to support the 
transformation of complex data in the data wrangling and self-service data preparation fields, and; (ii) the 
proposition of a framework, that includes a Domain-Specific Language (DSL), to support the 
transformation of data with complex schema. This language aims to provide a functional way to enable 
users to define the target schema along with the transformations needed to reach it from the source schema, 
minimizing the number of operations and the complexity of the language.  

The rest of the paper is structured as follows. First, two real-world case studies are presented to understand 
the proposal better. Then, our proposal is described, depicting the solution, including a DSL that facilitates 
the complex data transformation in data wrangling context. The proposed implementation is introduced, 
before the most relevant references related to data wrangling and complex data are discussed. Next, the 
related work is discussed, and then we compare our proposal with other data wrangling tools. Finally, some 
conclusions are drawn. 
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Case Studies 

This section describes two case studies which demonstrate the applicability of our proposal in two different 
industries that require the transformation of datasets: (A) the transformation of datasets from several 
electricity wholesales to extract information about the consumption of electricity, and (B) the 
transformation of datasets taken from several IoT sensors to detect potential deficiencies in aircraft 
assembly processes. 

Case Study A: Formatting datasets from several electricity wholesales 

In order to introduce the necessity to facilitate the complex data transformation, we use a real case study 
based on the integration datasets provided by seven electricity companies that sell energy for private 
customers in Spain. The electricity wholesales describe consumption data in different formats and using 
different frequency of meter reading, depending on factors such as the distributor or the tariff hired for each 
customer. These various formats need to be uniform in order to be processed and analyzed later, such as to 
create patterns of behavior or to look for the best tariff for each customer (Parody et al. 2017). However, 
each electricity provider offers information using different nested schemata, depending on some factors, 
such as the number of months included in the meter reading, number of days, types and tariff. Therefore, 
all these heterogeneous schemata need to be transformed into a unified one being possible to integrate 
every dataset in a unified view. The quantity of information, the heterogeneity and the updating of the 
information, Big Data infrastructure must be used to facilitate the data analysis. 

Figure 1 illustrates the scenario where several data sources must be conciliated into a unified format 
accessible to the final user by means of a set of transformation, each one applicable to a single data source. 

As mentioned above, the provided information does not follow the same schema, but they generally share 
a customer ID, a tariff identifier, the contracted power for each daily billing period, and a list of 
consumption over a period (e.g., twelve months or more). Each consumption period keeps information on 
the start and end date for that period, and the power consumption for each daily billing period. Figure 2 
shows a possible input schema for the data of the example and its relationships with the target schema. 

 

Figure 1.  Case Study scenario 

 

          

Figure 2. Transformations to convert the source 

schema (left) into the target schema (right) 
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Source Schema Description 

The source schema is composed of basic and nested attributes. The description of the dataset attributes is 
given as follows: 

• customerID. It is a string which identifies a unique customer supply point. 

• consumption. It is the power consumption over a period, such as twelve months or more. It is an 

array of data structures. Each element represents a period, and it includes the following 
information: 

o power. It is the power consumption for each daily billing period. It is represented by a data 

structure with six decimal numeric attributes, each one representing the consumed power 
for a daily billing period. 

o startDate. It is the start date for the billing period represented by this element. 

o endDate. It is the end date for the billing period represented by this element. 

Transformations and Target Schema 

In order to reach the target schema, several transformations must be applied for each electricity supplier. 
For the example, six transformations are needed as depicted in Figure 2: 

• T1. customerID must be renamed to ID. No further transformations are required. 

• T2. consumption is transformed into a matrix C, whose rows have three elements that are 

calculated from the pi attributes in power in accordance with the defined rules by the 

government. 

• T3. In the target schema, AVG_C is a data structure with three elements: p1, p2, and p3. It 

represents the average consumed power for each daily billing period. The calculation is carried 
out by means of the matrix calculated in T2. 

• T4. In the target schema, DATES is an array whose attributes are of type date. It is calculated by 

means of the startDate attribute in the source schema. 

Case Study B: Detecting deficient aircraft 

This case study is based on the aeronautic industry. It is a real case study from the aircraft factory of Airbus 
placed in Seville. The datasets represent the logs of an aircraft production plant. It is about the tests that 
are performed in the workstations where the aircraft are tested, and the incidents that occurred during 
these. Each workstation produces a dataset with a different schema and data format but they all have a set 
of attributes related to the aircraft, the workstation and the incidents occurred during the tests, as detailed 
in in (Valencia-Parra et al. 2019). It is required to wrangle this data in order to obtain a formatted dataset 
so that it helps experts to discover potential deficient aircraft. 

Source Schema Description 

The source schema is composed of the following attributes: 

• accode. It is a string attribute representing the code of an aircraft. 

• workstation. It is a string identifying the workstation where the tests have been executed. 

• incidents. It is an array whose elements represent information about the incidents that have 

occurred during the test execution. It contains nested structures with the following attributes: 
o start_date. It is a string representing the date when the incidence started. 

o resolution_date. It is a string representing the date when the incidence was resolved. 

Transformations and Target Schema 

The following transformations are required in order to reach the target schema: 

• T1 and T2. Attributes accode and workstation are renamed as aircraft and ws, respectively. 
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• T3. avg_incidents is a numeric attribute created by calculating the average value of the array 

which results from iterating incidents and performing the following operation:  

resolution_date - start_date. It represents the average time that the incidents took to be 

solved. 

The objective of these transformations is to produce a dataset that can be processed by an algorithm that 
detects abnormalities during the test of the aircrafts in the workstations, and thus, to detect potential 
deficient aircraft. 

Our Proposal 

This section depicts CHAMELEON: the proposal we have devised to improve the data wrangling processes 
when dealing with complex data. It consists of framework and a Domain-Specific Language (DSL), whose 
objective is to link the operations with their effects in the target schema. First, the necessary concepts to 
understand the proposal are presented. Then, Framework is introduced, following with the proposed DSL. 
Finally, the case studies are solved by using the proposal. 

Related Concepts 

Next, the concepts Data Schema, data type, and Transformation Function are defined. These concepts will 
facilitate the understanding of the DSL that is defined in this section. 

Definition. A Data Schema is a set of attributes, {a1: t1, a2: t2, …, an: tn}, identified by a name (ai) and a 
data type (ti). 

Regarding the data type (ti), two categories of data types have been identified: 

• Simple type. It is a data type which represents a single value: 
o Numeric. It represents a numeric data type, i.e., Integer, Long, Float, and Double. 

o String. It is a sequence of characters.  

o Boolean. It is a two-valued data type which represents the truth values. 

o Date. It is a set of characters with a specific format that represents an instant of time. 

• Complex type. It is a composite data type that can be: 
o Array. It is a collection of typed attributes identified with a unique numeric index. 

o Struct. It is a data type composed of a set of attributes, each one identified by a unique 

name. 

Definition. A Transformation Function, fx, is a function that receives an attribute, ainput, and returns an 
attribute, aoutput, resulting from applying an operation which modifies the value of ainput.  

𝑓𝑥: 𝑎𝑖𝑛𝑝𝑢𝑡  →  𝑎𝑜𝑢𝑡𝑝𝑢𝑡 

Framework Modeling 

We have developed a framework1 to implement the DSL so that we can solve the case studies in a real-world 
environment. The framework has been designed according to the composite design pattern (Riehle et al. 
1997). In short, this pattern enables to build complex objects by using simpler ones. It means that an object 
could be composed of nested objects. Figure 3 depicts a schema of this pattern. As can be seen, the classes 
Composite1 and Composite2 are composed of a set of Components, which can be Composite1, 

Composite2, or Leaf. The latter is called Leaf because it is not compounded by any other Component. 

In this pattern, the instances of objects could be represented as a tree structure. 

Figure 4 depicts the UML diagram of the transformation framework. As mentioned above, the instances of 
this model can be represented as a tree structure. In this structure, the leaves are operations that access the 
attributes, and internal nodes are intended to transform or create new structures. To better understand it, 

                                                             

1 The implementation can be found in: http://www.idea.us.es/datatransformation/ 

http://www.idea.us.es/datatransformation/
http://www.idea.us.es/datatransformation/
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Figure 5 shows an instance of the transformation T1 exposed in the case study A, and Figure 6 shows its 
tree representation. 

 

Figure 3.  Composite design pattern 

In this model, the Component is the Evaluable interface. An Evaluable represents an expression whose 

main objective is to perform transformation functions on attributes. Two methods can be applied over every 
Evaluable expression (hereinafter, expression): getValue and getDataType. 

• getValue. It receives an attribute and returns another attribute as a result of applying a 

transformation to it. 

• getDataType. It receives a data type and returns the data type as a result of applying a 

transformation to it. 

These are intended to be the entry-point of the framework. The way these functions work depends on the 
Leaf or the Composite components. Next, the leaves of the transformation framework model are listed. 

• Select. It is meant to select the attribute whose name matches the string name from an attribute 

of type struct. 

• Index. It is meant to select the attribute whose position matches the integer index from an 

attribute of type array. 

 

Figure 4.  Framework modeling 
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Figure 5.  Instance of the model to perform the 

transformation T1. Code representation 

 

 

Figure 6.  Instance of the model to perform the 

transformation T1. Tree representation. 

 

Lastly, the Composites of the transformation framework model are listed. 

• Rename. It is meant to transform an Evaluable expression (hereinafter, expression) which 

returns an attribute of any type by replacing its name by the string name. 

• CreateStruct. It is meant to create an attribute of type struct from a set of expressions attrs. 

• CreateArray. It is meant to create an attribute of type array from a set of expressions attrs. 

• Iterate. It is meant to create an attribute of type array resulting from iterating over an 

expression which returns an attribute of type  array (expr1). An expression (expr2) is applied 

to each element in that  array. 

• Operator. It is meant to transform an expression by applying a Data Transformation Function 

(hereinafter, DTF). 

• DTF. It is meant to apply a transformation function to an expression. These enable users to perform 

advanced transformations on attributes of any data type.  

DSL Definition 

The DSL has been defined with two main goals: (i) provide versatility so that a wide range of 
transformations can be carried out, and (ii) reduce the gap between the definition of the transformations 
and their effects in the target schemas. The syntax of the grammar is given bellow by means of Extended 
Backus-Naur form notation (Reilly et al. 2003). 

Syntax is the entry-point to the language. It is given by an Expression, which might be one of the 

following: Select, Index, Rename, CreateStruct, CreateArray, Iterate, or Transform. 

Syntax ::= Expression 

Expression ::= Select|Index|Rename|CreateStruct|CreateArray|Iterate|Transform 

Select is intended to be the syntax for selecting either an attribute in a struct or a position in an array. 

For instance, regarding the case study A, t"customerID" selects the attribute customerID, and 

t"consumption.[0]", selects the position 0 of the consumption array. 

Select ::= 't' '"' ( StringLiteral | '[' Digit+ ']' )  

            ( '.' ( StringLiteral | '[' Digit+ ']' ) )* '"' 

Rename is meant to modify the name of an attribute. For example, "ID" << t"customerID" changes the 

name of the attribute customerID to ID. 

Rename ::= StringLiteral '<<' Expression 
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CreateStruct and CreateArray are intended to create a struct or an, respectively. For example, 

struct("ID" << t"customerID") creates a struct composed of an attribute, ID, with the value of 

the customerID attribute. On the other hand, array(t"customerID")creates an array, with just one 

position, which contains the value of the customerID attribute. 

CreateStruct ::= 'struct' ' (' Expression ( ',' Expression )* ')' 

CreateArray ::= 'array' '(' Expression ( ',' Expression )* ')' 

Iterate enables to perform an operation over an array attribute. For instance, t"consumption" 

iterate t"startDate" creates an array whose elements are string resulting from iterating over the 

consumption attribute and selecting the attribute startDate. 

Iterate ::= Expression 'iterate' Expression 

Transform enables to apply a transformation function to an expression. We have defined nine 

transformation functions which fit our case study A, but more functions might be added. Regarding the 
ones defined in  DTF, they can be classified in two groups: (i)  max, min, avg, sum, and subtract, which 

are intended to return the maximum, minimum, the average, sum or the subtraction of the values of an 
attribute, array respectively; (ii) toInt, toDouble, toString, and toDate, which are intended to cast 

an attribute to  integer, double, string, or date, respectively. 

Transform ::= Expression '->' DTF 

DTF ::= 'max'|'min'|'avg'|'sum'|'subtract'|'toInt’|'toDouble'|'toString'| 

        'toDate(' StringLiteral')' 

Transformationss for the Case Study A  

Next, the transformations shown in the case study A are performed by means of the DSL we have proposed. 

• T1. customerID is renamed to ID by using the '<<' operator. 

"ID" << t"customerID" 

• T2. The matrix C is created by iterating over each position in the consumption array. 

"C" << ( t"consumption" iterate array( 

          array(t"power.period1", t"power.period4") -> max, 

          array(t"power.period2", t"power.period5") -> max, 

          array(t"power.period3", t"power.period6") -> max, 

       )) 

• T3. Each attribute of AVG_C is created by means of the C attribute previously created. Each 

iterate operation will result in an array with all the values in one of the columns. Then, the 

average value of each array is calculated. 

"AVG_C" << struct( 

            "p1" << (t"C" iterate t"[0]") -> avg, 

            "p2" << (t"C" iterate t"[1]") -> avg, 

            "p3" << (t"C" iterate t"[2]") -> avg, 

                       )) 

• T4. DATES is created by employing the operator iterate and by applying the toDate 

transformation function over the t"startDate" attribute. 

"DATES" << t"consumption" iterate (t"startDate" -> toDate("mm/dd/yyyy")) 

Transformations for the Case Study B 

The transformations for the case study B performed by means of CHAMELEON are as follows. 

• T1 and T2. The attributes accode and workstation are included in the target dataset. 
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"accode" << t"aircraft" 

"workstation" << t"ws" 

• T3.  avg_incidents is created by iterating over each structure of it. Then, we subtract the 

resolution date and the start date. The date is previously transformed by using the toDate 

function. Finally, the average of all the subtractions is calculated. 

"avg_incidents" << (t"incidents" iterate substract( 

          t"resolution_date" -> toDate("MM/dd/yyyy HH:mm:ss"), 

          t"start_date" -> toDate("MM/dd/yyyy HH:mm:ss")  

)) -> avg 

Benchmark 

A set of tests has been devised to evaluate and check the performance of the framework that we have 
implemented in a Big Data environment. First, the Big Data architecture used to perform the tests is 
presented. Afterward, we describe the evaluation design to test the performance of our proposal. Finally, 
the results are drawn and discussed. 

Architecture and Implementation 

The architecture employed to perform the benchmark is based on a cluster managed by Mesosphere DC/OS 
(hereinafter DC/OS). DC/OS is an operating system based on Apache Mesos, which enables the execution 
of technologies for simultaneous data processing. In this case, an Apache Spark cluster has been deployed 
together with Spark History Server, that enables to extract execution metrics of the Apache Spark 
applications. 

Regarding the infrastructure, it consists of a DC/OS master node, responsible for managing the cluster 

resources and assign them to services, and nine agents, responsible for managing the services. The 

instance of Spark includes a driver and nine executors. The architecture also includes a node with 

HDFS to store the datasets and a MongoDB database for storing the execution results. Regarding the 
computational characteristics, the cluster can reach fifty-two cores between 2 and 2,6 GHz for each and 136 
gigabytes of RAM in global. Figure 7 depicts the infrastructure as well as the computational characteristics 
of the cluster. Summing up, the cluster can reach fifty-two cores and 136 gigabytes of principal memory in 
global. 

Evaluation Design 

We have selected the case study A to perform the benchmark, since its schema and transformations are 
more complex than those of the case study B, so the results will be more reliable. This dataset is composed 
of approximately more than five million tuples and a size of 2,1 GB. In order to test the scalability of the 
proposal, nine additional datasets have been created based on two different criteria: (A) four new datasets 
by increasing the number of tuples; and (B) five new datasets by increasing the size of each tuple (i.e., by 
increasing the size of the columns), for instance, by duplicating the number of elements in the 
consumption array attribute. Table 1 summarizes the datasets which have been synthetically created by 

using these two criteria. 

Ten test cases have been defined, each of them being executed one hundred times. These tests cases have 
been classified into two groups of benchmarks: (i) Benchmark 1, where these test cases are intended to 
check the performance when the dataset size increases by the criteria A; and (ii) the Benchmark 2, where 
these test cases are intended to check the performance when the dataset size increases by the criteria B. In 
each test case, all transformations described in the case study A have been applied for each tuple of the 
dataset. 
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Figure 7.  Architecture of the cluster 

 

Table 1. Evaluation Design 

Dataset ID Criteria Size (MB) Benchmark 

D1 A 4,119.4 1 

D2 A 6,178.4 1 

D3 A 8,239.9 1 

D4 A 10,299.9 1 

D5 B 3,659.8 2 

D6 B 5,258.9 2 

D7 B 6,859.4 2 

D8 B 8,459.2 2 

D9 B 10,060.3 2 

Table 1. Dataset and Benchmarks for the evaluation 

Both benchmarks have been developed by using an Apache Spark application. The application consists of 
two main stages. The first reads the dataset from HDFS and infers its schema, and the latter distributes the 
tuples across the cluster, applies the transformations and finally stores the results in MongoDB. As for 
performance metrics, both the Elapsed Real Time ERT and the CPU Time of the second stage have been 

measured in each test case. The ERT is the execution time since the stage corresponding to the application 

of the transformations is launched until it ends. On the other hand, the CPU Time is a time accumulator 

that includes the time the tasks related to the transformations spent on the CPU. For each test case, the 
average value of one hundred executions will be considered. 

Evaluation Results 

The results for both benchmarks have been depicted in Figure 8. A trend line has been included in the charts 
in order to highlight the tendency of the results. The least-squares fitting method has been employed to 
calculate the trend lines. 
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Figure 8.  Comparison between Elapsed Real Time (left) and 

CPU Time (right) 

The chart on the left side shows the ERT comparison between both benchmarks. The ERT tends to be 

higher in the case of the Benchmark 1. It means that for datasets with the same size, the ERT is greater for 

datasets with more tuples to process than for datasets with less but more complex tuples. This is because 
the distribution cost is higher when processing a higher number of tuples. 

The right-side chart shows the CPU Time comparison between both benchmarks. Unlike in the case of the 

ERT, the trend line of the Benchmark 2 tends to be higher than the Benchmark 1.  

The trend line equations are (1) for Benchmark 1 whilst for Benchmark 2 it is (2). In fact, the complexity of 
the dataset used for the Benchmark 2 is higher as its tuples are larger than in Benchmark 1, consuming each 
one more CPU time. Despite this fact, there is only a 15% of the difference between the slope of the trend 
lines, being both lines under linear.  

𝑦 = 0.18𝑥 + 174     (1)                    𝑦 = 0.21𝑥 + 122     (2) 

As a conclusion, it is possible to confirm that the proposal scales regarding the dataset complexity because 
the increment on the complexity on processing nested structures and hence the transformations to apply, 
only suppose a 15% regarding processing a dataset with less-complex structures. 

Related Work 

The transformation and querying of complex data have been studied in the fields of database, data 
warehousing and Big Data. This section describes the state-of-the-art of the transformation of complex data 
in the ETL and data wrangling fields. 

Traditional Approach 

Traditionally, the transformation and combination of data sources have been faced up by means of ETL 
techniques (Arputhamary and Arockiam 2015) in the databases and data warehousing fields. Then, there 
exist query languages which enable the extraction of complex data. Nevertheless, these transformations are 
normally meant to give support to a query, and hence, the target schema is not the focus, harvesting the 
task of defining a specific schema due to the kind of syntax which are typically employed in query languages. 
The objective of querying is to answer a question on a dataset, and therefore, they usually do not support 
operators for renaming, restructuring, or transforming complex structures into another complex structure. 

Following, four popular query languages with complex data support (Ong et al. 2014) are analyzed. We 
assess the versatility of the languages, i.e., the operation and transformation capabilities with nested 
attributes, and the degree in which the query language is aligned with the target schema (i.e., the degree in 
which the syntax eases the possibility of linking the operations to their effects on performances in relation 
to the data structure). Both criteria are focused on evaluating the suitability of these languages in a self-
service data preparation context. 
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• MongoDB. It is a well-known NoSQL database specialized in semi-structured data. Since its data 
model enables to deal with complex data, its query language (Botoeva et al. 2018) also supports 
querying such data, providing operators and function to access nested attributes and operate 
between them. However, this query language has significant limitations in the definition of custom 
nested structures, and hence, this language is not aligned with the target schema. 

• N1QL. It is the query language of Couchbase (Ostrovsky et al. 2015), a NoSQL database. This is a 
SQL-like language, adding operators and functions to operate with columns with nested structures. 
Due to its orientation toward SQL, the syntax of the language is not aligned with the definition of 
the target schema. 

• JSONiq. It is a JSON-oriented scripting query language (Florescu and Fourny 2013), based on a 
JSON-like data model. Although this language offers great versatility, the definition of the queries 
is not aligned with the target schema and the input data type is restricted to JSON. 

• Jaql. This query language (Beyer et al. 2011) is intended to query semi-structured data in Hadoop. 
As JSONiq, it is also a scripting language, offering good versatility and hence supporting operators 
to perform a wide range of transformations. In addition, the language enables to align its queries 
to the target schema. 

While the most versatile languages are JSONiq and Jaql, the one with the best syntax for our purpose is 
Jaql. However, we find areas of improvement in relation to the complexity and the syntax. First, the great 
versatility of this language leads to a complexity that, in our opinion, can be decreased. Second, although 
the flexibility of the syntax enables users to align the transformations with the effects in the target schema, 
we think that it is possible to achieve a better alignment between them. 

Data Wrangling 

In recent years, Academia and Industry have used the term data wrangling to refer to the transformation, 
combination and cleaning of data in an exploratory way (Furche et al. 2016). The current trend is to make 
this task easier so that it can be carried out by non-expert users. Consequently, the latest proposals that can 
be found in the literature are focused on assisting users in this process (a.k.a. self-service), offering features 
such as (i) data profiling, so that the user can explore the data and obtain a holistic view of them (e.g., see 
the quality of them at first glance); (ii) suggest transformations based on a knowledge base, or based on 
criteria that may improve the quality of the data; and (iii) automatically infer transformations by means of 
example process results. 

Although there exist data wrangling solutions in Industry, just a few of them support obtaining data from 
semi-structured data sources, transforming them, and exporting the dataset with complex data structures. 
In the study we have carried out, we have considered two of the most influential tools in academia and in 
the industry that enable to deal with complex data: Trifacta (a.k.a. Google Cloud Dataprep) and 
OpenRefine. 

• Trifacta. It was originated in Academia, conceived as a visual data wrangling tool with a 
transformation language known as data-wrangler (Kandel et al. 2011). Now, it is a commercial tool, 
and one of the references in the self-service data preparation field. In relation to the transformation 
of complex data, it supports nesting and unnesting operators. 

• OpenRefine. It was originally maintained by Google (Kusumasari and Fitria 2016). Now, it is an 
open source tool that has been employed in multiple research works. It provides a query language 
known as GREL (Google Refine Expression Language). It is a Java Script-based language which 
enables the transformation of complex data. 

First, the Trifacta data model is table-oriented. For this reason, transformation operations are carried out 
on columns. This implies that in data with nested structures, only those that are in the top-level can be 
operated. This has two major drawbacks: (i) Data profiling functionalities, data quality analysis, and 
transformation suggestions do not reach those attributes that are nested; and (ii) in order to perform any 
type of operation between attributes that are within the same nested structure, it is required to perform as 
many unnesting operations as how deep is the attribute to be employed. This inevitably increases the 
complexity of the transformations and the ease of making mistakes. OpenRefine poses similar problems. In 
this case, users must employ a Java Script-based language to perform the operations in a programmatic 
way. Although it offers a good versatility, it does not fulfill the criteria we defined above, being far from the 
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objectives of the self-service data preparation. In addition to these drawbacks, there is a lack of support for 
data profiling, data quality, and transformation suggestions and inferences based on complex data. 

To the best of our knowledge, our proposal is the first attempt to contribute to the inclusion of semi-
structured complex data in the data wrangling and self-service data preparation fields. 

Comparison with Data Wrangling Tools 

The objective of this section is to evidence the drawbacks of the current data wrangling tools when dealing 
with complex data. We also point at how our proposal could improve the transformation of complex data 
from the point of view of the user.  

In the Related Work section, we considered two of the most influential data wrangling tools in the Industry 
and Academy (Trifacta and OpenRefine). However, Trifacta includes and improves the functionalities 
offered by the other proposals. Therefore, the analysis of Trifacta implies the analysis of the functionalities 
of their competitors, since Trifacta is the more complete tool in data wrangling context. On the one hand, 
Trifacta’s data model is table-oriented, being unable to represent data with more than one dimensionality 
(i.e., nested structures). Despite this, it is possible to transform nested attributes as well as nesting other 
attributes, but it will require the user to flatten arrays, or unnest attributes by creating new columns. On 
the other hand, OpenRefine is also a table-oriented solution, but it is unable to nest attributes, making it 
impossible to create columns of data type struct. To work around it, OpenRefine allows users to employ an 
imperative Java Script-based language, as explained in the Related Work section. Since it is an imperative 
language, it is out of our scope. For this reason, and since it is one of the most complete data wrangling tools 
in Industry, we have selected Trifacta to show how our proposal could improve the transformation of 
complex data. 

In order to show the comparison, we have resolved the cases studies presented in this paper by using 
Trifacta. Then, for each case study we have created a table which depicts the number of operations which 
are necessary to complete each single transformation, classified by type. The types of operations that we 
have considered are: (i) unnesting, which consists of extracting nested attributes in columns of type struct, 
resulting in an augmentation in the number of columns; (ii) nesting, which joins several columns in a 
single struct column; (iii) flattening, which is applied to columns of type array, resulting in an 
augmentation in the number of rows; (iv) grouping, which reduces the number of rows by grouping them 
according to a criteria; (v) dropping, which deletes a set of columns specified by the user; (vi) renaming, 
that includes those renaming operations that must be performed due to column name changes that might 
occur during intermediate operations, and (vii) non-intermediate, that includes simple operations such 
as column renaming, data formatting, arithmetic operations and operations with lists of numbers.  

The most important aspect here is that in order to access nested attributes in a data schema, it is required 
to isolate those attributes in single columns, and once they have been transformed, they must be sent back 
to their corresponding nested structure. We consider that these intermediate operations complicate the 
transformation process of complex data. To illustrate this problem, Figure 9 represents the sequence of 
operations that are required in order to carry out the transformation T2 of case study A with Trifacta. As 
can be seen, in order to access to the attributes inside consumption.power, two intermediate operations 

are required (flattening and unnesting). Then, three additional operations (three nesting) are required 
before calculating the maximum value for each period, and finally, in order to create the C matrix, two 

additional intermediate operations are required (nesting and grouping). In addition to these intermediate 
operations, three operations (two dropping and one renaming) must be performed in order to deal with 
temporary columns and column names that are generated during the transformation process. In total, T2 
requires 13 operations, where 10 of them are intermediate operations, which means that the 77% of the 
operations that the user must perform to carry out this transformation are intermediate operations needed 
to access the attributes and to give them the right structure. The objective of our proposal is to abstract 
users from these intermediate operations so that they just have to navigate through the structure in order 
to operate with the desired attributes, and at the same time they can change the structure of the dataset. 
We believe that, in this way, the transformations are better aligned with their results in the target schema, 
making the transformation process more intuitive and in concordance with the objectives of data wrangling. 
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Figure 9. Representation of the intermediate steps needed for the 

transformation T2 in case study A 

Case Study A 

Table 2 shows the operations performed to complete the case study A with Trifacta. This case study requires 
34 operations, where 26 of them are intermediate operations and 8 of them are not. Approximately the 77% 
of the operations written by the user are intermediate. Transformations T2 and T3 have a similar proportion 
of intermediate operations, while in T4 this percentage increases to the 85%. Our proposal abstracts users 
from these intermediate operations, so we can state that, except for T1 (that does not require to transform 
nested attributes), it improves the way the transformations are carried out. 

Table 2. Operations to complete Case Study A with Trifacta 

 Unnesting Nesting Flattening Grouping Dropping Renaming Non-
intermediate 

Total 

T1 0 0 0 0 0 0 1 1 

T2 1 4 1 1 2 1 3 13 

T3 1 4 1 1 2 1 3 13 

T4 1 1 1 1 1 1 1 7 

TOTAL 3 9 3 3 5 3 8 34 

Table 2. Operations to complete Case Study A with Trifacta 

Case Study B 

Table 3 shows the operations performed to complete case study B with Trifacta. The most complex 
transformation here is T3, which is the only one that requires access to nested attributes. It requires a total 
of 5 operations, being 4 of them intermediate operations. Hence, the 80% of the operations for T3 are 
intermediate operations. Ultimately, the 57% of the operations of the case study are intermediate. Our 
proposal also improves the transformation process for this case study. 
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Table 3. Operations to complete Case Study B with Trifacta 

 Unnesting Nesting Flattening Grouping Dropping Renaming Non-
intermediate 

Total 

T1 0 0 0 0 0 0 1 1 

T2 0 0 0 0 0 0 1 1 

T3 1 0 1 1 0 1 1 5 

TOTAL 1 0 1 1 0 1 3 7 

Table 3. Operations to complete Case Study B with Trifacta 

Conclusions 

One of the most important challenges that last advances in Industry poses is the transformation of complex 
data and the conciliation of complex data schemata. There is an emerging field in Big Data which intends 
to ease these tasks for non-expert users: data wrangling and self-service data preparation. This study has 
highlighted the lack of support for complex data in these fields.  

Our proposal is intended to contribute to the improvement of data wrangling techniques by means of a 
framework that includes a Domain-Specific Language. The goal of it is to link the operations carried out by 
users to their effects in the target schema. It represents an improvement in relation to the data wrangling 
solutions that can be found in Industry since they are not focused on dealing with complex data. Several 
well-known query languages for semi-structured data have been studied to enhance our proposal. 

Future Work 

The limitations of our proposal define the actions that we want to face up for the future. First, our proposal 
lacks support for data profiling, data quality assessment, and automatic assistance to users. These 
shortcomings are hence a great opportunity for the future, since as proven in this study, data wrangling and 
self-service data preparation are of paramount relevance in both academia and Industry.  

In particular, we identify prior opportunities (Furche et al. 2016) in the automation of error-detection and 
feedback giving in the definition of transformation rules by users. It would be a pioneering proposal in the 
field of semi-structured complex data. 
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