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 Abstract  

Users’ lack of understanding of systems that use predictive models to make automated 
decisions is one of the main barriers for their adoption. We adopt the increasingly 
accepted view of a counterfactual explanation for a system decision: a set of the system 
inputs that is causal (meaning that removing them changes the decision) and irreducible 
(meaning that removing any subset of the inputs in the explanation does not change the 
decision). We generalize previous work on counterfactual explanations in three ways: we 
explain system decisions rather than model predictions; we do not enforce any specific 
method for removing inputs, and our explanations can incorporate inputs with arbitrary 
data structures. We also show how model-agnostic algorithms can be tweaked to find the 
most useful explanations depending on the context. Finally, we showcase our approach 
using a real data set to illustrate its advantages over other explanation methods when the 
goal is to understand system decisions better. 

Keywords:  Explanations, system decisions, predictive models  

Introduction 

Data and predictive models are increasingly used to make better decisions. Yet, most data-rich companies 
still face barriers to adopting advanced predictive analytics, mainly because of managerial and cultural 
reasons rather than issues related to data and technology (LaValle et al., 2011). In fact, as models become 
more complex and difficult to understand, users often become more skeptical and reluctant to use them, 
even if the models are known to improve decision-making performance (Arnold et al., 2006; Kayande et 
al., 2009). Thus, researchers in recent years have explored methods that aim to reduce the gap in users’ 
understanding of predictive models, most notably by providing explanations of model predictions. 

Approaches to explain model predictions include extracting rules that represent the inner workings of the 
model (e.g., Craven & Shavlik 1996; Martens et al. 2007; Jacobsson 2005) and associating weights to each 
feature according to their importance (e.g., Lundberg & Lee 2017; Ribeiro et al. 2016). Unfortunately, such 
approaches often become intractable or produce incomprehensible explanations as models become more 
complex. For instance, in applications such as text classification, predictions often come from black box 
models that use thousands of parameters and features. In these cases, it's hard to imagine that a list with 
thousands of rules or a vector with thousands of weights would be much more comprehensible than the 
predictive model being explained. More importantly, such explanations are not descriptive of the decisions 
made by the model. For example, suppose that a credit scoring system that uses a predictive model denies 
credit to a loan applicant, and that feature importance weights reveal that the two most important features 
in the model prediction were the annual income and the loan amount. While informative, this does not 
explain what was it that made the system decide to deny credit. Would changing either the annual income 
or the loan amount be enough for the system to approve credit? Is it necessary to change both?  Or perhaps 
even changing both is not enough. 

Some researchers (Martens and Provost, 2014; Wachter, Mittelstadt and Russell, 2017) have proposed to 
explain models from a causal perspective: when the question we seek to answer is “why did the model-based 
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system make a specific decision?”, we ask specifically, “which data inputs caused the system to make its 
decision?” This approach is advantageous because it standardizes the form that an explanation can take; it 
does not require all features to be part of the explanation, and the explanations can be separated from the 
specifics of the model. The main contribution of this paper is to provide a multi-faceted generalization of 
this perspective to providing explanations for data-driven decisions rather than model predictions. Our 
framework for explanations (i) can address features with arbitrary data types, (ii) is model-agnostic, (iii) is 
scalable to thousands of features, and (iv) can take into consideration the potential cost of changing features 
as a result of the explanation.  We present the framework and an associated explanation-finding algorithm.  
Then, to showcase situations in which counterfactual explanations explain data-driven decisions better 
than feature importance weights, we apply the algorithm to data on credit-investment decisions. 

Predictive Models and Explanations 

Predictive models are often used in systems that either support human decision making or make decisions 
automatically. The focus of this paper is on the latter, specifically on discrete decision-making, which is 
closely related to classification tasks. Classification tasks are usually modeled as scoring problems, where 
we want observations with the “correct” class to have a higher score than observations with the “incorrect” 
class; the scores rank observations, and classifications are made using a chosen threshold appropriate for 
the problem at hand (Provost and Fawcett, 2013). Many decision-making problems are modeled as 
classification tasks by associating a class with each decision. Typically, estimated probabilities of class 
membership are used as scores, but scores do not necessarily have to be probabilities, and the final output 
of the system (i.e., the decision) may not correspond to the labels in the training data. For example, for a 
system deciding whether to target a customer with a promotion, scores could consist of expected profits. In 
this case, we could estimate a classification model to predict the probability that the customer will make a 
purchase and a regression model to estimate the size of the purchase (conditional on the customer making 
a purchase); the expected profits would be the multiplication of these two predictions. Yet, the final output 
of the decision-making system would be whether the customer should be targeted with a promotion. Thus, 
our focus is on explaining system decisions rather than predictive models. 

Many researchers have worked on explaining predictive models over the past several decades. Because 
symbolic models, such as decision trees, are often considered straightforward to explain when they are 
small enough,1 most research has focused on explaining non-symbolic (black box) models or large models. 
Rule-based explanations are a popular approach to do so. These explanations are particularly useful when 
every decision that the model could possibly make must be understood. For example, in many credit scoring 
applications, banking regulatory entities require banks to implement globally comprehensive predictive 
models (Martens et al., 2007). Typical techniques to provide rule-based explanations consist of 
approximating the black box model with a symbolic model (Craven and Shavlik, 1996), or extracting explicit 
if-then rules (Andrews, Diederich and Tickle, 1995). Proposed methods are often tailored to the specifics of 
the models being explained, and researchers have invested significant effort attempting to make state-of-
the-art black box models more transparent. For example, Jacobsson (2005) offers a review of explanation 
techniques for deep learning models, and Martens et al. (2007) propose a rule extraction method for SVMs. 

Another popular alternative to explain model predictions is to frame explanations in terms of feature 
importance by associating weights to each feature in the model. Each weight can then be interpreted as the 
proportion of the information contributed by the corresponding feature to the model predictions. The main 
strength of this approach is that the explanations are defined in terms of the domain (i.e., the features), 
separating them from the specifics of the model being explained. As a result, models can be replaced without 
replacing the explanation method; end users (such as customers or managers) do not need any knowledge 
of the underlying modeling methods to understand the explanations, and different models may be 
compared in terms of their explanations in settings where transparency is critical. 

One common way of assessing feature importance is based on simulating lack of knowledge about features 
(Lemaire, Féraud and Voisine, 2008; Robnik-Šikonja and Kononenko, 2008). For instance, one could 

 

1 However, explaining decisions may not be straightforward even with small symbolic models. For example, suppose the model is a 
binary decision tree that receives two inputs and predicts 1 when either of the inputs is 1. Then, by examining the tree, one may come 
to the wrong conclusion that (for one of the leaves) one of the inputs needs to be different from 1 for the tree to predict 1. 
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compare the original model’s output with the output obtained when removing a specific feature. If the 
output changes, it means that the feature was important for the model prediction. Methods that use this 
approach often decompose each prediction into the individual contributions of each feature and use the 
decompositions as explanations, thus enabling the visualization of each instance-decision explanation 
separately. A notable challenge, however, is that interactions between features may lead to ambiguous 
explanations because the order in which features are removed may affect the importance attributed to each 
feature. Therefore, subsequent work proposed to assess feature importance by removing all possible subsets 
of features (rather than only one feature at a time), retraining models without the removed features, and 
comparing how predictions change (Štrumbelj, Kononenko and Robnik-Šikonja, 2009). However, such 
approaches may take hours of computation time and have been reported to handle only up to about 200 
features. Alternative formulations have attempted to reduce computation time by sampling the space of 
feature combinations and by using imputation to deal with removed features, resulting in sampling-based 
approximations of the influence of each feature on the prediction (Strumbelj and Kononenko, 2010; 
Ribeiro, Singh and Guestrin, 2016; Datta, Sen and Zick, 2017; Lundberg and Lee, 2017).  

Nonetheless, importance weights may not be good explanations because they don’t communicate what 
would need to be different for the system decision to change. For example, as mentioned, systems may use 
predictions from multiple models to make decisions, yet all prior methods were designed to explain score 
outputs from a single predictive model. In these cases, it is unclear how to combine the importance weights 
of each model to assess their impact on the system decision. Moreover, complex systems may incorporate 
many features in their decision making. In these settings, hundreds of features may have non-zero 
importance weights for any given instance, yet changing only a handful of the features may be enough to 
change the system's decisions (Martens and Provost, 2014; Chen et al., 2016). 

System Decisions and Counterfactual Explanations 

We generalize the counterfactual explanations proposed by Martens & Provost (2014). As with the prior 
work, we define explanations in terms of information that if not present would change the decision. For 
illustration, suppose a credit card transaction was deemed fraudulent by a system after it was registered as 
occurring outside the country where the cardholder lives,2 and suppose the system would have deemed the 
transaction to be legitimate absent this location.  In this case, it is intuitive to consider the location as an 
explanation for the system decision. Of course, there could be other explanations. Perhaps the transaction 
also involved a consumption category outside the profile of the cardholder (e.g., a purchase at a casino), 
and excluding this information from the system would also change the decision to “don’t flag”. Both 
explanations consist of information without which the system would have made a different decision.  

We define a counterfactual explanation as a set of features that is weakly causal and irreducible. Weakly 
causal means that removing the set of features from the instance causes the model decision to change.3 
Irreducible means that removing any proper subset of the explanation would not change the model 
decision. The importance of an explanation being weakly causal is straightforward: the decision would have 
been different if not for the presence of this set of features.  The “weakness” comes from the fact that all the 
features in the set may not actually be necessary. The irreducible condition serves to avoid including 
features that are superfluous. More formally, consider instance 𝐼 consisting of 𝑚 features 𝐼𝑖 ,  𝑖 = {1,2, … , 𝑚}, 
for which the decision-making system 𝐶: 𝐼 → {1,2, … , 𝑘}  gives decision 𝑐 . Then, a set of features 𝐸  is a 
counterfactual explanation for 𝐶(𝐼) = 𝑐 if and only if: 

1. 𝐸 ⊆ 𝐼 (the features are present in the instance) 
2. 𝐶(𝐼 − 𝐸) ≠ 𝑐 (the explanation is weakly causal) 
3. ∀𝐸′ ⊂ 𝐸: 𝐶(𝐼 − 𝐸′) = 𝑐 (the explanation is irreducible) 

 

2 We should keep in mind the decision-rather-than-classification perspective.  We will use the shorthand "deeming the transaction to 
be fraudulent." However, in fact, the decision is to flag the transaction as likely fraud, which then will trigger other actions, such as 
sending a message to the account holder to verify.  Flagging may be based on a threshold on the estimated likelihood of fraud but may 
also consider the existence of evidence from other transactions and the potential loss if the transaction were indeed fraudulent. 

3 It is critical to differentiate what is causing the data-driven system to make its decisions from causal influences in the actual data-
generating processes. Our definition of counterfactual explanations relates to the former. 
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As mentioned, our approach builds on the explanations proposed by Martens & Provost (2014), who 
developed and applied counterfactual explanations for document classifications, defining an explanation as 
an irreducible set of words such that removing them from a document changes its classification. 4  We 
generalize counterfactual explanations in three important ways. First, we generalize to broader system 
decisions, which may incorporate predictions from multiple predictive models. Second, their explanations 
consist of removing features by setting them to zero, whereas we generalize to arbitrary methods for 
removing features (and note the important relationship to methods for dealing with missing data). Third, 
while their approach has been applied in other contexts beyond document classification (Chen et al., 2016; 
Moeyersoms et al., 2016), these applications all have the same data structure: high-dimensional, sparse, 
binary features. Our generalization applies to data with arbitrary data types. 

Note that counterfactual explanations are generally applied to “non-default” decisions. Data-driven systems 
usually make default decisions in the absence of information. In our example, a transaction would be 
considered legitimate unless there is enough evidence suggesting fraud. As a result, explaining default 
decisions often corresponds to saying, “because there was not enough evidence of a non-default class”.5 
Therefore, the focus of this paper is primarily on explaining non-default decisions. 

A practical question that our generalization raises is what does it mean to “remove” features from a data 
instance that will be input to a model-based decision-making procedure? Multiple solutions have been 
proposed for dealing with features missing from an instance when applying predictive models (Saar-
Tsechansky and Provost, 2007), 6  such as imputing default values for the missing features, retraining 
models with only the available features, etc.  The generalized framework is agnostic to which method is used 
to deal with the removed features—taking the position that this decision is domain- and problem-
dependent. What matters is that the decision may change when some of the features are not present at the 
time of decision making, and thus the change in the decision can be attributed to these missing features. In 
the empirical example presented below, we use mean imputation for continuous variables and mode 
imputation for categorical variables. We chose this approach because it is usually far cheaper than 
retraining models, and it is one of the most commonly used and recommended techniques to deal with 
missing values. Saar-Tsechansky and Provost (2007) discuss other alternatives and their implications for 
model predictions; any of them could be used in conjunction with this framework. 

Our generalization to system decisions allows us to define a heuristic procedure to find the most useful 
explanations depending on the context. The heuristic algorithm proposed by Martens & Provost (2014) 
finds counterfactual explanations by using heuristic search that requires the decision to be based on a 
scoring function, such as a probability estimate from a predictive model. This scoring function is used by 
the search algorithm to first consider features that when removed reduce the score of the predicted class 
the most. This heuristic may be desirable when the goal is to find the smallest (and so arguably the simplest) 
explanations, such as when explaining the decisions of models that use thousands of features. However, it 
is often the case that users want to use the explanations as recommendations of what to change in order to 
affect the system decision. For example, suppose that a system decides to warn a man that he is at high risk 
of having a heart attack. An explanation that “the system would have not made the warning if the patient 
were female” is of very little use as a guide for what to change. In practice, some features are easier to change 
than others, and some may be (practically) impossible to change.  

Therefore, we allow the incorporation of the costs of removing (i.e., changing) each feature as part of the 
heuristic procedure. This cost may be fixed (e.g., when setting a binary feature to zero), may be contingent 
on the magnitude of the change (e.g., when adjusting a continuous variable), or may even be infinite. 
Subsequently, instead of searching for the feature combinations that change the score of the predicted class 
the most, the heuristic could search for the feature combinations for which the output score changes the 
most per unit of cost. Returning to the heart attack example, if we assign an infinite cost to changing the 
gender feature, the heuristic would not search for feature combinations that include it, regardless of its high 

 

4 Martens and Provost also note the straightforward extension to other word-like features. 

5 However, this is not always the case. For example, if a credit card transaction was made in a foreign country, but the cardholder 
recently reported a trip abroad, the trip report could be a reasonable explanation for the transaction being classified as legitimate. So, 
the evidence in favor of a non-default classification may be cancelled out by other evidence in favor of a default classification. 

6 Note that this is different from what to do when feature values are missing when learning such models from data. 
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impact on the output score. Instead, the heuristic would search first for explanations with many modest but 
“cheap” changes, such as changing several daily habits. To the extent that the system also has a scoring 
function (which could be the result of combining several predictive models), the procedure proposed by 
Martens & Provost (2014) could be easily adjusted to find the most useful explanations for the problem at 
hand. A similar approach has also been suggested for classifiers that have a known and differentiable 
scoring function (Lash et al., 2017). 

Counterfactual explanations have other benefits as well. First, same as importance weights, they are defined 
in terms of domain knowledge (i.e., features) rather than in terms of modeling techniques. As mentioned 
before, this is of critical importance to explain individual decisions made by such models to users. More 
importantly, these explanations can be used to understand which features would need to change for the 
decision to change, which is not captured by feature importance methods. Also, because only a fraction of 
the features will be present in any single explanation, our approach may be used to explain decisions from 
models with thousands of features (or many more). Studies show cases where such explanations can be 
obtained in seconds for models with tens or hundreds of thousands of features and that the explanations 
typically consisted of a few dozen of features at the most (Martens and Provost, 2014; Chen et al., 2016; 
Moeyersoms et al., 2016). 

Empirical Example 

We use data from Lending Club, a lending platform, to showcase the advantages of counterfactual 
explanations over feature importance weights when explaining data-driven decisions. The data is publicly 
available and contains comprehensive information on all loans issued between 2007 and 2019 (the data is 
updated every quarter). The data set includes hundreds of features for each loan, including the interest rate, 
the loan amount, the monthly installment, the loan status (e.g., fully paid, charged-off), and several other 
attributes related to the borrower, such as type of house ownership and annual income. To simplify things, 
we use a sample of the data used by Cohen et al. (2018) and focus on loans with a 13% annual interest and 
a duration of three years (the most common loans), leaving us with 71,938 loans.  

We use 70% of this reduced data set to train a logistic regression model that predicts the probability of 
borrowers defaulting using the following features: loan amount (loan_amnt), monthly installment 
(installment), annual income (annual_inc), debt-to-income ratio (dti), revolving balance (revol_bal), 
incidences of delinquency (delinq_2yrs), number of open credit lines (open_acc), number of derogatory 
public records (pub_rec), upper boundary range of FICO score (fico_range_high), lower boundary range 
of FICO score (fico_range_low), revolving line utilization rate (revol_util), and months of credit history 
(cr_hist). The model is used by a system that denies credit to loan applicants with a probability of default 
above 20%. We then use the system to decide which of the held-out 30% of loans should be approved. 

We use SHAP (Lundberg and Lee, 2017), a popular approach to explain the output of machine learning 
models, to compute importance weights for system decisions and compare them to counterfactual 
explanations. SHAP ties instance-level explanations to game theory, unites several feature importance 
weighting methods (such as the relatively well-known LIME (Ribeiro, Singh and Guestrin, 2016)), and 
presents the only possible consistent and locally accurate attribution method (see (Lundberg and Lee, 2017) 
for details). Importantly, SHAP was designed to explain the output of scoring functions, not system 
decisions.7 We repurpose SHAP to compute feature importance weights for non-default system decisions 
by transforming the output of the system into a scoring function that returns 1 if the credit is denied and 
returns 0 otherwise. More generally, if we define a scoring function that returns 1 if the decision is the same 
after removing features and returns 0 otherwise, we can thus use SHAP to obtain importance weights for 
any system decision–even decisions with multiple, unordered alternatives, that cannot normally be 
represented as a single numeric score. 

We now can compare counterfactual explanations to explanations based on feature importance weights, to 
illustrate the advantages of the former. First, weights do not communicate what features would need to 
change for the decision to change. Figure 1 shows the feature importance weights assigned by SHAP to four 
loans that would be denied credit by the system. According to SHAP, loan_amnt was the most important 

 

7 This is also true for all other methods that compute feature importance weights. 
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feature for the credit denial of the four loans. However, this information does not actually explain any of 
the decisions. If the credit applicant of Loan 1 wants to understand what to do better in order to obtain 
credit next time, we cannot use the feature importance information to explain why he or she was denied 
credit. Was it the amount of the loan? The low annual income? Both? 
 

 
Figure 1. Feature importance weights according to SHAP 

 
Table 1, in contrast, shows all the counterfactual explanations for the credit denial decision of Loan 1. Each 
column represents a possible explanation, and the arrows in each cell show which features are present in 
each explanation. The last column shows by how much each feature in the explanation would need to change 
for the system to approve Loan 1, illustrating how our generalized counterfactual explanations may be 
applied to numeric features. For example, as shown in column 1, one possible explanation for the credit 
denial of Loan 1 is that the loan amount is too large (or more specifically, $16,122 too large) given the other 
aspects of the application. The data indeed shows that the amount for Loan 1 is $28,000, but the average 
loan amount in our sample is $11,878. In this instance, one could explain the decision in several other ways. 
The explanation in column 4 suggests that the $28,000 credit would be approved if the applicant had a 
higher annual income and a longer credit history, which are below average in the case of the applicant. 
Therefore, from these explanations, it is immediately apparent how the features influenced the decision. 
This highlights two additional advantages of counterfactual explanations: they give a deeper insight into 
why the credit was denied and provide various alternatives to change the decision. 

Table 2 shows the counterfactual explanations of Loan 4 to emphasize this last point. From Figure 1, we can 
see that Loan 1 and Loan 4 have somewhat similar importance weights. Thus, from this figure alone, one 
may conclude that these two credit denial decisions should have similar counterfactual explanations. Yet, 
comparing Table 1 and Table 2 reveals this in fact is not the case. Loan 4 has many more explanations, and 
even though the explanations in both loans have similar features, the only explanation that the loans have 
in common is the first one (i.e., loan amount is too large); there is no other match.  
 
Importantly, the number of counterfactual explanations may grow exponentially with respect to the number 
of features, so finding all possible counterfactual explanations is generally intractable when the number of 
features is large. In the case of the loans discussed in this empirical example, we did an exhaustive search 
because the number of features was relatively small, thus Tables 1-2 show all possible counterfactual 
explanations for the credit denials of Loan 1 and Loan 4. In most settings, however, the algorithm would 
need to be restricted to a maximum number of iterations or explanations to be tractable. Nonetheless, the 
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number of explanations may still be large, so additional steps to improve interpretability could be helpful, 
such as defining measures to rank explanations according to how “good” they are.  

 
 

Table 1. Counterfactual explanations for Loan 1 

 
Features 

Explanations 
Required 
Change 

1 2 3 4 5 6 

𝑙𝑜𝑎𝑛_𝑎𝑚𝑛 ↑      -$16,122 

𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑚𝑒𝑛𝑡     ↑  -$540 

𝑎𝑛𝑛𝑢𝑎𝑙_𝑖𝑛𝑐  ↓ ↓ ↓ ↓ ↓ +$9,065 

𝑟𝑒𝑣𝑜𝑙_𝑏𝑎𝑙      ↓ +$4,825 

𝑓𝑖𝑐𝑜_𝑟𝑎𝑛𝑔𝑒_ℎ𝑖𝑔ℎ   ↓    +16 

𝑓𝑖𝑐𝑜_𝑟𝑎𝑛𝑔𝑒_𝑙𝑜𝑤  ↓     +21 

𝑟𝑒𝑣𝑜𝑙_𝑢𝑡𝑖𝑙      ↑ -12% 

𝑐𝑟_ℎ𝑖𝑠𝑡    ↓   +92 months 

↑ means feature is too large to grant credit. 

↓ means feature is too small to grant credit. 
 
 

Table 2. Counterfactual explanations for Loan 4 

 
Features 

Explanations 
Required 
Change 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

𝑙𝑜𝑎𝑛_𝑎𝑚𝑛 ↑               -$12,372 

𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑚𝑒𝑛𝑡      ↑      ↑   ↑ -$418 

𝑎𝑛𝑛𝑢𝑎𝑙_𝑖𝑛𝑐  ↓              +$15,065 

𝑑𝑡𝑖    ↑      ↑     ↑ -5 

𝑜𝑝𝑒𝑛_𝑎𝑐𝑐        ↑      ↑  -1 

𝑝𝑢𝑏_𝑟𝑒𝑐      ↓   ↑       -1 

𝑓𝑖𝑐𝑜_𝑟𝑎𝑛𝑔𝑒_ℎ𝑖𝑔ℎ   ↓        ↓ ↓ ↓ ↓  +21 

𝑓𝑖𝑐𝑜_𝑟𝑎𝑛𝑔𝑒_𝑙𝑜𝑤   ↓ ↓ ↓ ↓ ↓ ↓ ↓       +21 

𝑟𝑒𝑣𝑜𝑙_𝑢𝑡𝑖𝑙       ↑      ↑  ↑ -13% 

𝑐𝑟_ℎ𝑖𝑠𝑡     ↓      ↓    ↓ +39 months 

↑ means feature is too large to grant credit. 

↓ means feature is too small to grant credit. 
 

One such measure could be the number of features present in the explanation (the fewer, the better). In 
fact, the heuristic we used to find explanations in this empirical example, the same proposed by Martens & 
Provost (2014), was designed to find the shortest explanations first (and the tables corroborate that the first 
explanations are indeed shorter). However, there could be other more relevant measures depending on the 
domain, such as the individual's ability to change the features in the explanation. As mentioned in the 
previous section, our generalized framework would allow incorporating the cost of changing features as part 
of the heuristic procedure, resulting in an algorithm designed to find the cheapest explanations first. Due 
to space constraints (and because finding all possible explanations was tractable in this case), we did not 
incorporate costs in the heuristic we used to find explanations in this empirical example. However, future 
versions of this work will include additional empirical examples to illustrate this.  

Nonetheless, one can see that not all features shown in Figure 1 and Tables 1-2 would be relevant for loan 
applicants looking for recommendations to get their credit approved. So, SHAP may be adjusted further to 
compute weights only for a subset of features. Since SHAP deals with missing features by imputing default 
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values, one can delimit the set of relevant features by setting the default values of the irrelevant features 
equal to the current values of the instance. Then, SHAP will compute importance weights only for the 
features that have a value different from the default. We do this for Loan 4 and define loan amount and 
annual income as the only relevant features. This would make sense in our context assuming most 
customers can only ask for less money or show additional sources of income to get their credit approved. 

After doing this, SHAP computes an importance weight of 0.5 for both the loan amount and the annual 
income, and there are two counterfactual explanations: the applicant can either reduce the loan amount or 
increase the annual income to get the loan approved (columns 1 and 2 in Table 2). Now, consider a different 
scenario. Suppose the bank were stricter with the loans it approves and used a decision threshold 2.5 
percentage points lower.  Now, in order to get approved the applicant of Loan 4 would need both to reduce 
the loan amount and to increase his/her annual income. In other words, with this different decision system, 
there is only one counterfactual explanation consisting of both features. However, SHAP would still show 
an importance weight of 0.5 for each feature, heedless of the fact that the decision-making process changed. 

Conclusion 

This paper tackles the problem of explaining data-driven system decisions from a causal perspective: if the 
question we seek to answer is “why did the system make a specific decision”, we can instead ask “which 
inputs caused the system to make its decision?” This approach is advantageous because (a) it standardizes 
the form that an explanation can take; (b) it does not require all features to be part of the explanation, and 
(c) the explanations can be separated from the specifics of the model. Thus, we define an explanation as a 
set of features that is weakly causal (meaning that removing the set from the instance changes the decision) 
and irreducible (meaning that removing any subset of the features in the explanation would not change the 
decision). Our work generalizes previous work in counterfactual explanations in at least four important 
ways: (i) we explain system decisions (which may incorporate predictions from several predictive models) 
rather than model predictions, (ii) we do not enforce any specific method to remove features, (iii) our 
explanations can deal with feature sets with arbitrary dimensionality and data types, and (iv) we allow the 
tailoring of explanations to domain needs by introducing costs—for example, the costs of changing the 
features responsible for the decision. Finally, we showcase the approach using a real data set to illustrate 
its advantages over feature importance weights when the goal is to understand system decisions better. 
Future versions of this work will incorporate an extended section of the empirical analysis in: (1) high-
dimensional settings, (2) settings in which explanations are expected to be used as recommendations with 
associated costs, and (3) settings where the decision-making procedure draws on more than one model.  

Understanding how different alternatives for dealing with missing features may affect explanations is 
another interesting direction for future research. For example, if features are correlated, mean imputation 
and retraining the model without the removed feature may produce different results. For instance, a 
decision may change when imputing the mean for a removed feature, but if a new model without the feature 
is trained, the same decision may not change when removing the feature if the remaining features capture 
most of the information given by the removed feature. Therefore, while our proposed framework can work 
with either approach, future research should discuss the advantages of each approach in various settings. 
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