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Abstract 

Mortality models in Intensive Care Units (ICU) are important for clinical decision 
support tasks such as identifying high-risk patients and prioritizing their care. Previous 
mortality models have used predictive variables mainly from Electronic Medical Records 
(EMR) where each patient observation can be represented as a sparse multivariate time 
series. Bedside monitors are another common data source in ICUs containing high-
resolution time series, which have not been explored in combination with EMR data for 
mortality modelling. We take the first step towards building such a model. Specialized 
techniques developed for sparse time series cannot be used to model multiple time series 
at different resolutions. To address this problem, we develop MTS-RNN, a new deep 
recurrent neural network architecture. Our preliminary experiments on real clinical data 
show that MTS-RNN outperforms state-of-the-art mortality models in predictive 
accuracy, highlighting the importance of using clinical time series at multiple resolutions 
for ICU mortality prediction. 

Keywords: Intensive Care Units; Electronic Medical Records; Time Series; Deep Neural Network 

Introduction 

An Intensive Care Unit (ICU) has the most critically ill patients in a hospital, who require continuous 
monitoring and clinical support, the economic burden of ICU care is enormous. For instance, in the United 
States, although ICUs have less than 10% of hospital beds, ICUs contribute to 22% of total hospital costs 
and 5% of the total healthcare cost (Halpern and Pastores 2010). As the need for ICUs has grown worldwide, 
more ICUs have been created, but the availability of resources, both clinical staff and monitoring 
equipment, remain limited due to practical constraints (Halpern et al. 2013). 

The importance of predictive models for ICU mortality (risk of death) is well recognized. At an individual 
patient level, it can be used to assess the severity of illness and thereby identify high-risk patients. 
Identifying high–risk patients can not only aid critical decisions during ICU stay such as interrupting 
treatments or providing Do– Not–Resuscitate orders but also enable effective triage, making ICU resources 
available to patients in need. Mortality models can also be used as a quality indicator for benchmarking ICU 
performance across hospitals and play an important role in risk adjustment and risk stratification in 
randomized controlled trials (Power and Harrison 2014). Further, they are used to determine the value of 
novel treatments, interventions and health care policies (Pirracchio et al. 2015). Thus, accurate mortality 
models and their effective use can play an important role in potentially reducing the clinical and economic 
burden of ICU care. 

Continuous monitoring of ICU patients generates a wealth of clinical data presenting both, opportunities 
to build predictive models for decision support, as well as challenges in effectively integrating the available 
information (Badawi et al. 2014). Two large sources of patient data in the ICU are Electronic Medical 
Records (EMR) and bedside patient monitors. EMR includes, among others, data from laboratory 
investigations, clinical notes, medication orders, and radiology investigations. Repeated measurements 
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induce temporality in most of the variables in EMR. Unlike most longitudinal panel data, these time series 
are very sparse as they contain measurements at irregular intervals, with highly variable lengths and 
frequencies both across measurements and across patients. Further, there are recording biases, e.g., sicker 
patients are measured more often, which leads to informative missingness patterns. The other source of 
clinical time series, bedside monitors, have high-resolution physiological signals, also called “waveforms”, 
such as electrocardiograms (ECG). Their frequencies can range from 1 to 125 Hz. 

Previous ICU mortality models have been developed using many predictive variables mainly from EMR 
data. Machine learning models typically pose the problem as a supervised binary time series classification 
task. Each patient is associated with a binary label indicating the presence or absence of in-hospital 
mortality. A classifier is trained on historical data consisting of sparse time series data from EMR. Note that 
static (i.e., non-temporal) demographic variables, such as age and gender, are also commonly included 
during classifier training. A trained classifier can be deployed in Clinical Decision Support Systems to 
trigger alerts when the predicted label indicates high mortality risk. 

Heterogeneity and temporality make modeling EMR data challenging (Huddar et al. 2016). To model sparse 
time series, a timescale (e.g., every hour) is chosen and missing values are imputed before classifier training. 
Imputation can be done in various ways, such as through the use of statistical summaries (mean, median) 
or the last measured value. Empirical studies have found that modeling temporal correlations during 
imputation leads to better imputation and forecasting performance in clinical time series (Sengupta et al. 
2017). A principled approach that can model such correlations is through the use of Multi-Task Gaussian 
Process (MGP) (Bonilla et al. 2008) that has been effectively used with EMR data for mortality prediction 
in (Ghassemi et al. 2015). Recently, models such as MGP-RNN perform simultaneous imputation and 
classifier training that can also model the correlation of missingness patterns with the target label (Futoma 
et al. 2017). 

To our knowledge, no previous work has used high-resolution waveforms along with EMR data for mortality 
modeling, and we take the first step towards building such a model. Since dense waveforms provide patient 
information that complements EMR-based information, our hypothesis is that by incorporating data from 
this additional source, we can obtain better patient models, which in turn may lead to improved mortality 
prediction. However, we face a modeling challenge: while sparse time series data from EMR can be modeled 
well using methods designed for such data, high-resolution waveform data cannot be directly used in them. 
For example, MGP is designed for sparse data and training them is computationally intractable for such 
dense time series. To address this limitation, we develop a new Multi Time Scale Recurrent Neural 
Networks (MTS-RNN) architecture that effectively models both dense and sparse time series.  

Our architecture has several advantages. It generalizes easily: all the sparse time series are modeled using 
MGP while each dense time series is modeled using individual RNNs. The interaction between the RNNs 
and end-to-end training enables MGP and each RNN to learn from heterogeneous input streams. The use 
of MGP also facilitates easy incorporation of expert-based domain knowledge and personalization to 
individual patients through the use of kernels. Further, the architecture can model varying temporal gaps 
in each measurement, including those in the dense time series. Our preliminary experiments on real ICU 
data of 1,950 patients show promising results suggesting that the addition of dense waveforms to EMR data 
is indeed valuable for ICU mortality prediction. In our experiments, MTS-RNN outperforms state-of-the-
art models that were designed primarily for EMR-based sparse clinical time series. 

Related Work 

Traditional scoring systems for ICU mortality risk, such as APACHE (Zimmerman et al. 2006) have been 
developed to assess how care procedures, medications and other clinical factors affect mortality in ICUs. 
They are not calibrated for patient specific predictions. The efficacy of machine learning models over such 
risk scoring systems was demonstrated in the Physionet ICU Mortality Prediction Challenge (Silva et al. 
2012) and the following research using the same dataset (e.g., Pirracchio 2015; Bhattacharya et al. 2017).  

The key challenge of modeling sparsity due to missing values in clinical time series continues to remain an 
active research area. Most classical time series models assume regularity of measurements and cannot be 
directly used to model such clinical time series, and so, Ghassemi et al. (2015) proposed the use of MGP to 
model such data. It has been found that the missing values are not random and the missingness patterns 
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themselves are correlated with target labels in clinical tasks, which has led to models that combine 
imputation and classifier training in end-to-end models (Futoma et al. 2017; Che et al. 2018). 

State-of-the-art results for various predictive tasks using EMR data have been achieved by deep learning 
models based on convolutional or recurrent neural networks (e.g., Choi et al. 2016; Lipton et al. 2015). A 
survey on deep learning for clinical data modeling can be found in (Shickel et al. 2018). For ICU mortality 
prediction, LSTM-based architectures have shown the best results (Harutyunyan et al. 2019; Rajkomar et 
al. 2018; Song et al. 2018). However, all these models only use data available in EMR comprising sparse 
time series, static variables and nursing notes. The combination of another text-based modality, i.e., nursing 
notes, in addition to laboratory investigations showed improved performance in previous studies on 
mortality modelling (Ghassemi et al. 2015; Rajkomar et al. 2018), that motivates the exploration of an 
additional previously unused source of information, high-resolution waveforms, for mortality modeling. 
Moreover, it has been shown that information in these signals strongly correlates to the mortality of patients 
(Zhang et al. 2016). 

High resolution waveforms have been independently studied and used in several predictive models. For 
instance, Sadeghi et al. (2018) extract 12 statistical features from such signals to train classifiers such as 
SVM, decision trees, and random forest to predict mortality. To the best of our knowledge, very few works 
have integrated high-resolution waveforms with sparse clinical time series from EMR data. A recent work 
of Xu et al. (2018) develops an architecture for the closely related application of decompensation prediction 
but has not been evaluated for mortality prediction. A recent review of deep learning methods for using 
physiological signals in clinical predictions can be found in Faust et al. (2018).   

Background 

Multitask Gaussian Process 

Gaussian process (GP) naturally models irregular spacing and differing number of observations per time 
series in clinical data. Multi-task Gaussian Process (MGP) is an extension of GP to model multiple time 
series simultaneously. We briefly describe MGP following the notation used in Futoma et al. (2017). 

Let fim(t) be a latent function representing the true values of variable m for patient i at time t. We denote the 
total number of time series variables by M and the length of each patient’s record by Ti. All the sparse time 
series variables of the ith patient are denoted by Yi = [yi1,...,yiM] ∈RTi×M  , where yim ∈RTi  is a univariate time 
series of the mth variable. Note that only a subset of the M variables are recorded at each observation time 
where the recording times differ across patients. Further, the number of observations also differ across 
patients, i.e., usually Ti = ̸Ti′ for i ≠ i′. 

Consider the regression model yim(t) = fim(t) + ϵ, where ϵ ∼ N(0,𝜎𝑚) is a noise term. A GP is characterized 
by a mean function (usually assumed to be zero) and a covariance function, and can be viewed as a prior 
probability density over all possible functions for the given sequence. MGP places GP priors over the latent 
functions, with a shared correlation function over time. Assuming centered data, the likelihood of the 
observed multivariate time series is given by a multivariate Gaussian (𝑁): 

vec(Yi) ≡ yi ~𝑁(0, 𝛴𝑖),   𝛴𝑖 = 𝐾𝑀 ⊗ 𝐾𝑇𝑖 + 𝐷 ⊗ 𝐼 

where yi is a stacked vector of all M  variables at the Ti   observation times, denotes ⊗ the Kronecker product, 
𝐾𝑀  is a full-rank M × M covariance matrix, 𝐾𝑇  is a Ti × Ti   correlation matrix for the observation times ti 

(specified by a kernel) and D is a diagonal matrix of noise variances {𝜎𝑚
2 }𝑚=1

𝑀 . More details can be found in 
Bonilla et al. (2008). A key aspect of the model is that 𝐾𝑀  allows information from more frequently sampled 
variables to improve the learning of more sparse variables. Also note that the covariance between different 
variables and between different points in time is explicitly separated. The MTi × MTi   covariance matrix Σi 

only needs to be computed at the observed values, yielding a sparse matrix. 

Given the likelihood of the observed data and the GP prior, the posterior distribution can be computed for 
evenly spaced time-points (Xi). This posterior latent time-series is represented by Zi over the grid points Xi. 
For zi = vec(Zi), the posterior is normally distributed with mean (𝜇𝑧𝑖

) and covariance (𝛴𝑧𝑖
): 
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𝜇𝑧𝑖
= (𝐾𝑀  ⊗  𝐾𝑋𝑖𝑇𝑖)𝛴𝑖

−1𝑦𝑖  ,   𝛴𝑧𝑖
= (𝐾𝑀 ⊗ 𝐾𝑋𝑖) − (𝐾𝑀 ⊗  𝐾𝑋𝑖𝑇𝑖)𝛴𝑖

−1(𝐾𝑀 ⊗ 𝐾𝑇𝑖𝑋𝑖) 

where 𝐾𝑋𝑖𝑇𝑖 is the correlation matrix between evenly spaced grid times xi and observation times ti, and 𝐾𝑋𝑖  is 
the correlation matrix between the grid times xi with itself, specified by the chosen kernel. Following Futoma 
et al. (2017), we choose the Ornstein-Uhlenbeck kernel function, with a single length-scale hyperparameter 
η that has been used previously for noisy physiological time series. MGP parameters include the kernel 
hyperparameters and noise variances, which are typically learnt by maximum-likelihood estimation 
(Bonilla et al. 2008). 

Thus, MGP enables us to transform sparse irregularly sampled multivariate time series (y) to a 
representation (z) that is evenly spaced in time (e.g., every hour). The hyperparameters of MGP trained on 
clinical time series have been used as features for ICU mortality prediction (Ghassemi et al. 2015). MGP is 
an elegant model for sparse multivariate time series but its computational complexity, mainly due to the 
inversion of 𝛴𝑖  (which takes O(M3Ti3) time and is required for both learning and inference) in posterior 
computation, renders it impractical for dense time series that have large Ti. 

MGP-RNN 

MGP-RNN takes in raw sparse time series data, transforms it through MGP to a uniform representation on 
an evenly spaced grid, and uses the latent function values (z) as input to an RNN. MGP-RNN can be used 
for time series classification and has been evaluated for sepsis prediction (Futoma et al. 2017). Unlike 
previous works that separate MGP training from the final classification task, MGP-RNN is an end-to-end 
classifier that learns both the MGP parameters as well as RNN parameters jointly. The advantage of such 
an approach is that the uncertainty in the imputed values is modeled during RNN training, enabling the 
classifier to rely more on the observed values and less on the imputed values. Such uncertainty modeling 
also indirectly models the correlations of the missing patterns with the target label. The latent function 
values are concatenated with other patient information – static baseline variables and medication 
information, and the concatenated vector is used as an input to the RNN. Thus, the RNN is able to learn 
complex time-varying interactions among the clinical data. 

Our Model: MTS-RNN 

To model sparse and dense time series simultaneously, we design a new RNN architecture called Multi Time 
Scale RNN (MTS-RNN). We determine grid points at two different time-scales for sparse and dense data, 
e.g., every hour and every second. We use statistical features (mean and standard deviation) of the dense 
time series for each interval (i.e. every second) as input to an RNN and obtain hidden representations of 
the signal at each grid point (i.e. every hour). These representations are concatenated with the latent 
representations obtained using MGP for sparse time series, as described above, and used as input to a 
second RNN which is used for binary classification. Figure 1 shows a schematic of the model. 

Let 𝐷𝑖 = {𝑏𝑖 , 𝑡𝑖, 𝑌𝑖, 𝐸𝑖 , 𝑃𝑖 , 𝑜𝑖} represent the 𝑖𝑡ℎ  patient’s data, where 𝑏𝑖  represents static baseline variables (e.g., 
demographics that are measured during hospital admission), 𝑡𝑖  represents the time points of measurements 
of the sparse time series, 𝑌𝑖  represents the sparse time series measurements corresponding to the 𝑡𝑖  (e.g., 
laboratory measurements), 𝐸𝑖  represents the dense time series measurements (e.g., ECG), 𝑃𝑖 represents the 
medications administered and 𝑜𝑖  represents the binary label of in-hospital mortality. The variables 𝑏𝑖   and 
𝑃𝑖  are modeled differently: 𝑏𝑖  is not temporal; 𝑃𝑖  is a P-dimensional vector containing the amounts of each 
of the P medications administered at every grid point (that, unlike physiological variables, does not have a 
latent structure). Statistical features obtained every second from the dense time series 𝐸𝑖  are used as input 
to an RNN which learns the hidden representation 𝑟𝑖𝑗  at each 𝑗𝑡ℎ  grid point. These grid points correspond to 

the grid points of MGP that is used to model the sparse time series {𝑡𝑖 , 𝑌𝑖}. At each grid point (indexed by j) 
the learnt latent function 𝑧𝑖𝑗  from the MGP is concatenated with the vectors 𝑏𝑖 , 𝑃𝑖𝑗  and 𝑟𝑖𝑗. This concatenated 

vector is used as input to the second RNN. The entire model is trained end-to-end using the procedure 
described in Futoma et al. (2017). 



 ICU Mortality Prediction using RNNs at Multiple Resolutions 
  

 

 Fortieth International Conference on Information Systems, Munich 2019 5 

 

                                      

𝑝𝑇  = medications at grid point T 𝑧𝑇= Posterior of MGP at grid point T         𝑟𝑡 , ℎ𝑇  = hidden representations of RNN 

b = baseline demographics 𝐸𝑡= waveform input at time t                        𝑜 = predicted label 
 

Figure 1.  Schematic for MTS-RNN model 
 

MTS-RNN can be seen as a variant of stacked RNNs (El Hihi and Bengio 1996) that are constructed by 
stacking multiple recurrent hidden layers, with the goal of capturing representations at different timescales 
in each recurrent level. In contrast, in our model, each RNN models a distinct temporal process with 
different inputs at each time step. Thus, MTS-RNN can also be viewed as multiple interacting RNNs.  

Our model has numerous advantages. By using MGP-based representations it inherits all the benefits of 
MGP-RNN, viz., uncertainty-aware modeling of sparse time series and the propagation of uncertainty in 
RNN training. Due to the interaction between RNNs, through end-to-end training, the RNN for dense time 
series also ‘learns’ from other patient data; thus, even the dynamics of the dense time series is modeled 
better and may be useful in forecasting applications. Moreover, additional information specific to the dense 
time series can be used as input directly to this RNN. There may be multiple dense time series: each dense 
time series can be added as another RNN and the architecture can generalize easily. Furthermore, there can 
be temporal gaps of varying frequency and length between measurements in the dense time series as well. 
The MTS-RNN architecture can also model such temporal gaps – grid intervals that do not have dense time 
series measurements can have only latent functions from the sparse time series, with the previous hidden 
representation (𝑟𝑖𝑗) of the dense time series propagated unmodified. 

Experiments 

Data 

We use a publicly available EMR dataset, MIMIC-III (Johnson et al. 2016), containing clinical data of over 
40,000 patients admitted to the ICUs in Beth Israel Deaconess Medical Center in Boston, Massachusetts 
between 2001 and 2012. The data is extracted from EMR and de-identified in compliance with HIPAA 
standards (Johnson et al. 2016). This data includes vital sign measurements, laboratory test results, 
medications and clinical notes and other demographic and billing related information. The MIMIC III 
Waveform Database (Goldberger et al. 2000) contains multiple physiological signals (“waveforms”), 
sampled at high frequencies such as 125 Hz, and time series for vitals (“numerics”), sampled at lower 
frequencies of 1 second or 1 minute. These have been collected from bedside monitors and include ECG, 
continuous arterial blood pressure (ABP), pulse plethysmograms and other signals. From this database, 
10,282 patient records have been matched to the MIMIC-III EMR dataset. 

We follow the data preprocessing steps described in Harutyunyan et al. (2019) that use MIMIC-III EMR 
data. Out of the 10,282 matched patients, we exclude all neonatal and patients under 16 years, as critical 
care protocols are different for these patients. ICU stays with duration less than 24 hours and conflicting 
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diagnoses are excluded. Also, patients whose demographics are missing are excluded. Among the 
waveforms, ECG-II signal was present in the maximum number of patients. For our preliminary 
experiments, we choose only those patients who have ECG-II signal. As no other selection criteria was 
applied, the resulting cohort is heterogeneous and hence representative of a real clinical setting. We use the 
first 24 hours of clinical data to predict mortality risk at the end of the first day of ICU stay for all patients. 

The ECG-II recordings available are sometimes duplicate or split into multiple recordings for a given 
patient’s ICU stay. For a patient encounter, we merge multiple ECG-II recordings with maximum overlap 
of 5 minutes for every ICU stay. We eliminate patient encounters with duplicate ECG-II recordings. This 
selected cohort consists of 7317 patient encounters, with 788 positive labels for in-hospital mortality.  
 

 

In addition to the data cleaning steps described in Harutyunyan et al. (2019), we eliminate duplicate entries 
(multiple measurements of the same variable at the same time point) and remove entries containing ranges 
(e.g., 3-7) instead of single values. Wherever multiple units of measurements were used, appropriate unit 
conversions were performed. The binary label of in-hospital mortality is set to 1 if the Date of Death is 
between the hospital admission and discharge times. The EMR variables chosen are listed in Table 1. These 
features are among the most frequently measured variables in the ICU, including this database, and have 
been used in previous literature (Silva et al. 2012; Harutyunyan et al. 2019). We use a single dense time 
series ECG-II from the Waveform Database. Thus, the ith patient encounter (𝐷𝑖 = {𝑏𝑖 , 𝑡𝑖 , 𝑌𝑖 , 𝐸𝑖 , 𝑃𝑖, 𝑜𝑖}) has 
static baseline variables (bi), sparse time series of clinical measurements (Yi) at observation times (𝑡𝑖 ), 
medication administration information (pi), dense time series of ECG measurements (Ei) and the mortality 
label (oi). 

Evaluation 

We compare the performance of MTS-RNN on ICU mortality prediction with that of the following baseline 
methods. The LSTM model (Harutyunyan et al. 2019; Song et al. 2018) is the state-of-art model for 
mortality prediction. Since MTS-RNN extends the architecture of MGP-RNN, we also use MGP-RNN as 
another baseline. All the three methods use LSTM for the hourly time series. The difference lies in the 
imputation method (i.e. MGP) and additional LSTM for waveform (in case of MTS-RNN).  Similar to the 
approach used by Sadeghi et al. (2018), we extract statistical features from clinical time series and use 
standard classifiers (k-nearest neighbor (KNN), support vector machine (SVM) and multilayer perceptron 
(MLP)) as baselines. 

MGP-RNN can handle all the input datatypes except dense time series. The time and memory requirement 
for using high frequency waveform data are used is impractically high. The LSTM model has been designed 
for sparse time series and does not use medication information or dense time series. Hence we only use 
sparse time series data and static variables for predicting using this model. Note that their model imputes 
missing values with previous measured values. For the waveforms, we impute missing values with mean of 
the signal, before obtaining the mean and standard deviation for each second. For the remaining classifiers, 
each patient encounter is transformed into a single vector by using summary statistics of both sparse and 
dense time series that are concatenated with static variables. The summary statistics are count, mean, 
standard deviation, minimum value, median and maximum value. 

Five-fold cross validation is used to evaluate all the models, by randomly dividing the patient encounters 
into five groups. To address the imbalance in the dataset, we use an under-sampling strategy during 
training, within each fold. To avoid losing information through subsampling we use the Condensed Nearest 
Neighbour undersampling method (Hart, 1968), that uses a 1-nearest neighbor (1-NN) rule to iteratively 

Table 1. List of features used 

Sparse clinical time series variables (𝑌𝑖) Medications (𝑃𝑖) Static (𝑏𝑖) 

Capillary refill rate, Cholesterol, Creatinine, Diastolic blood 
pressure, Eosinophils, Fraction inspired oxygen, Glucose, Heart 
Rate, Height, Hemoglobin, Magnesium, Mean blood pressure, 
Oxygen saturation, Potassium, Red blood cell count, Respiratory 
rate, Sodium, Systolic blood pressure, Temperature, Weight, pH 

Sodium Chloride 
0.9%, Propofol, 
Insulin, Heparin, 
Potassium Chloride 

Ethnicity, 
Gender, 
Age, 
Height, 

Weight 
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decide which majority class sample should be used. The method begins with a training set comprising all 
the minority class samples. Then using the 1-NN rule on the training set, only the misclassified samples are 
iteratively added from the majority class into the training set. 

We use the following evaluation metrics: Sensitivity or Recall measures the proportion of actual positives 
that are correctly identified, and Specificity measures the proportion of actual negatives that are correctly 
identified. Precision measures the proportion of correctly identified positives among the predicted 
positives. The F1-score, an overall measure of accuracy, is the harmonic mean of Precision and Recall. These 
metrics are for a specific threshold used with a classifier (set to 0.5 in our experiments). Threshold 
independent metrics include Area Under Curve of the Receiver Operating Characteristic Curve (AUROC) 
and Area Under Precision-Recall Curve (AUPR). ROC and precision-recall curves show the tradeoffs 
between, respectively, sensitivity-specificity and precision-recall for different thresholds. The area under 
these curves indicate overall performance over all thresholds. In all metrics higher values indicate better 
performance. Thus, higher AUPR and F1 scores indicate that the classifier is returning accurate results (high 
precision), and a large proportion of all positive results (high recall, implying better identification of high-
risk patients).    

Results 

Table 2 shows the classification performance of MTS-RNN and all the baseline methods.  

Table 2. Evaluation results: Averages over 5-fold CV (Standard Deviation) 

 AUROC AUPR Sensitivity Specificity Precision F1 
Score 

SVM 0.5 (0) 0.1076 
(0.0075) 

0  (0) 1 (0) 0 (0) 0 (0) 

KNN 0.512676 
(0.0075) 

0.112754 
(0.0112) 

0.0531 
(0.0162) 

0.9724 
(0.0135) 

0.2057 
(0.0666) 

0.08210 
(0.0229) 

MLP 0.51154 
(0.0193) 

0.11048 
(0.0107) 

0.3949 
(0.5185) 

0.6282 
(0.4993) 

0.08262 
(0.0805) 

0.0984 
(0.1043) 

LSTM 0.68026 
(0.0177) 

0.2121 
(0.0269) 

0.2812 
(0.1221) 

0.89347 
(0.0476) 

0.2423 
(0.0312) 

0.25096 
(0.0569) 

MGP-RNN 0.7096 
(0.0306) 

0.2341 
(0.0465) 

0.4865 
(0.0324) 

0.2186 
(0.0159) 

0.0698 
(0.0049) 

0.1220 
(0.0081) 

MTS-RNN 0.7094 
(0.0193) 

0.24216 
(0.0122) 

0.4946 
(0.0435) 

0.7876 
(0.0129) 

0.21903 
(0.01412) 

0.3031 
(0.0167) 

 

We observe that SVM, MLP and KNN, that only use statistical summaries and do not explicitly model 
temporality have poor performance. Their AUROC values are close to 0.5, indicating almost no 
improvement over random guesses, and their lack of discrimination results in low sensitivity. All the other 
methods – LSTM, MGP-RNN and MTS-RNN, explicitly model temporality and have much better 
performance. Both the models that use MGP to model sparse time series outperform LSTM in AUROC, 
AUPR and sensitivity. This could be due to better imputation of missing values in the time series using MGP, 
which models the correlations between different clinical time series and/or due to additional features – 
static variables, medications and dense time series, used in MGP-RNN and MTS-RNN. Finally, MTS-RNN 
is better than that of MGP-RNN with respect to AUPR, F1-score, sensitivity, specificity and precision, and 
they have comparable AUROC. This suggests that the multiple time scale architecture of MTS-RNN leads 
to improvements in classification performance. This also lends evidence to the trend observed previously: 
explicit modeling of the temporality of dense time series in MTS-RNN improves performance compared to 
statistical summaries within MGP-RNN. Note that MGP-RNN cannot model dense time series directly, nor 
can it scale with an increasing number of measurements due to its cubic time complexity. The performance 
improvement of MTS-RNN over LSTM comes at the cost of higher computational cost in training due to the 
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O(M3Ti3) factor in MGP, and an additional LSTM with more time steps (O(W) per time step). With respect 
to F1-score, MTS-RNN significantly outperforms other baselines (p-value 0.001204, using Friedman Test). 

Initial Contributions and Future Plan 

In this study, we develop the MTS-RNN architecture to simultaneously model dense and sparse clinical time 
series along with other clinical measurements found in ICUs. To our knowledge, this is the first model to 
predict mortality using combined patient data from two large sources in the ICU: Electronic Medical 
Records (containing static data and sparse time series) and Bedside Monitors (containing dense time 
series). MTS-RNN can effectively model multiple input data types comprising static data, sparse and dense 
time series in a generalizable architecture that learns from all the different input data modalities. Our initial 
experiments suggest that such an architecture for combining dense and sparse time series can improve the 
accuracy of ICU mortality prediction over previously used architectures for sparse time series only.   

Our model can be used to assess the severity of illness and identify high-risk patients, which in turn can aid 
critical decision-making tasks within the ICU and has the potential to improve the efficacy of clinical 
decision support systems. Further, through the use of multiple modalities as inputs, our model can 
potentially counter the biases in individual data inputs which has been recognized as a problem in systems 
based on Electronic Health Records (Hripscak and Albers, 2012). The incorporation of data from bedside 
monitors, that is not controlled directly by clinical staff and is therefore unbiased, can address this problem. 

This work can be extended in many ways. Further experiments using larger cohort sizes, more clinical 
variables and data from other hospitals are required to conclusively establish the superior predictive 
performance of MTS-RNN. Additional clinical variables include the use of more dense time series variables 
as well as other modalities such as clinical notes and imaging data. Experiments are also required to evaluate 
how well MTS-RNN can model varying temporal gaps in each of the dense time series. Another avenue of 
exploration is the development of combined knowledge-based and data-driven models, which is facilitated 
by the use of kernels in MGP. Prior knowledge about the correlations of the clinical investigations can 
improve MGP representations that in turn may improve the classification. This is particularly useful if the 
number of available training samples is low. Knowledge graphs contain relationships between various 
clinical entities (such as medications, diseases, and lab investigations) in the form of heterogeneous graphs. 
Correlations between clinical investigations can be derived from such graphs and used for kernel 
initialization. Kernels are also useful in personalization: if there are known patient subtypes, then different 
MGP models can be learnt on these different groups of patients before being used to train MTS-RNN. 
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