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Abstract 

The widespread availability of digital trace data provides new opportunities for 
researchers to understand human behaviors at a large scale. Sequences of behavior, 
captured when individuals interface with an information system, can be analyzed to 
uncover behavioral trends and tendencies. Rather than assume homogeneity among 
actors, in this study we introduce a method for identifying subsets of the population which 
demonstrate similar behavioral trends. The objective of this analysis would be to identify 
a finite set of behavioral archetypes, which we define as distinct patterns of action 
displayed by unique subsets of a population. This study makes a contribution to the 
literature by introducing a novel methodology for analyzing sequences of digital traces. 
We apply our technique to data from a lab experiment featuring thirty twenty-person 
teams communicating over Skype. 

Keywords:  Digital traces; sequence analysis; unsupervised methods; social networks 

Introduction 

The increasingly widespread availability of digital trace data (Hedman et al. 2013), such as email logs, 
website clicks, or financial transactions, provides new opportunities for researchers to understand human 
behaviors at a large scale (Lazer et al. 2009). More specifically, digital traces are records of activity carried 
out by humans or systems and captured by some form of information technology (Howison et al. 2011). 
Digital trace data is particularly useful for predictive models of behavioral trends (Shmueli and Koppius 
2011), i.e., how a sequence of events leads to subsequent actions by an individual actor. For instance, 
sequences of digital traces have been used to study online platforms (Brunswicker and Schecter 2019), 
collaboration on Wikipedia (Lerner and Lomi 2017), and brokerage patterns in organizations (Quintane 
and Carnabuci 2016). The objective of this prior work was to determine aggregate behavioral trends, that 
is, to find the patterns which best described the collective behavior of the populations studied. However, 
this approach typically assumes total homogeneity across actors with regards to behavior over time. 

In this study we focus on an alternative methodological and conceptual approach: to identify subsets of the 
population which demonstrate similar behavioral trends. The objective of this analysis would be to identify 
a finite set of behavioral archetypes, which we define as distinct patterns of action displayed by unique 
subsets of a population. Essentially, we assume that there is heterogeneity in how actors behave as a 
function of prior events, but that there are groupings or “clusters” of actors whose behavioral patterns are 
statistically comparable. There are some similar examples of this research design in the extant literature. 
Singh et al. (2011) used Hidden Markov Models (HMMs) to demonstrate that software developers may 
exhibit different contribution patterns based on their learning style. Another study using HMMs found that 
members of an online community will provide answers to questions at different rates based on their 
underlying motivations (Chen et al. 2017). Finally, Arazy et al. (2016) used an unsupervised clustering 
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method to show that Wikipedia contributors will engage in different types of editing behavior based on their 
emergent role.  

In each of these studies, an unsupervised method was applied to identify distinct behavioral patterns under 
different circumstances. However, there are limitations to using these techniques to identify archetypes 
from digital trace data. HMMs are not designed to categorize actors; rather, they use digital traces to 
estimate the value of some latent covariate which affects the expression of observable behaviors. Clustering 
techniques such as K-Means are built to carry out this categorization, but they rely upon data aggregated 
into a single panel. Accordingly, the sequential and temporal information available in digital trace 
sequences would be lost.  

As an alternative, we propose a technique based on stochastic blockmodeling of relational event data 
(DuBois, Butts, and Smyth 2013). Stochastic blockmodels have been used to detect communities in social 
networks by identifying common subsets of the network (or “blocks” of the adjacency matrix) 
probabilistically (Karrer and Newman 2011). A relational event blockmodel applies the same logic, but uses 
parameterized rates of interaction within and between groups, rather than a static network (DuBois, Butts, 
and Smyth 2013). The objective of this paper is to develop a generalized version of the relational event 
blockmodel and apply it to the identification and analysis of behavioral archetypes in digital trace data.  

To demonstrate the utility of the method, we present an empirical case study of information sharing 
patterns in small teams. We examine the information sharing behaviors of participants organized into a 
thirty team, 600 person lab sample. Our method identified two distinct patterns of behavior across the 
individuals in our sample. This study contributes to the literature by introducing a novel methodology for 
analyzing sequences of digital traces. Our approach leverages the granular information available in this data 
to uncover distinct patterns of behavior, thus allowing for more nuanced understandings of population 
dynamics. Through an empirical example, we demonstrate the utility of the method for analyzing 
organizational problems. We also contribute more generally to the literature on data-driven theory 
development (Berente et al. 2018). The unsupervised nature of our method facilitates inductive theorizing, 
whereby meaningful patterns and relationships are learned through an iterative process, rather than a prior 
deduction. 

A Model for Uncovering Archetypes 

Relational event blockmodeling is an inductive method for determining different behavioral patterns 
among subsets of individuals. In general, we posit that individuals have some internal weighting scheme 
whereby different mechanisms carry different levels of influence on how they behave. Further, while each 
individual will vary in the criteria they apply, we anticipate that there will be a finite set of pattern classes 
(Chen et al., 2017; Singh et al., 2011). Essentially, there will be subsets of individuals in any group or 
“archetype” who exhibit similar sharing behaviors under comparable circumstances. These people are 
clustered into a single class defined by an aggregate set of decision-making criteria. Thus, we may predict 
information sharing behaviors in virtual teams by identifying a sufficient set of unique decision-making 
criteria that govern individual choices. 

The relational event blockmodel builds on the standard relational event model (REM) (Butts 2008; Butts 
and Marcum 2017; Schecter et al. 2018) while introducing latent classes. Relational events are atomic units 
of interaction, containing information about a link and its timing (Butts 2008). Prior work has applied REM 
to the study of software development (Brunswicker and Schecter, 2019; Quintane et al., 2014), team 
communication (Schecter et al., 2018), email networks (Quintane and Carnabuci, 2016), and more. We 
proceed to detail the model construction. 

Model Construction 

For sake of notation, we assume that an event is a unit of information 𝑒𝑒 = (𝑖𝑖, 𝑗𝑗, 𝑡𝑡) comprised of the sender 𝑖𝑖, 
receiver 𝑗𝑗, and time 𝑡𝑡. The set 𝒜𝒜 describes the full sequence of events, and has cardinality 𝑁𝑁. The set of 
decisions made by individual 𝑖𝑖 is composed of all events in which 𝑖𝑖 is the sender; we denote this set as 𝒜𝒜(𝑖𝑖). 
The full sequence of decisions is 𝒜𝒜 =∪𝑖𝑖 𝒜𝒜(𝑖𝑖). From this information, we thus know who communicated with 
what and when. Our objective is thus to find patterns in this sequence of events which are predictive of 
subsequent events; in a later section we will provide some exemplar sequence statistics. 
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We consider events to be arrivals from an underlying nonhomogeneous Poisson process, in which each 
sender-receiver pair has a unique rate (DuBois, Butts, and Smyth 2013). This rate is a function of the various 
generative mechanisms and the weight assigned to them according to the individual’s latent decision-
making criteria. In particular, we use a log-linear rate to ensure positivity. 

log 𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝛽𝛽(𝑖𝑖)
 
′𝑋𝑋𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝜀𝜀𝑖𝑖𝑖𝑖 

In the above equation, 𝛽𝛽(𝑖𝑖) is a vector of weights corresponding to the criteria of individual 𝑖𝑖; 𝑋𝑋𝑖𝑖𝑖𝑖(𝑡𝑡) is a 
vector of statistics corresponding to each of the relevant patterns for the pair (𝑖𝑖, 𝑗𝑗) at time 𝑡𝑡; and 𝜀𝜀𝑖𝑖𝑖𝑖 is an 
unobserved error term. Because the statistics can vary at each time point, the rate is piecewise constant – 
every time an event occurs which causes the statistics to change, the rate is updated accordingly. The rate 
may be interpreted as follows: if there is a positive weight given to a generative mechanism, then the more 
prevalent that mechanism is, the greater the rate will be. 

To account for different underlying behavioral patterns, we assume that the weight vector 𝛽𝛽(𝑖𝑖) comes from 
one of a finite set of vectors, plus some unobserved heterogeneity. We model the weight vector as follows: 

𝛽𝛽(𝑖𝑖) = �𝛽𝛽𝑝𝑝𝑧𝑧𝑖𝑖𝑖𝑖
𝑝𝑝∈𝑃𝑃

+ 𝜀𝜀𝑖𝑖 

Here, each 𝑧𝑧𝑖𝑖𝑖𝑖 is a binary variable, with a value of 1 indicating individual 𝑖𝑖 employs archetype 𝑝𝑝. The vector 
𝛽𝛽𝑝𝑝 is the weights assigned under archetype 𝑝𝑝, and 𝜀𝜀𝑖𝑖 is a vector of unobserved deviations of individual 𝑖𝑖. We 
assume that ∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑝𝑝∈𝑃𝑃 = 1 , i.e., each person has one distinct decision making approach. Because these 
indicators are unobservable, they must be estimated empirically. 

Given the model ingredients we have defined, we can construct the probability of an observed event. There 
are two components to be modeled: the likelihood of the sender selecting the receiver, and the likelihood of 
the time having elapsed (Brandes et al. 2009). To determine the probability of 𝑖𝑖 sending information to 𝑗𝑗, 
we utilize the fact we established previously that all possible events are governed by an underlying 
nonhomogeneous Poisson process. Events with higher rates are expected to occur more frequently and vice 
versa. These rates are conditionally independent of one another given the prior sequence. Accordingly, the 
likelihood of a given event occurring is equal to the ratio of rates (Butts 2008). Put another way, the event 
with the highest rate or fastest expected arrival will have the highest probability of occurring next. The 
choice process thus follows a multinomial distribution, with all potential recipients comprising the state 
space ℛ(𝑖𝑖) (DuBois, Butts, and Smyth 2013; DuBois, Butts, McFarland, et al. 2013; Stadtfeld and Block 
2017). Thus, the selection probability is given as: 

𝑝𝑝(𝑖𝑖 → 𝑗𝑗 , 𝑡𝑡 ) =
𝜆𝜆𝑖𝑖𝑗𝑗 (𝑡𝑡 )

∑ 𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡 )𝑙𝑙∈ℛ(𝑖𝑖)
 

For the time between two events, 𝑡𝑡𝑚𝑚 − 𝑡𝑡𝑚𝑚−1, the interval follows an exponential distribution with mean 
equal to the sum of all event rates. This fact follows directly from properties of Poisson process waiting 
times. Therefore, the probability of observing a particular time interval is equal to: 

𝑝𝑝(𝑡𝑡𝑚𝑚 − 𝑡𝑡𝑚𝑚−1) = �� 𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡𝑚𝑚)
𝑗𝑗∈ℛ(𝑖𝑖)

� exp�−(𝑡𝑡𝑚𝑚 − 𝑡𝑡𝑚𝑚−1)� 𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡𝑚𝑚)
𝑗𝑗∈ℛ(𝑖𝑖)

� 

Combining these two elements, we may produce the likelihood of a given event in the sequence. To compute 
the entire likelihood function, we take the product of each event probability (Brandes et al. 2009; Butts 
2008). 

Model Inference 

Inference must be conducted to determine the weight parameters 𝛽𝛽  as well as the latent assignment 
variables 𝑧𝑧. To identify their values, we apply Bayes’ rule to determine the conditional likelihood of each 
variable, given the remaining variables. We first define the posterior likelihood function for the latent 
variables (DuBois, Butts, and Smyth 2013): 
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𝑝𝑝� 𝑧𝑧𝑖𝑖𝑖𝑖 ∣∣ 𝒜𝒜(𝑖𝑖),𝛽𝛽 � =
𝑝𝑝�𝒜𝒜(𝑖𝑖) ∣∣ 𝑧𝑧𝑖𝑖𝑖𝑖,𝛽𝛽 �𝑝𝑝�𝑧𝑧𝑖𝑖𝑖𝑖,𝛽𝛽�

𝑝𝑝(𝒜𝒜(𝑖𝑖),𝛽𝛽)  

∝ 𝑝𝑝�𝒜𝒜(𝑖𝑖) ∣∣ 𝑧𝑧𝑖𝑖𝑖𝑖,𝛽𝛽 � 

= �𝜆𝜆𝑖𝑖𝑗𝑗𝑚𝑚(𝑡𝑡𝑚𝑚)
𝑀𝑀

𝑚𝑚=1

� exp �−(𝑡𝑡𝑚𝑚 − 𝑡𝑡𝑚𝑚−1)𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡𝑚𝑚)�
𝑗𝑗∈ℛ(𝑖𝑖)

 

= � exp �𝛽𝛽𝑝𝑝𝑋𝑋𝑖𝑖𝑗𝑗𝑚𝑚(𝑡𝑡𝑚𝑚)�
𝑀𝑀

𝑚𝑚=1

� exp �−(𝑡𝑡𝑚𝑚 − 𝑡𝑡𝑚𝑚−1) exp �𝛽𝛽𝑝𝑝𝑋𝑋𝑖𝑖𝑖𝑖(𝑡𝑡𝑚𝑚)��
𝑗𝑗∈ℛ(𝑖𝑖)

 

The above equation can be interpreted as: the likelihood of 𝑖𝑖 relying on weight vector 𝑝𝑝 is proportionate to 
the likelihood of observing 𝑖𝑖’s decisions 𝒜𝒜(𝑖𝑖) given their internal criteria and the corresponding weights. 
Note that here we assume an uninformative prior for 𝑧𝑧, though that assumption can be adjusted. The 
likelihood of observing the sequence of 𝑀𝑀 decisions is equal to the product of each event’s probability, as 
defined previously. Essentially, the assignment that is most likely for 𝑖𝑖 is that which makes their sequence 
of decisions most probable. 

To conduct inference on the weight parameters 𝛽𝛽, we consider all decisions made by individuals using the 
same criteria. Accordingly, the posterior likelihood function is defined as follows: 

𝑝𝑝�𝛽𝛽𝑝𝑝 ∣∣ 𝒜𝒜, 𝑧𝑧 � =
𝑝𝑝�𝒜𝒜 ∣∣ 𝛽𝛽𝑝𝑝, 𝑧𝑧 �𝑝𝑝�𝛽𝛽𝑝𝑝, 𝑧𝑧�

𝑝𝑝(𝒜𝒜, 𝑧𝑧)  

∝ 𝑝𝑝�𝒜𝒜 ∣∣ 𝛽𝛽𝑝𝑝, 𝑧𝑧 � 

= �𝜆𝜆𝑖𝑖𝑛𝑛𝑗𝑗𝑛𝑛(𝑡𝑡𝑛𝑛)𝑧𝑧𝑖𝑖𝑛𝑛𝑝𝑝
𝑁𝑁

𝑛𝑛=1

 

� exp �−(𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑛𝑛−1)𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡𝑚𝑚)�
(𝑖𝑖,𝑗𝑗)∈ℛ  

 

= � exp �𝛽𝛽𝑝𝑝′𝑋𝑋𝑖𝑖𝑛𝑛𝑗𝑗𝑛𝑛(𝑡𝑡𝑛𝑛)�
𝑧𝑧𝑖𝑖𝑛𝑛𝑝𝑝

𝑁𝑁

𝑛𝑛=1

 

� exp �−(𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑛𝑛−1) exp �𝛽𝛽𝑝𝑝′𝑋𝑋𝑖𝑖 𝑗𝑗 (𝑡𝑡𝑛𝑛)��
(𝑖𝑖,𝑗𝑗)∈ℛ  

 

Here, the likelihood function is equal to the probability of the sequence of decisions made by individuals 
using weight vector 𝑝𝑝, multiplied by the probability of the observed time intervals. Again, we assume an 
uninformative prior. Note that we use the assignment variable 𝑧𝑧𝑖𝑖𝑛𝑛𝑝𝑝 as an indicator; that way, we can account 
for changes to the rate function which may occur due to actions by those not in assignment 𝑝𝑝 (Butts and 
Marcum 2017; DuBois, Butts, and Smyth 2013). This expression implies that the weight vector 𝛽𝛽𝑝𝑝 that has 
the highest probability will maximize the likelihood of observing the decisions made by individuals using 
criteria 𝑝𝑝. 

To recover the parameters from our model, we apply an expectation-maximization (EM) algorithm to 
iteratively make class assignments and update the model parameters (Dempster et al. 1977). The steps can 
be summarized as follows: 

1. For each individual, assign them to a group that makes their decisions most likely. 
2. For each group of individuals, fit a weight vector that makes their collective decisions most likely. 
3. Return to Step 1 and iterate until convergence. 

By design, the EM-algorithm should converge to an optimal solution to the inference problem. With this 
procedure, we are able to determine the assignments of individuals to classes, as well as the selection of 
parameters for each strategy.  

Empirical Illustration: Information Sharing in Teams 

Knowledge is a resource that is vital to organizational functioning and performance (Alavi & Leidner, 2001). 
To build organizational knowledge, the resources of individuals, e.g. information or expertise, must be 
efficiently combined. Essentially, organizations function as “open social systems that must process 
information…to accomplish internal activities, to coordinate diverse activities, and to interpret the external 
environment” (Daft & Lengel, 1986, p. 555). Following Nonaka (1994), we define information as “a flow of 
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messages, and knowledge is created by the very flow of information” (p. 15). From this perspective, for an 
organization to generate the knowledge it requires there must be a sufficient flow of information among 
members of the group so that expertise can be effectively integrated (Robert, Dennis, & Ahuja, 2008). This 
process is particularly relevant in teams, which are often the building blocks of organizations. Information 
functions as a resource of the team, and teams convert their available resources into actions and or products 
(Alavi and Leidner, 2001). While individuals choose to share information for different reasons, we do not 
know a priori how each person will make their decisions. Instead, motivations for information sharing are 
only expressed through repeated actions. We focus on the context of ad hoc virtual teams because they lack 
significant transactive memory systems (Faraj and Xiao 2006; Majchrzak et al. 2007; Majchrzak and 
Malhotra 2016). In other words, members of these types of teams will identify pathways over time because 
they cannot rely upon meta-knowledge of who knows what or who knows who (Faraj and Sproull 2000).  

We argue that focusing on individual events – i.e., instances of information being transferred – is necessary 
to understand how these emergent patterns form. We propose a process-oriented perspective where 
propensities to share information are formed dynamically as functions of both psychological constructs and 
explicit behavioral patterns (Poole, 2012; Van de Ven and Poole, 2005). A process-oriented approach treats 
information sharing as a series of events, i.e. the transfer of knowledge from one individual to another, that 
unfold over time (Quintane and Carnabuci, 2016). As such, individuals follow information sharing 
trajectories, where their propensities to act are continuously updated as new events occur and the context 
shifts. 

Factors Influencing Information Sharing  

We proceed to describe three factors that influence information sharing: the communication network, the 
sharing network, and individual situational awareness. These factors combine to form the internal 
motivation of each individual (Bock et al. 2005). We summarize the process of a sharing decision in Figure 
1. 

Figure 1. Architecture of sharing decision 

 

Communication Network  

We focus on four patterns from the informal communication network (Sosa et al., 2015) that we expect to 
affect sharing: communication frequency, reciprocity, activity, and popularity. The first network 
mechanism is communication frequency, which refers to the tendency for individuals to send information 
to their more regular contacts. Likewise, our second mechanism, communication reciprocity, refers to the 
act of an individual sharing information with those who contact him more frequently. Together these 
patterns form a dyadic approach to information sharing. Our next two mechanisms, communication activity 
and popularity, describe the tendency for individuals who are most active (many outbound messages) or 
most popular (many inbound messages) in the communication network to also share the most information. 
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Essentially, one who has the greatest number of connections will have greater opportunity to transfer 
information due to their broader potential range (Reagans and McEvily 2003). These individual-level 
mechanisms could be due to activity levels – i.e. an individual communicates very frequently and 
subsequently passes a higher volume of information – or because a central individual may have a somewhat 
higher awareness of who needs what intelligence (Leonardi 2015).  

Sharing Behavior  

In contrast to the informal communication network, the network created by sharing patterns describes 
technical communication amongst team members (Kudaravalli et al. 2017; Sosa et al. 2015). We focus on 
four measures that are parallel to the informal network: prior transference frequency, sharing reciprocity, 
total sharing activity, and sharing popularity. Prior transference frequency represents behavioral inertia, 
i.e., repeated sharing with the same individuals. Sharing reciprocity describes a tendency for individuals to 
share information with others who have previously sent them information (Faraj and Johnson 2011). Our 
third pattern, prior sharing activity, represents the tendency for an individual to maintain or expand their 
prior rate of sharing behavior. Finally, the fourth mechanism of sharing, popularity is indicative of a 
tendency to share more frequently when more information has been received. This behavior is analogous 
to the pattern of indirect reciprocity found in online communities (Faraj and Johnson 2011). In other words, 
as an individual collects more knowledge, their propensity to share increases. These two effects collectively 
describe a power law or centralization effect in the network. 

Situational Awareness  

We last consider measures related to the effects of time pressure and team progress (Marks et al. 2001). 
Specifically, we focus on the impact of time on decision making, specifically the time remaining to complete 
the task. We anticipate that an individual with strong situational awareness will change their behaviors to 
account for their time resources; by contrast, an individual with low awareness may not alter their behavior 
over time. The effect of time is also likely non-linear; for example, an actor may increase their rate of sharing 
over time, but this acceleration might taper off as the project moves into a later stage. Thus, we also consider 
quadratic effects of time. Of course, other task-specific behaviors are possible. For instance, proportion of 
tasks completed could influence how individuals decide to share information. However, in this study we 
simply use time as a proxy for awareness. 

Methods 

Data 

We collected data through a series of experiments in which participants had to complete an information 
sharing task in a virtual team environment. The sample is composed of 600 unique individuals organized 
into thirty virtual teams; all thirty teams accomplished the task according to the same conditions and 
parameters. We chose a group size of twenty to ensure that 1) the teams were large enough to make 
information sharing difficult and 2) that the teams were small enough that information sharing could be 
accomplished in the limited time period. Each session in total covered a two-hour time period, during which 
participants took surveys, completed a practice mission, and then completed a performance mission. The 
practice period lasted twenty minutes, after which the participants were able to debrief. The performance 
mission took a total of forty minutes.  

The task was a simulated military-style scenario in which participants cooperated to move a vehicle through 
an urban environment. In Figure 2, we show the game map and vehicle route. The objective was to move 
the vehicle as far as possible within the time limits, while avoiding damage. If the vehicle hit an obstacle, it 
had to stop until the participants cleared the threat out of the way. We demarcated the scenario map into 
four sections, and assigned each section to five participants. These five individuals formed a sub-group, and 
were responsible for all obstacles located within their quadrant. 
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Figure 2. Game map and route 

 

We randomly assigned participants to one of the four sub-groups and to a role within that group. Each sub-
group consisted of five individuals: a leader, a reconnaissance officer and a field specialist who work on 
counter-insurgency, and a reconnaissance officer and a field specialist who work on ordnance disposal. 
Each of the four teams had an appointed leader, and the leaders were charged with moving the convoy. The 
leaders had to agree on where and when to advance the convoy. The four non-leader team members were 
responsible for identifying and neutralizing threats. The reconnaissance officer was responsible for 
identifying potential threats and needed to communicate this information to the field specialist, who would 
then act on engaging and eliminating the threat. 

Within each five-person unit, four individuals were provided with a unique set of coordinates. Each of these 
participants were given the locations of eight threats; two of those threats resided within their own 
quadrant, while six resided in other quadrants. The intelligence – totaling 144 unique threats – was 
provided randomly to participants on a sheet of paper at the beginning of the study.  

Figure 3. Sample intelligence document 
Player Source Unit Object Cell X Coordinate Y Coordinate Target Unit 
Dragon Recon Caspia Barrel A2 418 444 Caspia 
Dragon Recon Caspia Barrel A2 121 70 Caspia 
Dragon Recon Caspia Tire Fire A9 149 269 Baltica 
Dragon Recon Caspia Sedan C1 189 210 Caspia 
Dragon Recon Caspia Sedan C6 352 41 Baltica 
Dragon Recon Caspia Tire Fire C6 345 191 Baltica 
Dragon Recon Caspia AFV H2 292 397 Atlantica 
Dragon Recon Caspia RPG H2 186 153 Atlantica 
Dragon Recon Caspia Tent J7 325 254 Pacifica 

Notes. The target unit is not provided to the players; we include it here for illustration.  
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By design, each participant had intelligence that was needed by another player in the game. While the 
participants were not directly incentivized to share information, the task could not be completed effectively 
if the coordinates were not used to clear targets on the game map. Thus, not sharing information would 
significantly reduce the likelihood of a successful mission outcome. In Figure 3, we provide a sample of the 
intelligence provided to the participants; note that participants are not given the target unit, and each 
participant is given unique information. All communication between participants occurred over Skype, 
including chats, calls, and video calls. Each player had an anonymous handle that indicated his or her five-
person unit. The handles indicated whether a player was a recon officer or field specialist; however, a 
player’s threat assignment was not part of the naming scheme. Thus, players had some knowledge as to 
where intelligence should be routed, but that knowledge was incomplete. Information had to be shared 
through communication (verbal or non-verbal) using the designated channels, i.e., the Skype platform. The 
participants were free to share information at any time – there was no requirement to do so at the beginning 
or at any other specific instance.  

From the Skype server we had access to a log of all messages sent across every session; our final data form 
is that of a transcript, with each row containing sender, receiver, time, and message. Manual coders 
identified pieces of intelligence in the individual messages, and marked those coordinates with a unique 
identifier. In total, we observed 118,333 messages amongst the 600 participants. Of those messages, 3,923 
made direct mention of a piece of intelligence. 

Measures for Sharing Patterns 

In Table 1, we list our variables and relevant formulae.  

Table 1. Operationalizations of focal measures 

Variable Name Description Formula 
Communication 
Frequency 

The number of messages sent to another 
individual  
 

𝑥𝑥1(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖 

Communication 
Reciprocity 

The number of messages received from 
another individual  
 

𝑥𝑥2(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = 𝑢𝑢𝑗𝑗𝑗𝑗𝑗𝑗 

Communication 
Activity 

The number of messages an individual has sent 
in the past 
 

𝑥𝑥3(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = �𝑢𝑢𝑖𝑖𝑖𝑖𝑡𝑡
𝑘𝑘

 

Communication 
Popularity 

The number of messages an individual has 
received in the past  
 

𝑥𝑥4(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = �𝑢𝑢𝑘𝑘𝑘𝑘𝑘𝑘
𝑘𝑘

 

Sharing 
Frequency 

The volume of information sent to another 
individual  
 

𝑥𝑥5(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖 

Sharing 
Reciprocity 

The volume of information received from 
another individual  
 

𝑥𝑥6(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = 𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗 

Sharing Activity The volume of information an individual has 
sent in the past 
 

𝑥𝑥7(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = �𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

 

Sharing 
Popularity 

The volume of information an individual has 
received in the past  
 

𝑥𝑥8(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = �𝑣𝑣𝑘𝑘𝑘𝑘𝑘𝑘
𝑘𝑘

 

Time The time elapsed in the mission 𝑥𝑥9(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = 𝑡𝑡 
 

 

We operationalized the mechanisms we described in the previous section by transforming the 
communication transcripts into sequences of relational events, taking the form (𝑖𝑖, 𝑗𝑗, 𝑡𝑡, 𝑘𝑘) where 𝑘𝑘  is an 
indicator for the intelligence contained in the message. The sequences were then compiled into two 
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temporal adjacency matrices, 𝑈𝑈  and 𝑉𝑉 , which we index by time. The entry (𝑖𝑖, 𝑗𝑗)  at time 𝑡𝑡  of 𝑈𝑈(𝑡𝑡)  is 
represented as 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖, and is equal to the number of messages 𝑖𝑖 has sent 𝑗𝑗 up to time 𝑡𝑡. Likewise, the entry 
(𝑖𝑖, 𝑗𝑗) at time 𝑡𝑡 of 𝑉𝑉(𝑡𝑡) is represented as 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖, and is equal to the number of messages 𝑖𝑖 has sent 𝑗𝑗 up to time 𝑡𝑡 
that contain coordinate information. Accordingly, 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖  for all 𝑖𝑖, 𝑗𝑗, 𝑡𝑡 . Using these arrays, we can 
compute statistics representing the mechanisms at every point in time, for every feasible pair of people. For 
our measures regarding awareness of time, we simply included a metric for time elapsed in the mission.  

Analysis of Behaviors 

To identify the unique patterns exhibited by the participants in our study, we applied the relational event 
blockmodel to the data from all 30 experimental sessions. We tested different numbers of archetypes as 
well as different subsets of parameters, starting from a single grouping. To determine the appropriate 
number of archetypes, we used the log-likelihood of the full models as well as the BIC to measure model fit. 
The best model should be one that achieves strong goodness-of-fit while also maintaining a degree of 
parsimony (i.e., not over-parameterizing). 

Results 

Following our analysis procedure, we tested a variety of models with different sets of parameters and a 
range of groups. We identify the best fitting model as one with two groups and all parameters included; the 
log-likelihood for P = 2 was -36,589, which was the lowest value among the candidate models. Thus, we 
conclude that there are two dominant archetypes in information sharing behavior. We present the 
comparison of model fit in Table 2. 

Table 2. Model fit statistics for REM analysis 

 P = 1 P = 2 P = 3 
 LL BIC LL BIC LL BIC 
Null Model -4.2668 0.8534 -4.1142 0.823 -5.2684 1.0539 
Network (N) -4.0705 0.8144 -3.9048 0.7816 -4.8944 0.9798 
Sharing (S) -4.3412 0.8686 -4.2396 0.8485 -5.6601 1.1329 
Awareness (A) -4.061 0.8124 -4.0692 0.8142 -5.1505 1.0307 
N + S -3.83 0.7666 -3.6854 0.7382 -4.7263 0.9469 
N + A -3.8632 0.7731 -3.865 0.7739 -4.9281 0.9869 
S + A -3.8731 0.7751 -3.8506 0.771 -4.8748 0.9763 
Full -3.8189 0.7645 -3.6589 0.7332 -4.5046 0.903 

Notes. Log-likelihood (LL) is reported as (… ) × 104 . BIC is reported as (… ) × 105. P is the number of 
distinct behavioral trends. 
 

To determine what factors make up these approaches, we examine the parameter values for this best model. 
The results are presented in Table 3. From Table 3 we observe that some parameters have consistent effects 
(i.e., sign and significance the same across archetypes) and others have varied effects. Further, the effect 
sizes vary significantly across archetypes for many of the mechanisms we tested. We computed the 
difference in parameters for each statistic, and computed the pooled standard error of the difference. A 
useful way to interpret the differences in effects is to compute odds ratios, which are equal to exp(𝜃𝜃). In 
other words, for every additional event (a unit increase in the statistic), the odds ratio would give the relative 
odds for members of one archetype to share, relative to the others. 

Based on the computed ratios in Table 3, we observe that individuals following Archetype 1 are significantly 
less likely to share information with those whom they’ve sent more messages to (OR = 0.512), but are more 
likely to share information with those whom they’ve received more messages from (OR = 3.568). Further, 
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sending more messages prior tends to increase the rate of sharing for Archetype 1, while receiving a high 
volume of messages tends to make it decrease. 

Table 3. Parameter estimates for two-archetype solution 

 Archetype 1 Archetype 2 Difference Odds Ratio 
Variable Coef (SE) Coef (SE) Coef (SE) exp(Coef) 
Rate 

-11.0739** 
(0.0739) 

-11.2098** 
(0.0691) 

0.136 
(0.1012) 

1.146 

Communication Frequency 
0.9599** 
(0.1452) 

1.6294** 
(0.1222) 

-0.6695** 
(0.1898) 

0.512** 

Communication 
Reciprocity 0.6715** 

(0.1224) 
-0.6004** 
(0.1171) 

1.272** 
(0.1694) 

3.568** 

Communication Activity 
7.3262** 
(0.5313) 

3.0335** 
(0.8162) 

4.2927** 
(0.9739) 

73.164** 

Communication Popularity 
-9.3328** 
(0.8089) 

0.0505 
(1.0022) 

-9.3833** 
(1.2879) 

0.000** 

Sharing Frequency 
2.7123** 
(0.0670) 

2.8538** 
(0.0557) 

-0.1416 
(0.0871) 

0.868 

Sharing Reciprocity 
0.1269 

(0.0996) 
1.0565** 
(0.0886) 

-0.9296** 
(0.1333) 

0.395** 

Sharing Activity 
1.7554** 
(0.1013) 

2.8168** 
(0.1058) 

-1.0613** 
(0.1465) 

0.346** 

Sharing Popularity 
3.1247** 
(0.2215) 

2.108** 
(0.2692) 

1.0167* 
(0.3486) 

2.764* 

Time 
3.2403** 
(0.3189) 

2.2639** 
(0.2657) 

0.9764* 
(0.4150) 

2.655* 

Time2 

-3.8497** 
(0.4252) 

-3.1353** 
(0.3279) 

-0.7143 
(0.5369) 

0.490 

N 214 254   
Deviance 32,908 39,946   
Note: Significance code * p < 0.01, ** p < 0.001  

 

In terms of prior sharing behavior, we find that individuals following Archetype 2 are more likely to engage 
in direct reciprocity (Faraj and Johnson 2011), i.e., sharing information with those who shared with them 
prior (OR = 0.395). Further, when those individuals share more information, they tend to increase their 
rate of sharing relative to Archetype 1 (OR = 0.346). However, individuals following Archetype 1 are more 
likely to engage in indirect reciprocity (Faraj and Johnson 2011), i.e., they share more as they receive more 
information generally (OR = 2.764). 

Finally, we find that with Archetype 1, individuals tend to share information later (OR = 2.655), but there 
is no difference in the quadratic effect. In summary, the first type of individual tends to share information 
after having sent more messages and received more information, and tend to target those who 
communicated with them directly. Alternatively, the second type of individual tends to share information 
earlier and more frequently, and will send information to those who share with them first.  
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We also present in Table 4 demographic info for the two blocks we identified in order to rule out potential 
confounds (e.g., age or gender). We find that there are not significant differences across the two archetypes. 
Both groups have similar proportions of genders, are similar in age, and scored similarly on the ACT college 
entrance exam. On a 1-5 scale, both archetypes have average video game ability. Finally, we asked 
participants how familiar they were with the other individuals playing the game (1 = no familiarity, 2 = 
acquaintance, 3 = friend). In both groups, people reported knowing very few other members of their team 
before the mission. We thus conclude that these factors did not have undue influence on the behavioral 
differences observed. 

Table 4. Demographic information for two-archetype solution 

Measure Archetype 1 Archetype 2 

Percentage Male 54.21% 56.92% 

Age 21.04 21.68 

ACT Score 31.03 30.82 

Video Game Experience 3.01 2.75 

Participant Familiarity 1.17 1.18 

 

Post Hoc Analysis of Performance 

In order to determine post hoc if different sharing patterns were associated with variations in individual 
efficacy, we derived several measures of performance, including volume, accuracy, completion rate, and 
relative speed. Information volume was determined to be the number of messages sent by the individual 
that made reference to at least one piece of intelligence. Our second measure, information accuracy, was 
computed as the percentage of messages containing information that were directed to the appropriate 
person. We determined if the intelligence being shared was accurate by matching the unique identifier of 
the item being passed with the list of targets needed by the individual receiving the message. We only 
consider accuracy for individuals who shared at least one piece of information. Third, we computed a 
completion rate, which is the overall proportion of information shared that reached its target. Additionally, 
we computed a marginal completion rate that measures the proportion of messages that reached their 
target, conditional on them not being transmitted correctly the first time. Finally, we computed the average 
amount of time it took for information to reach its intended target. We measured this by denoting the time 
at which the focal individual possessed the intelligence, and then recording the time at which the 
information was first received by the correct target.  

Given that we identified two distinct behavioral trends, we conduct a post hoc analysis to determine if 
performance outcomes vary across individuals in the different groups. In Table 5 we present the median 
values of our metrics across the two groups. 

Table 5. Outcome measures for two-archetype solution 

Measure Archetype 1 Archetype 2 

Messages 127 171 

Information  6 6 

Accuracy 0.25 0.23 

Completion Rate 0.50 0.57 

Relative Time 36.43 42.31 

 

In table 5 we observe some differences between the two sets of participants. In archetype 1, individuals tend 
to send fewer messages overall. When they do share information, they tend to be more accurate on the first 
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transfer, but a smaller proportion of their information reaches its final target. However, for the information 
that does reach its target, it tends to arrive sooner when sent by members of archetype 1, relative to 
archetype 2. 

Discussion & Conclusions  

In this study we introduced a method for uncovering latent behavioral archetypes within digital trace data, 
drawing upon prior work on stochastic blockmodeling (Karrer and Newman 2011), relational event models 
(DuBois, Butts, and Smyth 2013), and discrete choice models (McFadden 1974). The proliferation of digital 
traces prompts the need for new analytical models that leverage the granular, temporal data collected 
through information technologies (Howison et al. 2011). In particular, we attempt to deconstruct large 
sequences and identify unique sets of patterns formed by subsets of people. With our method, it is possible 
to uncover the latent tendencies of each actor in a population. We expect that every individual will have a 
unique behavioral “signature” that describes their pattern of activities – in our case, how, when and with 
whom they choose to share information. Thus, our method provides a framework for inductive analysis of 
human behavior, and supports theory building through iterative discovery (Berente et al. 2018). 

The findings of our empirical example demonstrate the utility of the dynamic approach. Regardless of 
outcomes, we observe that individuals engage in two patterns of behavior that are not only quantitatively 
different, but also qualitatively different. This finding further adds to the recognition that processes – how 
things happen – are distinct from structures (Quintane and Carnabuci 2016). Further, we showed that the 
archetypes discovered are associated with distinct performance outcomes, despite having few underlying 
demographic differences. As such, this line of reasoning and the accompanying methodology has a 
significant potential for future research.    

There are some limitations to the proposed methodology and the results of empirical case study, as well as 
potential directions for further research. Our model implicitly interprets behaviors as conscious decisions 
made by bounded rational actors; of course, this implies that actors are able to accurately assess the state 
of the system concerning prior events. This assumption may be difficult in large online settings with rapid 
updates. Further, while we do assume heterogeneity among actors, we are still collapsing individuals into 
discrete categories, and it is potentially impossible to determine how many categories is “correct.” Indeed, 
the utility of delineating the population hinges largely on how distinct the groups are, and how meaningful 
the differences in behavior are. Accordingly, when using this method researchers should take care to 
qualitatively justify the discovered archetypes. Our model does not explicitly account for heteroscedasticity, 
i.e., behaviors within a group changing over time. However, the sufficient statistics could be operationalized 
to account for the progression of time. A fruitful direction for future work could be the exploration of how 
subsets of the population change their behaviors over time. Finally, the use of time-dependent sequence 
statistics may lead to multicollinearity issues, depending on how the measures are constructed. To avoid 
these problems, we recommend testing models in a step-wise fashion in order to identify statistics which 
are unduly biasing the results.   

With regard to the empirical example, the group size (20 people) and the laboratory environment may have 
had some influence on how well individuals could develop relationships and how easily information could 
be transferred. Future research in the field would help extend this work, as would a variety of group sizes 
and task types. Finally, other techniques such as text analysis (e.g., determining tone or affect) would 
provide additional nuance to our methods and provide a broader picture of the information sharing process. 
However, these techniques are beyond the scope of this study. 
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