
Association for Information Systems Association for Information Systems 

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL) 

ICIS 2019 Proceedings Analytics and Data Science 

Transfer Learning in Dynamic Business Environments: An Transfer Learning in Dynamic Business Environments: An 

Application in Earnings Forecast for Public Firms Application in Earnings Forecast for Public Firms 

Jiaxu Peng 
School of Computing, National University of Singapore, j.peng@u.nus.edu 

Follow this and additional works at: https://aisel.aisnet.org/icis2019 

Peng, Jiaxu, "Transfer Learning in Dynamic Business Environments: An Application in Earnings Forecast 
for Public Firms" (2019). ICIS 2019 Proceedings. 6. 
https://aisel.aisnet.org/icis2019/data_science/data_science/6 

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic 
Library (AISeL). It has been accepted for inclusion in ICIS 2019 Proceedings by an authorized administrator of AIS 
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org. 

https://aisel.aisnet.org/
https://aisel.aisnet.org/icis2019
https://aisel.aisnet.org/icis2019/data_science
https://aisel.aisnet.org/icis2019?utm_source=aisel.aisnet.org%2Ficis2019%2Fdata_science%2Fdata_science%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/icis2019/data_science/data_science/6?utm_source=aisel.aisnet.org%2Ficis2019%2Fdata_science%2Fdata_science%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


 Transfer Learning and the Application in Earnings Forecast 
  

 Fortieth International Conference on Information Systems, Munich 2019 1 

Learning in Dynamic Business 
Environments: An Application in Earnings 

Forecast for Public Firms 
Short Paper 

 

Jiaxu Peng 
National University of Singapore  

13 Computing Drive  
Singapore 117417  
j.peng@u.nus.edu 

 

Abstract 

In dynamic business environments, the underlying true data pattern changes rapidly. 
Machine learning models built upon historical data may not be responsive to the 
changes. A simple solution is to re-train a machine learning model using the re-collected 
current data. However, current data are often scarce. Therefore, it would be optimal to 
adapt the machine learning model built on historical data to the current period. In this 
study, we propose a two-step transfer learning method for enhancing machine learning 
in dynamic data environments. Our insight is that, by comparing current data and 
historical data, we gain information on the change of data environments, which guides 
the training of machine learning using historical and current data sets simultaneously. 
In this research-in-progress, we evaluate our method and an existing state-of-art 
algorithm in the earnings prediction tasks. Preliminary results show the effectiveness of 
transfer learning in dynamic business environments. 

Keywords:  Business analytics, transfer learning, dynamic data environments, machine 
learning, earnings forecast 

Introduction 

Machine learning has been successfully applied in a variety of business applications such as in predicting 
defaults in consumer credit loans (Khandani et al. 2010) and bankruptcy of public firms (Barboza et al. 
2017). However, applications of machine learning into the business world create not only opportunities 
but also challenges. One of the challenges arises from dynamically changing data environments (Yang and 
Wu 2006; Saboo et al. 2016; Grover et al. 2018). In practice, empirical evidence shows that forecasting 
changes is difficult even for experts. For instance, on the brink of the economic recession of 2008, 
economists projected, on average, that the economy will grow 2.1% from the fourth quarter of 2007 to the 
end of 2008 (published in Business Week, December 20, 2007). Obviously, they did not successfully 
forecast the many credit defaults and bankruptcies that happened in the next few months (Makridakis et 
al. 2009). With traditional supervised learning approaches, there is no standard method to update 
existing forecasting models to predict any financial variables for 2009 during the early financial crisis in 
2008. Under such a significant change in the external environment, supervised classification approaches 
to predict credit defaults or bankruptcies may result in a considerable loss of accuracy because similar 
training cases rarely occurred in the past.  

Supervised machine learning methods use historical data as a training set to construct a prediction model, 
and then applies the built model to current test data to make predictions of future events or of variables of 
interest. One important assumption is that the historical training data and current test data exhibit the 
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same underlying pattern (Pan and Yang 2010). In dynamic data environments, this assumption may not 
hold. For instance, in predicting firms’ future earnings during recession periods, both the distribution of 
predictors and the function between predictors and dependent variable may change, which is referred to 
as dynamically changing data pattern in the literature and also in this study (Li and Mohanram 2014). 

This study aims at improving forecasting in dynamic data environments where the historical data and the 
current data may exhibit different patterns. More specifically, we approach this problem from a transfer 
learning perspective and explore how machine learning models built upon historical data can be 
transferred when the data environment undergoes significant changes.  In this study, transfer learning 
is defined as extracting knowledge from a source data set and applying this knowledge to a target task 
(Pan and Yang 2010).1 Within this framework, researchers can observe the predictor variables (denoted 
with 𝒙) in both the source and target data, while the variable to be predicted (denoted with 𝑦) is only 
observed in the source data and is to be estimated for the target data. 

The related transfer learning literature has mainly focused on the changes in the distribution of 𝒙 across 
the source and target data (Sugiyama et al. 2008). However, in real-world applications, the distributional 
change of 𝑦 may not be fully explained by the change in probability distribution of 𝒙. In other words, the 
conditional probability distribution of 𝑦 conditional on 𝒙 (or almost equivalently, 𝑦 = 𝑓(𝒙)) may become 
different in a new macro-economic environment. For instance, in the earnings prediction task, our 
domain knowledge can intuitively anticipate that firms’ earnings would systematically decrease during the 
2018-19 USA-China trade war. However, existing machine learning methods cannot embed our intuitions 
into quantitative predictions, neither do they explicitly allow the underlying pattern between 𝒙 and 𝑦 to 
change. Without modeling the joint distributional changes of 𝒙 and 𝑦 completely, the generalizability of 
the prediction model built upon the source data may be jeopardized. 

A key technical challenge is that if 𝑦 is arbitrarily changing, we have no clue of its distribution in the target 
data. In this case, the analyst must rely on some “good” and “current” source data which exhibit the same 
data pattern as the target data to induce a better estimation of the relationship between 𝒙 and 𝑦. This is 
essentially the idea of inductive transfer learning (Pan and Yang 2010). To exploit “good” source data, the 
closest method from the literature is TrAdaBoost, which is proposed by Dai et al. (2007). TrAdaBoost is 
built on the Adaboost algorithm. The innovative aspect of TrAdaBoost is that it assigns greater weights to 
“good” source data and decreases the weights of the remaining “bad” source data. However, since 
TrAdaBoost employs the adjusted weighting formula from the original Adaboost algorithm, we still face 
the obstacle of generalizing inductive learning to other better-performing modern machine learning 
algorithms, such as XGBoost for ensemble of decision trees and stochastic gradient descent for training 
deep neural network. Moreover, Dai et al. (2007) point out that TrAdaBoost does not guarantee to always 
outperform AdaBoost since the quality of the “bad” source data records is unknown. 

In this paper, we conduct preliminary experimentation of the earnings prediction task based on two 
methods: the two-stage TrAdaBoost.R2 (Dai et al. 2007; Pardoe and Stone 2010) and a preliminary 
version of our newly proposed method. For earnings prediction application, our purpose is to adapt the 
machine learning model trained with data from historical periods (source data) for making predictions in 
a new time period (target data). Both methods rely on changing the weights of the source data to reflect 
changes in the underlying data pattern. Particularly, our method, motivated by empirical risk 
minimization (ERM, (Vapnik 1995)), depicts the changes of the data environments through a probability 
model which in turn generates the weights of the source data. Results show that both methods improve 
prediction performance. Moreover, our method demonstrates outstanding performance in predicting 
earnings during the great recession period when the data environment underwent significant changes. 

This study contributes to the dynamic learning challenge in two important aspects. First, we evaluate the 
effectiveness of inductive learning strategy from the literature. Without any inductive clues, forecasting 
the future based on the historical data is difficult when data environment undergoes significant changes. 
Inductive learning sheds light on this problem by highlighting the role of “good” source data in inducing 
valuable historical data. Second, we propose and evaluate a method that explicitly generates the weights 

 

1  Similar to typical transfer learning studies, we study the case of one source task and focus on one target 
task. A complete description of the goals of transfer learning is provided by Broad Agency Announcement 
05-29 of DARPA’s Information Processing Technology Office.   
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of source data records, thus making it applicable to a wide range of machine learning algorithms, which 
can potentially improve prediction performance in many practical applications. 

Related Literature 

In this section, we review studies on dynamic data environments from the data mining literature and the 
information systems literature, respectively. We then present how a specific type of transfer learning, 
inductive transfer learning, can be applied to the earnings prediction context. 

A Brief Review of Transfer Learning  

In a supervised machine learning setting, the task is to learn the relationship between 𝒙, the predictors, 
and 𝑦, the variable to be predicted. In a probabilistic view, it is the conditional probability as follows, 

𝑓(𝑦|𝒙; 𝝎)                                                                                 (1) 

where 𝝎 is a vector of the unknown parameters in the conditional probability density function. In this 
brief overview, we simplify the typology of transfer learning defined by Pan and Yang (2010).  

The two broad types of transfer learning are inductive transfer learning and transductive transfer 
learning (see Table 1). Transductive transfer learning assumes that the conditional probability 𝑓(𝑦|𝒙; 𝝎) 
is fixed while the change of data environments is represented by the different distributions of 𝒙 across the 
source and target data. Within machine learning literature, this sub-problem is also known as covariate 
shift (Sugiyama et al. 2008) or sample selection bias (Huang et al. 2007). 

Inductive transfer learning has a more general research scope and aims to investigate not only the 
possible change in 𝒙, but also the change in the conditional probability 𝑓(𝑦|𝒙; 𝝎). However, if 𝑓(𝑦|𝒙; 𝝎) is 
changing arbitrarily, there is no way to infer a good estimator only based on the source data (Huang et al. 
2007). Therefore, to induce the change of 𝑓(𝑦|𝒙; 𝝎), we must identify some “good” source data that 
exhibit the same data pattern as the target data (called same-distribution source data). Dai et al. (2007) 
develop a TrAdaBoost classifier to exploit the “good” source data. They adjust the iterative process of the 
original AdaBoost, by increasing the weights of “good” source data and decreasing the weights of the 
remaining “bad” source data (called diff-distribution source data). A recent study sought to learn the 
change of 𝑓(𝑦|𝒙; 𝝎) without relying on same-distribution source data. For instance, Kumagai and Iwata 
(2018) modeled the change of 𝑓(𝑦|𝒙; 𝝎) by assuming that 𝝎 in 𝑓(𝑦|𝒙; 𝝎) follows a Gaussian Process (GP). 
Compared to this line of work, TrAdaBoost does not require a GP-type view of the dynamic changes, but 
rather adopts a data-driven approach and adjusts the training of the machine learning algorithm in a 
desirable direction implied by the same-distribution source data records. 

Table 1. Categories of Transfer Learning in Supervised Machine Learning 

 Distribution of 𝒙 across source 
and target data 

Conditional probability 𝑓(𝑦|𝒙) 
across source and target data 

Traditional machine learning same same 

Transfer 
learning 

Transductive transfer different but related same 

Inductive transfer  same, or different but related different but related 

However, although the weighting scheme of TrAdaBoost is intuitively reasonable, TrAdaBoost does not 
guarantee to always improve AdaBoost, since the quality of diff-distribution source data is not certain. 
Moreover, since the weighting scheme of TrAdaBoost is embedded into the iterative process of Adaboost, 
it may not be directly generalizable to other machine learning algorithms such as XGBoost. 

Although the transfer learning literature is continuing growing rapidly, the recent methods are mainly 
designed for pattern recognition tasks such as image recognition (Yosinski et al. 2014) and text analysis 
(Ganin et al. 2016). For instance, a deep neural network for classifying one set of animals (e.g. tabby cat 
versus tiger cat) can be adapted to classify another similar set of animals (e.g. lynx versus leopard). 
However, given the gap between analyzing unstructured data (such as image and text) and structured data 
(such as firms’ financial statement), these methods are not directly applicable. 
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IS Literature on Data Analytics in Dynamic Environments 

In the IS literature, there exists scarce research that addresses similar problems. Two recent examples are 
conducted by Meyer et al. (2014) and Saboo et al. (2016). Meyer et al. (2014) proposed a systematic 
approach called PROCEDO, which employs data mining techniques to iteratively determine conditions 
under which a dynamic decision making may fail so that users can modify and improve decision making 
under these conditions. Saboo et al. (2016) employ a time-varying effect analysis to model the regression 
coefficients as a smooth function of time. Their method provides comprehensive insights into 
understanding the temporal variation of marketing effectiveness.  

Our research is distinguished from existing studies in several aspects. First, our study aims at developing 
solutions for adapting machine learning algorithms for dynamic data environments. In this sense, Meyer 
et al. (2014) focus more on the strategic identification of decision failure while we focus on the subsequent 
improvement of decision models, particularly machine learning models. Moreover, our study focuses on 
predictive performance while Saboo et al. (2016) provide explanatory insights. As pointed out by Shmueli 
and Koppius (2011), predictive studies aim at minimizing out-of-sample prediction errors while 
explanatory studies aim at identifying causal effects. The time effects estimated by explanatory studies are 
within-sample while the future time effect is unknown. Although it is possible to extrapolate the future 
time effect according to the previous trend, the extrapolation may lose accuracy when previous trends do 
not persist. 

Application of Inductive Transfer Learning in Quarterly Earnings Prediction 

Firms’ operating environment varies over time, which could make prediction models built upon historical 
data obsolete. To alleviate this problem, one strategy is to use a rolling training set of past ten quarters’ 
records (Hou et al. 2012; Li and Mohanram 2014). To predict earnings of time t, the training data are 
from t-1 to t-10. To predict earnings of t+1, the training data are from t to t-9, and so forth.  

However, even with the rolling of the training set, it is uncertain whether the past ten quarters’ pattern 
persists in the current quarter. To implement the inductive transfer learning strategy, we need a set of 
“good” source data to induce the pattern of the target data. We illustrate the formation of the target data, 
the same-distribution source data and the diff-distribution source data in Figure 1. 

 

Figure 1.  Illustration of Source Data and Target Data 

To be specific, in the quarterly earnings prediction task, consider that we were at the end of the first 
calendar quarter of 2008 (2008 March 31) and were trying to predict earnings for firms with March 31 
being a fiscal-quarter-end. The predictor variables are constructed using each focal firm’s financial 
statement in previous quarters. Detailed descriptions of predictors are postponed to the section of data 
experimentations. In Figure 1, the target data is denoted with the orange block with unknown earnings of 
March 31.  

To train a machine learning model, we need a set of source data. Two small groups of source data are from 
firms with February 29 and January 31 being the fiscal-quarter-end, respectively. Since these two groups 
of data contain earnings information of the current quarter, they tend to exhibit the same data pattern as 
the target data. In Figure 1, they are viewed as the same-distribution source data denoted with the green 
blocks. The historical data from the previous ten quarters are used as the diff-distribution source data, 
following the rolling strategy. In Figure 1, diff-distribution source data are represented with blue blocks. 
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The earnings prediction for other quarters proceeds in a similar manner with all the blocks representing 
different quarters/months sliding correspondingly. The inductive learning strategy can also be extended 
to other business applications such as credit default prediction and bankruptcy prediction as long as 
continuous data can be collected. Moreover, an important feature of inductive transfer learning is that it 
enables the embedding of domain knowledge to decide the appropriate same-distribution source data. 

Proposed Method 

In the traditional machine learning setting where the source data and target data are assumed to exhibit 
the same distribution, we can relatively safely minimize the expected risk/loss function by searching for 
the parameters of 𝑓(𝑦|𝒙; 𝝎) that minimize the empirical risk (ERM) of the source data: 

𝝎∗ = arg𝝎min
1

𝑚
∑ [𝑙(𝒙, 𝑦; 𝝎)](𝒙,𝑦)∈𝐷  ,                                                       (2) 

where D indicates the source data set with sample size m, and 𝑙(𝒙, 𝑦; 𝝎) indicates the risk/loss function 
(e.g., mean squared error). However, given that the source data and target data could exhibit different 
distributions, the weights of the source data records need to be adjusted. Theoretically, the weight of each 
source data record should be the ratio of its probability following the target distribution to its probability 
following the source distribution (Pan and Yang 2010), namely:  

𝝎∗ = arg𝝎min
1

𝑚
∑ [

Pr𝑇(𝒙,𝑦)

Pr𝑆(𝒙,𝑦)
𝑙(𝒙, 𝑦; 𝝎)](𝒙,𝑦)∈𝐷  ,                                              (3) 

where Pr𝑇(∙)  and Pr𝑆(∙)  denote the probability distribution of target and source data, respectively. 
Estimating each of Pr𝑇(∙)  and Pr𝑆(∙) separately is challenging and an inaccurate estimation could even 
make this weighting strategy worse off. Thus, researchers focus on approximating this ratio as a whole. 
Along this stream of literature, existing studies mainly focus on the transductive transfer learning where 
the conditional probability does not change over time (Sugiyama et al. 2008). In this study, we propose a 
two-step method for handling inductive transfer learning case. 

Given a set of source data records 𝐷 = {(𝒙1, 𝑦1), (𝒙2, 𝑦2), … , (𝒙𝑚, 𝑦𝑚)}, where m denotes the sample size of 
the source data, we divide D to two components, the same-distribution part and the diff-distribution part. 
The same-distribution data record is denoted with (𝒙𝑆𝐷, 𝑦𝑆𝐷) and the diff-distribution data record is 
denoted with (𝒙𝐷𝐷 , 𝑦𝐷𝐷). 

Step 1: The first step of our method aims at providing a fundamental description of the change of data 
distribution. We introduce a selection indicator variable s for each source data record. Let s=1 if the data 
record is from the same-distribution subset, and s=0 if the record is from the diff-distribution subset. In 
dynamic data environments, the distributional change of data could involve changes in both 𝒙 and 𝑦. We 
use the following probabilistic model to describe how likely a data record is from the same-distribution 
subset. 

Pr(𝑠 = 1|𝒙, 𝑦) = 𝑔(𝒙, 𝑦; 𝝋) ,                                                          (4) 

where 𝝋 is the vector of unknown parameters. To estimate parameter 𝝋, we combine the diff-distribution 
and same-distribution data records. Model (4) then can be estimated with any classification model (e.g., a 
logistic model or a more advanced machine learning classifier). 

Step 2: The second step uses the output from Step 1 to weight all (i.e., same- and diff-distribution) source 
data records during the training of a machine learning model. Unlike the traditional training of a machine 
learning model where all the source data records are equally weighted, we set the weight for a same-
distribution data record (𝒙𝑆𝐷 , 𝑦𝑆𝐷)  as 1 while the weight for a diff-distribution training data record 
(𝒙𝐷𝐷, 𝑦𝐷𝐷) as Pr(𝑠 = 1|𝒙𝐷𝐷, 𝑦𝐷𝐷).2 

 

2 Our weighting scheme is built upon the non-parametric regression with sample correction method (Kim 
and Yu 2011). Particularly, Kim and Yu (2011) show that one important component of the probability ratio 
in Equation (3) is the inverse of Pr(𝑠 = 0|𝒙, 𝑦). In our implementation, we use Pr(𝑠 = 1|𝒙, 𝑦) as a linear 
approximation. In future work, we plan to implement the model of Kim and Yu (2011) in a more rigorous 
manner.  
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A similar weighting method also appears in the transductive transfer learning literature (Huang et al. 
2007). However, unlike the existing methods that only model the distributional change of 𝒙, we exploit 
the same-distribution source data to provide a more complete description on the change of 𝒙 and 𝑦. 
Compared to the exiting inductive transfer learning method TrAdaBoost, an advantage of our two-step 
approach is that we explicitly provide the weights of source data through probability model (4). 
Conceptually, this design enables the generalizability of our weighting scheme to different machine 
learning algorithms. Moreover, our method is motivated by the related literature on ERM. This theoretical 
guideline lays the foundation for further improving our method. 

Data Experimentations in Quarterly Earnings Forecast 

Data Description 

The data set for earnings prediction is obtained from the merged data set from Compustat and CRSP 
databases. Compustat provides firms’ financial statement and CRSP provides information on firms’ stock 
price, common shares outstanding, etc. The sample period of our data set is from Q1 of 1979 to Q2 of 
2014. We follow the sample selection process of annual earnings prediction by Li and Mohanram (2014). 
On average, there are 2991 firms in each year of the sample. However, we exclude firms from finance and 
utility industries following the common practice of accounting research on financial statements. In 
addition, we only make predictions for firms with fiscal-quarter end being consistent with calendar-
quarter end so that in each quarter we hypothesize that we make prediction on the calendar-quarter end 
date. Finally, after the sample selection process, the number of firms in each quarter is 2,257 on average.  

Since we need ten past quarters for the training set, and certain predictor variables are severely missing in 
the early time periods, the earliest prediction is made for Q3 of 1983 and the latest prediction is made for 
Q1 of 2014. In total, the prediction data set consists of 277,611 firm-quarter observations. 

Predictor Variables 

As a starting point for constructing the earnings prediction model, we refer to the predictors used by Li 
and Mohanram (2014). More specifically, the prediction model is specified as below: 

𝐸𝑖,𝑡+1 = 𝑓(𝐸𝑖,𝑡 , 𝐸𝑖,𝑡−1, 𝐸𝑖,𝑡−2, 𝐸𝑖,𝑡−3, 𝑁𝑒𝑔𝐸𝑖,𝑡 , 𝑁𝑒𝑔𝐸𝑖,𝑡 × 𝐸𝑖,𝑡 , 𝐵𝑖,𝑡 , 𝑇𝐴𝐶𝐶𝑖,𝑡 , 𝐸𝐺𝑡+1, 𝐸𝐺𝑡+1 × 𝑆𝐼𝐶𝑖) 

Table 2. Descriptions of Predictor Variables  

Notation Description 

𝐸𝑖,𝑡  Earnings of firm i at quarter t 

𝑁𝑒𝑔𝐸𝑖,𝑡  Indicator of negative earnings of firm i at quarter t 

𝐸𝑖,𝑡−1 , 𝐸𝑖,𝑡−2, 𝐸𝑖,𝑡−3 Earnings of firm i at quarter t-1, t-2, and t-3, respectively 

𝐵𝑖,𝑡   Book value of equity of firm i at quarter t 

𝑇𝐴𝐶𝐶𝑖,𝑡  Total accounting accruals of firm i at quarter t 

𝐸𝐺𝑡+1  
Average earnings growth of the newly-reported firms that release earnings in the 
first or the second month of calendar quarter t+1. Since we make prediction on the 
calendar quarter end, this variable does not result in look-ahead bias. 

𝐸𝐺𝑡+1 × 𝑆𝐼𝐶𝑖  
Interaction term between 𝐸𝐺𝑡+1 and firm i’s Standard Industrial Classification 
(SIC) codes (12 dummies are created using the first two digits of SIC codes).  

Table 2 provides descriptions for the predictor variables. Among the predictors, five (𝐸𝑖,𝑡 , 𝑁𝑒𝑔𝐸𝑖,𝑡 , 

𝑁𝑒𝑔𝐸𝑖,𝑡 × 𝐸𝑖,𝑡, 𝐵𝑖,𝑡, 𝑇𝐴𝐶𝐶𝑖,𝑡) are from the annual earnings prediction model by Li and Mohanram (2014). 

We introduce three additional lagged earnings to account for the seasonality of quarterly earnings. In 
addition, we introduce 𝐸𝐺𝑡+1 to let the new information in the first two months of quarter t+1 be reflected 
directly in the prediction. Finally, the interaction term 𝐸𝐺𝑡+1 × 𝑆𝐼𝐶𝑖 allows for the heterogenous effect of 
newly-reported firms’ average earnings growth on firms from different industries. 
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Prediction Model Construction 

We evaluate two inductive learning methods – our proposed method and Two-stage TrAdaBoost.R2 
(Pardoe and Stone 2010) which extends the classification oriented TrAdaBoost (Dai et al. 2007) to a 
regression framework. To implement inductive learning, we use the first two months’ records in quarter 
t+1 as the same-distribution source data, as mentioned in the previous section. However, due to the 
extremely scarce same-distribution source data set (sample size<500) compared to the diff-distribution 
source data set (sample size>20,000), estimation of Model (4) faces an unbalanced-classification issue. 
We alleviate this issue by setting an additional recent quarter’s data (from quarter t) as the same-
distribution source data. Therefore, the diff-distribution source data are from the earlier nine quarters. 

The machine learning algorithm for building the prediction model is Adaboost (from python package 
sklearn) tuned with default parameters. Future work will also experiment on its extensions, such as 
XGBoost and LightGBM. As a benchmark of inductive learning, we let all the same- and diff-distribution 
source data sets weighted equally during the training of Adaboost. 

Preliminary Results 

Following the accounting literature on earnings forecast, the prediction error for each test record is scaled 
by stock price (Li and Mohanram 2014). We report two metrics of the scaled error, mean absolute error 
(MAE) and mean squared error (MSE).  

Table 3 presents the earnings prediction performance of the original AdaBoost algorithm (benchmark) 
and the two inductive learning methods. Particularly, we compare the prediction performance during the 
great recession period (defined by NBER) and during the whole sample period. 

Table 3. Earnings Prediction Performance 

Time Periods 
Prediction for Quarters in Great 
Recession (2008 Q1 ~ 2009 Q2) 

Prediction for Quarters in Whole Sample 
Period (1983 Q3 ~ 2014 Q1) 

 MAE MSE MAE MSE 

Original Adaboost 0.0567 0.2237 0.0224 0.0362 

Proposed Method 
0.0532 

(6.2%) 

0.1992 

(11.0%) 

0.0223 

(0.4%) 

0.0347 

(4.1%) 

TrAdaBoost.R2 
0.0544 

(4.1%) 

0.2405 

(-7.5%) 

0.0222 

(0.9%) 

0.0347 

(4.1%) 

During the great recession period, the data environment could be significantly different compared to the 
prior periods. Using the original AdaBoost, MAE during the great recession (0.0567) is more than twice 
the MAE during the whole sample period (0.0224). Comparing the two inductive learning methods with 
the original Adaboost, we can see that inductive learning is generally beneficial in enhancing the 
adaptiveness of the prediction model during the great recession period. Our proposed method reduces 
MAE by 6.2% and MSE by 11.0%, whereas TrAdaBoost.R2 reduces MAE by 4.1% while increases MSE by 
7.5%.3 Compared to TrAdaBoost, our method reduces MAE by 2.2% and MSE by 17.2%.4 

 

3 The discrepancy of TrAdaboost.R2 on MAE and MSE could be because it improves the prediction of 
small-error test records while somehow worsening the prediction of some large-error test records. 

4 In Table 3, we set as additional benchmark a state-of-art transfer learning method – i.e., TrAdaBoost.R2. 
However, given the times series feature of the earning prediction task, it could be worthwhile to evaluate 
the performance of time series models. We experimented with different time series models such as AR(p) 
and ARIMA(p, d, q). We find that AR(4) achieves the highest prediction accuracy and prediction coverage 
(estimating a time series model requires enough time series observations of a particular firm thus a more 
complex time series model tends to exclude newly publicly listed firms to a larger extent). Results show 
that AR(4)’s prediction error (MAE being 0.0884 for the recession period and 0.0392 for the entire 
period) is much higher than original AdaBoost. 
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Comparing the performance during the whole sample period, we can see that inductive learning is still 
able to improve the prediction. However, the improvement tends to be limited (<1% for MAE and 4.1% for 
MSE). The performance of inductive learning is within expectation. As the data environment undergoes 
significant change, it would be especially necessary to adjust the machine learning model built upon 
historical data set.  

The changes in data environments around the economic recession period are illustrated in Figure 2. 
Figure 2(a) depicts the skewness of three key predictor variables (Earnings, Book value, and Total 
accounting accruals being scaled to [-1, 1]) over time. Figure 2(b) shows these predictors’ importance 
scores. The red dashed line indicates Q1 of 2008. Figure 2(a) shows large decrease in skewness of 
earnings and TACC since Q1 of 2008, which indicates longer tail on the negative direction. Untabulated 
analysis of kurtosis shows its increase during the recession period, which represents increasing 
probability of obtaining an extreme value during economic recession. Figure 2(b) shows mainly the 
decrease of earnings’ importance and increase of the importance of Book value and TACC for the next 
quarter’s earnings forecast during the recession period. Combining Figure 2(a) and Figure 2(b), our 
method which incorporates the dynamics of variables, both predictors and the variable to be predicted, 
through Equation (4) is well motivated. 

 

Figure 2. Illusion of Dynamic Business Environments 

Conclusions and Future Directions 

This study proposes an inductive transfer learning perspective to deal with the dynamic data problem. 
Through our preliminary experimentation in earnings forecast, we show that our proposed method and 
the state-of-the-art Two-stage TrAdaBoost.R2 improve the performance of machine learning algorithms 
when the data environment undergoes significant changes.  

To further complete this study, we plan to explore along three directions. First, we aim at conducting a 
more comprehensive evaluation of inductive learning based on simulations and empirical investigations. 
With simulations, we plan to evaluate the performance of inductive learning under different extents of 
dynamic changes, different sample size and different quality levels of the “good” source data.  In addition, 
we aim at applying inductive learning to other business contexts such as credit default prediction of 
consumer loans. Second, we plan to experiment with additional inductive learning methods, such as the 
recent one proposed by Kumagai and Iwata (2018). However, an implementation challenge is that this 
method is for classification. We aim at referring to Pardoe and Stone (2010) to overcome the possible 
issues in modifying a classifier to a regression model. Third, we plan to further improve the proposed 
method. As aforementioned, in step 2, we employ a simplified weighting scheme of Kim and Yu (2011). 
Future improvements include refined implementation of the model of Kim and Yu (2011) and other 
potentially related statistical models such as inverse propensity weighting (Shao and Wang 2016). Also, 
our framework is to be implemented on additional machine learning algorithms such as neural networks 
and XGBoost. 
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