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Abstract 

The availability of datasets for analytical solution development is a common bottleneck 
in data-driven predictive maintenance. Therefore, novel solutions are mostly based on 
synthetic benchmarking examples, such as NASA’s C-MAPSS datasets, where research-
ers from various disciplines like artificial intelligence and statistics apply and test their 
methodical approaches. The majority of studies, however, only evaluate the overall so-
lution against a final prediction score, where we argue that a more fine-grained consid-
eration is required distinguishing between detailed method components to measure 
their particular impact along the prognostic development process. To address this issue, 
we first conduct a literature review resulting in more than one hundred studies using 
the C-MAPSS datasets. Subsequently, we apply a taxonomy approach to receive dimen-
sions and characteristics that decompose complex analytical solutions into more man-
ageable components. The result is a first draft of a systematic benchmarking framework 
as a more comparable basis for future development and evaluation purposes. 

Keywords:  Prognostics, Maintenance, Data Science, Evaluation Framework, Taxonomy, Review 

Introduction 

Given the evolving complexity of production systems and machinery, the maintenance function plays a 
crucial role in today’s industrial value creation as it helps manufacturing companies to guarantee high 
reliability, human safety and low environmental risks (Muchiri et al. 2011; Peng et al. 2010). For this pur-
pose, modern production environments increasingly focus on proactive maintenance strategies like pre-
dictive maintenance based on data-driven prognostic solutions to make efficient use of given resources 
and avoid redundant expenditures. The main goal of anticipatory approaches is to predict faults and fail-
ures before they occur and determine the remaining useful life (RUL) of technical assets by identifying 
relationships between extensive monitoring data and critical events (Bousdekis et al. 2018; Elattar et al. 
2016). This situation is favored by the ubiquitous use of advanced information and communication tech-
nology that simplifies the collection of large and multifaceted data and the fast developments in big data 
and analytics methods that help to unveil valuable insights for better decision support (Zschech 2018). 

In contrast to physical models and experience-based methods, data-driven approaches, that are based on 
techniques from disciplines like machine learning (ML) or statistics, have the advantages that i) they do 
not require comprehensive system knowledge, ii) they are fast to implement, iii) they can be tuned for 
similar systems, and iv) they are able to exploit hidden relations and nuances within the data records 
(Elattar et al. 2016; Peng et al. 2010). However, a prevailing disadvantage, and thus a common bottleneck 
of data-driven approaches, is the availability of representative data that reflect a system’s symptomatic 
behavior from normal and faulty operations to degradation patterns under certain operating conditions.  
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Such run-to-failure data are often scarce in industrial practice and can only be procured at great expense 
due to zero-downtime policies (Dragomir et al. 2009; Zschech et al. 2019). For this reason, there have 
been several initiatives to generate synthetic datasets, covering a variety of technical settings, such as mill-
ing machines, bearings, li-ion batteries or turbofan engines (Eker et al. 2012). Derived from laboratory 
experiments or advanced simulations, such synthetic datasets show realistic properties and therefore 
provide a fundamental basis for the development and assessment of data-driven prognostic solutions 
(Eker et al. 2012; Ramasso and Saxena 2014). Accordingly, they are in use by a large scientific community, 
where researchers from various disciplines continuously compete against each other in order to propose 
novel solutions that consist of multiple processing components, while simultaneously striving to achieve 
the best benchmark result for a specific setting. The majority of studies, however, only consider their solu-
tion as a whole and evaluate the overall approach against a final prediction score to assess whether it per-
forms better or worse than existing benchmarks. While a single metric proves to be a good choice for a 
quick comparison, we argue that a much more fine-grained consideration is required that distinguishes 
between detailed aspects of an overall solution along its analytical development process and measures the 
impact of particular method components, such as specific pre-processing or modelling steps. 

Thus, our research goal is to identify characteristic components of data-driven prognostic solutions to-
wards the establishment of a systematic benchmarking framework that reduces the complexity of prog-
nostic solutions by decomposing them into their inherent parts. This should help to increase transparency 
and guide the selection of different components during the development of novel solutions and their em-
bedding into analytical information systems, as it allows an evaluation on a more fine-grained basis. To 
carry out our research, we apply a taxonomy development approach guided by the method of Nickerson et 
al. (2013). Hereby, we demonstrate how a taxonomic approach can help to decompose complex analytical 
solutions into more manageable pieces. For the identification of a large corpus of studies, which serve as 
the foundation for the taxonomy development, we rely on a systematic literature review (vom Brocke et al. 
2009). Particularly, in this research-in-progress paper, we start our research with a narrow focus on stud-
ies dealing with a specific maintenance scenario in order to keep the complexity manageable and obtain a 
benchmarking framework that applies to a distinct class of prognostic problems. Here, we choose the 
turbofan degradation scenario based on NASA’s C-MAPSS data as a predominantly applied scenario 
within the prognostics community (Ramasso and Saxena 2014), whereas in further research, we will ex-
tend the scope to additional settings (e.g., Eker et al. 2012) in order to validate our results and possibly 
improve them towards higher generalizability. Following this line, the rest of this paper is organized as 
follows: First, we briefly describe the background of NASA’s turbofan degradation scenario and refer to 
related work. We then describe our research method in detail and subsequently present the taxonomic 
framework, followed by a thorough discussion of the results. Finally, we draw a conclusion and give an 
outlook on how the work will be continued in subsequent steps. 

Case Background and Related Work 

The availability of suitable datasets, which researchers can use to develop and assess novel solutions, is a 
common bottleneck in data-driven prognostics due to the fact that critical assets are most often not al-
lowed to fail and thus are replaced well in advance without recording relevant events (Ramasso and 
Saxena 2014; Zschech et al. 2019). Therefore, synthetic benchmarking datasets generated in different 
experimental settings, such as milling machines, bearings, li-ion batteries or turbofan engines (Eker et 
al. 2012), play a crucial role within the field. Among these examples, the turbofan scenario based on 
NASA’s C-MAPSS data (commercial modular aero-propulsion system simulation) is one of the most fre-
quently applied scenarios for prognostic solution development (Elattar et al. 2016; Zschech et al. 2019). 
The data collection encompasses five similar datasets generated by a simulation environment from the 
NASA Ames Research Center that replicates the behavior of turbofan engines under a variety of operating 
conditions and a continuous degradation due to varying fault injection parameters. As such, each dataset 
is composed of multivariate time series containing parameters and sensor measurements of operating 
cycles from different turbofan engines (Saxena, Goebel, et al. 2008). The data were used for the first time 
as part of a prognostic challenge at the PHM'08 conference. Thereafter, another four datasets with vary-
ing degrees of complexity were released (FD001-FD004). Due to their realistic characteristics in terms of 
i) multi-dimensional sensor measurements from a complex non-linear system, ii) high level noise to rep-
resent natural variability and iii) masked fault effects through different operating conditions, the datasets 
were used by numerous researchers for diagnostic and prognostic development purposes (Ramasso and 
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Saxena 2014). To draw conclusions from these efforts, Ramasso and Saxena (2014) conducted a first re-
view, in which they compared and classified several aspects of existing solutions identified in forty unique 
studies. Meanwhile, the number of studies has more than doubled and developments are even steadily 
increasing with a push of new achievements, especially from the field of ML and deep learning. 

These developments shall be given a new orientation by proposing a systematic, taxonomic benchmarking 
framework. In general, taxonomies serve as a viable research approach for organizing knowledge in a 
structured manner and manifesting descriptive theories (Gregor 2006). For this purpose, they enable 
researchers to study the relationship among concepts and help to analyze and understand complex do-
mains (Nickerson et al. 2013). Zschech (2018), for example, already applied a taxonomy development 
approach within the field of data-driven maintenance in order to decompose dimensions and characteris-
tics of recurring data analysis problems. The author discusses the merits of this methodical approach as a 
systematic procedure to decompose complexity of analytical solutions. The focus of this paper, however, is 
on a more detailed sublevel, as it exclusively concentrates on prognostic method components along the 
overall analytical development process. This is exemplified on the C-MAPSS datasets as a representative 
foundation for prognostic solution development in order to receive taxonomic benchmarking dimensions 
and characteristics from a manageable amount of prognostic studies. 

Research Method 

To identify relevant studies that dealt with the development of prognostic solutions using C-MAPSS da-
tasets, we carried out a systematic literature review (vom Brocke et al. 2009). Specifically, we applied a 
database search using the following libraries: AIS Electronic Library, EBSCOhost, IEEE Xplore, Sci-
enceDirect and SpringerLink. As search terms, we combined the keywords ‘C-MAPSS’ and ‘dataset’ and 
applied them with alternative spellings (e.g., ‘CMAPSS’) and synonyms (e.g., ‘PHM 2008’, ‘NASA turbofan 
degradation’), leading to 128 unique items. Additionally, we performed a forward search based on the C-
MAPSS introduction provided by Saxena, Goebel, et al. (2008) (+52 items), searched the websites of the 
PHM Society and the NASA Prognostics Center of Excellence (+40 items), and performed a backward 
search based on the review conducted by Ramasso and Saxena (2014) (+7 items). Thus, it was possible to 
obtain 227 unique hits (day of search: 2018-09-24), which had to be further reduced by appropriate filter 
criteria. Here, we ensured that the studies i) were written in English/German (-1 item), ii) were based on 
one of the five C-MAPSS datasets (-68 items), iii) dealt with a prognostic approach as opposed to a diag-
nostic orientation (-30 items), iv) applied a data-driven approach (-4 items), and v) proposed a previously 
unknown solution (-18 items). This resulted in 106 relevant studies, which were then used for the subse-
quent step of the taxonomy development (cf. Appendix, Table 2). 

To carry out the taxonomy development, we applied the method proposed by Nickerson et al. (2013) as it 
provides systematic guidance. It basically consists of three steps: i) determining a meta-characteristic, ii) 
specifying ending conditions, and iii) identifying dimensions and characteristics of the taxonomy. The 
meta-characteristic is the root element, as it serves as a foundation for the choice of all other characteris-
tics. As such, it was defined in accordance with our research goal, i.e., to identify characteristic compo-
nents of data-driven prognostic solutions. The specification of ending conditions, on the other hand, is 
required due to the iterative method character. For this purpose, Nickerson et al. (2013) define certain 
subjective criteria that must be fulfilled, e.g., that a taxonomy is sufficiently robust to contain enough di-
mensions and characteristics to separate between the objects of interest, while it is sufficiently concise to 
not exceed the cognitive load of the taxonomy user. Moreover, the method requires the specification of 
objective ending conditions, e.g., that every characteristic within its dimension is unique and not repeat-
ed. At this point, we adopted the following four criteria for our approach: i) all objects have been exam-
ined, ii) at least one object can be assigned for each characteristic across all dimensions, iii) no new di-
mensions or characteristics were added in the last iteration, and iv) no dimensions or characteristics 
were modified in the last iteration. The actual step of identifying dimensions and characteristics can then 
be carried out either with an empirical-to-conceptual (E2C) or a conceptual-to-empirical (C2E) path. We 
applied a combination of both paths by running several iterations until all ending conditions were met. 

In a first iteration, all solutions were differentiated according to the underlying properties of the respec-
tively applied C-MAPSS datasets. Here, it was possible to distinguish between different levels of complexi-
ty among all five datasets, mainly expressed by the two dimensions ‘simultaneous fault modes’ and ‘num-
ber of operational conditions’. While some solutions were exclusively evaluated on a particular dataset 
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with its inherent degree of complexity, others were also tested on multiple instances with their respective 
properties. In some studies, however, it was not indicated at all which datasets or complexity levels were 
considered. In the next four iterations, we identified a broad range of pre-processing methods, which 
could be organized within the following four dimensions: normalization, noise reduction, dimensionality 
reduction, and feature selection. For the first three dimensions, we applied E2C-paths classifying empiri-
cally derived methods for each step. For the ‘feature selection’ dimension, on the other hand, we applied 
the categorization suggested by Wang (2010) distinguishing between filter and wrapper methods, which 
could also be confirmed empirically. Additionally, we had to add a third category covering all approaches 
where the selection step was carried out manually. Moreover, for several studies, a precise classification 
was not possible, since no exact information was given on the details of the pre-processing steps. In the 
sixth iteration, we considered all prognostic modelling approaches starting with an E2C-path. At this 
point, we were faced with some major abstraction difficulties when trying to organize a variety of hetero-
genous modelling approaches from the fields of statistics, mathematical modelling and artificial intelli-
gence into a flat-dimensioned and non-hierarchical representation. To this end, we proceeded with an 
C2E-path applying a categorization by Ramasso and Saxena (2014) and additionally listed each individual 
modelling approach separately to avoid an inflated, imbalanced and partially overlapping set of modelling 
characteristics within the taxonomy. This categorization encompasses three groups of generic approaches, 
namely direct, indirect, and similarity-based modelling, which could all be confirmed empirically by the 
approaches at hand. In a seventh iteration, we extracted a series of performance metrics for prognostic 
model assessment. However, due to a high number of individual measures, we applied a categorization 
proposed by Saxena, Celaya, et al. (2008) that distinguishes between metrics based on accuracy, robust-
ness, precision, trajectory, and prognostic-specific properties. Of these five groups, accuracy, precision 
and prognostics-specific metrics could be confirmed empirically and thus they were kept within the tax-
onomy. In a last iteration, all studies were screened again and since no more modifications occurred, all 
ending conditions were met to complete the taxonomy development process. 

Results 

In this section, we present our results and briefly describe the final taxonomy (cf. Table 1). Additionally, 
we list all 106 examined studies with their respective characteristics in Table 2 of the Appendix, where we 
also report the specific prognostic approaches for the modelling step as well as the datasets used for solu-
tion development. Furthermore, to view the full source reference for each study, please refer to the follow-
ing link: https://www.researchgate.net/publication/335611604 

Dimension Characteristics 

Fault Modes Single Fault Mode Multiple Fault Modes 

Operational Conditions Single Condition Multiple Conditions 

Normalization Standardization Rescaling 

Noise Reduction Moving Average Exponential Smoothing Polynomial Smoothing 

Feature Selection Manual Selection Filter Wrapper 

Dimensionality Reduction Hierarchical Non- Hierarchical 

Prognostic Approach Direct RUL-Mapping Indirect RUL-Mapping via HI Similarity-based Matching 

Performance Metric Accuracy-based Precision-based Prognostic-specific Metric 

Table 1. Taxonomy for Data-Driven Prognostic Solutions Based on C-MAPSS Studies  

Fault Modes: As described previously, the five C-MAPSS datasets used for solution development show 
different levels of complexity, where the first dimension refers to the degree of simultaneous fault modes. 
As such, the datasets FD003 and FD004 are subject to multiple fault modes, while the remaining datasets 
FD001, FD002 and PHM08 only contain a single fault mode and therefore show a lower level of complex-
ity. However, since the majority of the studies are based on FD001 and PHM08, the single fault setting 
has played so far a much larger role in the development of prognostic solutions within the turbofan sce-
nario (97 studies), whereas studies based on multiple faults are severely underrepresented (22 studies). 

Operational Conditions: The second dimension describing dataset complexity is given by different 
numbers of operating conditions that mask the general effect of faults. Here, it can be distinguished be-
tween a single operational condition, as given in the datasets FD001 and FD003, and multiple conditions 
representing a higher complexity, which can be found in the datasets FD002, FD004 and PHM08. In this 
dimension, both characteristics are almost equally considered among all studies (single: 60/multiple: 57). 
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Normalization: The next dimension refers to a pre-processing step called normalization, in which 
measured values of different scales are adjusted to a notionally common scale. It could basically be distin-
guished between a standardization approach (i.e., values are transformed via mean and standard devia-
tion, also called z-score) and a rescaling approach (i.e., values are adjusted to [-1,1] or [0,1] intervals pri-
marily based on a min-max transformation). Normalization is only mentioned by 32 studies, with stand-
ardization being the preferred approach in comparison to rescaling (20/12). 

Noise reduction: This pre-processing step is used to reduce noise from a signal. Here, it was possible to 
differentiate between moving average (i.e., mean calculation on rolling subsets), exponential smoothing 
(i.e., usage of exponential function to assign decreasing weights over time), and polynomial smoothing 
(i.e., usage of polynomial function). Overall, only 15 studies explicitly mention a noise reduction approach, 
with all three groups being almost equally represented within the studies (6/6/5). 

Feature selection: Methods in this dimension support the process of identifying relevant features from 
uninteresting/redundant ones, which might affect the performance of learning algorithms. Based on the 
results, it could be differentiated among wrapper, filter, and manual selection methods. Wrapper meth-
ods utilize a learning algorithm as a black box to score subsets of features according to their predictive 
power. Filter methods, on the other hand, use local performance criteria such as correlation or mutual 
information criteria for feature subset selection independently of a chosen predictor (Wang 2010). Fur-
ther on, manual selection takes place, when no automatic procedure is used, but instead features are se-
lected, for example, based on visual investigations. Manual selection is by far the most widely mentioned 
approach within the studies in comparison to wrapper and filter methods (44/18/10). 

Dimensionality reduction: Similar to feature selection, dimensionality reduction aims at preserving 
discriminatory information while shrinking the extent of features. However, the idea behind this step is 
the transformation of features into a more compact representation. The most frequently used approach, 
which is mentioned in nine studies, is based on principal component analysis (PCA), where a set of fea-
tures is projected onto a set of linearly uncorrelated features via an orthogonal transformation. A few 
studies also consider several PCA variants such as kernel PCA (e.g., Lim et al. 2016) or greedy kernel PCA 
(e.g., Chen et al. 2016). Another approach is based on a hierarchical procedure, in which the feature re-
duction is carried out over several levels so that a full correlation/covariance matrix is not required 
(Krishnan et al. 2017). Against this background, the taxonomy distinguishes between hierarchical and 
non-hierarchical approaches, with the latter category being more frequently used (1/13). 

Prognostic approach: For the modelling step, the categorization by Ramasso and Saxena (2014) dis-
tinguishes between three groups of prognostic approaches, i.e., direct, indirect and similarity-based ap-
proaches. In the direct approach, a functional mapping between a multidimensional feature space and 
the RUL is established. Overall, 36 studies apply this group, where the majority of studies are based on 
different types of neural networks with an increasing tendency towards deeper architectures, such as deep 
belief networks (e.g., Zhang et al. 2018), convolutional neural networks (CNN) (e.g., X. Li et al. 2018) or 
long short-term memory networks (LSTM) as a specific variant of recurrent networks (e.g., Y. Wu et al. 
2018). The indirect approach, on the other hand, requires two mapping functions. The first one maps 
input data to a health index (HI) and the second one maps HI values to the RUL. In this way, a library of 
degradation models is constructed that serves as prior knowledge for model estimation. The generation of 
the HI can be based, for example, on hidden Markov models (e.g., Juesas and Ramasso 2016) or stochas-
tic process models, such as Wiener or Gamma processes (e.g., N. Li et al. 2018). With 54 studies, the indi-
rect mapping is most frequently pursued, whereas the last group of similarity-based matching is only 
employed by 19 studies. Here, a library of trajectories is created based on historical instances labeled with 
known failure times. The RUL of new instances is then estimated by evaluating their similarity with in-
stances in the library. To assess similarity, different approaches can be used, such as Euclidean distance 
(e.g., Wang et al. 2008) or polygon coverage based on computational geometry (e.g., Ramasso 2014). 

Performance metric: The last dimension is divided in different types of performance metrics using the 
categorization by Saxena, Celaya, et al. (2008): Accuracy-based metrics compute statistics over the error 
between the actual failure time and the predicted value. This group is predominantly used (93 studies) 
and includes metrics like root mean squared error or mean absolute percentage error. Precision-based 
metrics, on the other hand, measure the dispersion of the prediction error, such as mean absolute devia-
tion, which is only applied by six studies. The third group encompasses prognostics-specific metrics, ad-
dressing domain-specific peculiarities, which are also rarely applied (11 studies). 
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Discussion 

Reflecting the results of this research, we contribute to the field of data-driven solution development for 
predictive maintenance and analytical information systems in several ways: First, we extended the review 
of Ramasso and Saxena (2014) by a more recent scope with an exclusive focus on prognostic approaches. 
This helps the community to get an overview of current trends, where it becomes apparent, for example, 
that although the largest part of prognostic modelling steps is taken up by indirect RUL-mappings, the 
number of direct mappings has grown enormously, where recent efforts are increasingly directed towards 
the application of deep neural networks, such as LSTM or CNN. In subsequent research, it is also planned 
to reveal further descriptive insights to the reviewed studies, which was not part of the current investiga-
tion so far. Second, by applying a taxonomic approach, it was indeed possible to decompose the com-
plexity of analytical solutions to a certain degree, which is necessary for future efforts to compare novel 
solutions on a more fine-grained basis. By employing the method of Nickerson et al. (2013), a number of 
useful dimensions and characteristics could be extracted, including dataset characteristics, various pre-
processing components, a high-level distinction of prognostic modelling approaches and various groups 
of performance metrics. Thus, the taxonomy delivers an overview about different design options (includ-
ing frequencies of different methods and method combinations), provides structured access to knowledge 
in terms of a method catalog and provides a setting to position individual configurations of novel solu-
tions on a more comparable basis. Third, as pursued by the research goal, the taxonomy provides the 
foundation for a systematic framework, which is intended to be used in subsequent research for bench-
marking purposes. Here, it is planned to reconstruct existing solutions and iteratively modify the charac-
teristics of the dimensions to measure and evaluate their impact on the overall performance. On this ba-
sis, more stable statements can be made as to whether, for example, the performance of new proposed 
solutions primarily depends on specific modelling steps or whether particular pre-processing steps con-
tribute to their impact. This can be of particular interest, for example, against the background of the 
aforementioned deep neural networks, which claim to be capable of automatically extracting relevant 
features without the need for corresponding feature engineering (LeCun et al. 2015). 

On the downside, our approach has also some limitations: First, the taxonomy was developed in such a 
way that only characteristics explicitly mentioned within the studies were extracted. However, it can be 
assumed that far more studies show corresponding characteristics in several dimensions, especially in 
those for pre-processing, since, as in the case of normalization for example, certain prognostic models like 
neural networks require normalized input values for feasible calculations within their activation func-
tions. Therefore, no distinction was made as to whether certain characteristics were simply not discussed 
or whether they have indeed a ‘blank option’. Thus, for the benchmarking framework, it is planned to 
introduce such blank options whenever they are applicable. Second, the specific order of pre-processing 
steps has not yet been taken into account, which of course can have an impact. This is also subject of fur-
ther research. Third, during the extraction of several method components, we were faced with hetero-
genous wordings and concept names. For example, some authors apply the term ‘feature extraction’ in the 
sense of dimensionality reduction (e.g., Lim et al. 2016), while others use it for feature selection (e.g., 
Elattar et al. 2018). Another example is the term ‘filter’, which is either used for noise reduction (e.g., 
Ramasso and Saxena 2014), feature selection (e.g., Wang 2010) or specific modelling approaches (e.g., 
Peel 2008). As such, the results possibly suffer some ambiguous categorization, especially when highly 
specific approaches were applied. In further research, this issue should be addressed by taking a more 
generalized view on method categorizations beyond the scope of maintenance studies to avoid imprecise 
classifications. Fourth, for some dimensions, a deeper partitioning was conceivable, such as for the per-
formance metrics, where each metric could form a single characteristic. However, in the course of the 
development method from Nickerson et al. (2013), a balance had to be struck between robustness on one 
hand and conciseness/parsimony on the other hand to obtain a suitable level of abstraction. This also 
applies to the evaluation framework, where it is not necessarily desired to examine every slight change of 
characteristics. Thus, while an acceptable level of abstraction could currently be found for the pre-
processing dimensions, this proved to be more difficult for the modelling dimension. Facing heterogenous 
approaches like instance-based learning, deep learning, stochastic process models or optimization and 
simulation approaches, it was difficult to abstract their inherent characteristics (e.g., model assumptions, 
learning/approximation concepts, target functions to be optimized, treatment of uncertainty, etc.) in a 
reasonable way so that they could be transferred into a flat taxonomy structure. This issue was also noted 
by Zschech (2018) during the extraction of taxonomic characteristics for a wide range of analytical tech-
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niques. Consequently, it seems more reasonable to allow hierarchical, tree-like categorizations or to create 
sub-taxonomies for each class of prognostic modelling approaches. Here, we already reported several 
candidates that appear to be useful sub-dimensions in subsequent research (e.g., division of direct model-
ling approaches into different sub-types of deep neural networks, such as deep belief, CNN and recurrent 
networks). Fifth, to take this research to a more generic level, there is currently a certain bias, as the ex-
tracted characteristics depend on the C-MAPSS scenario. This limitation was useful, as it allowed to con-
centrate on an extensive but manageable amount of studies representing a scenario with highly realistic 
properties. However, a preliminary screening of several C-MAPSS studies, in which prognostic solutions 
are also applied to other scenarios (e.g., Krishnan et al. 2017; Malhotra et al. 2016; Mosallam et al. 2015; 
Xi et al. 2018), reveals that the extracted taxonomy framework is basically applicable for broader contexts. 
Thus, it might only require smaller adjustments towards higher generalizability, such as the consideration 
of further data characteristics or pre-processing steps (e.g., treatment of missing values or relaxation ef-
fects as in the case of the li-ion battery scenario, cf. Xi et al. 2018). Following this line, we will extend our 
research in subsequent work to additional maintenance settings to cover a broader variability and validate 
our results. Similarly, it is planned to apply the overall methodical approach to further contexts in com-
pletely different domains (e.g., predicting behavior of business processes or visual object recognition in 
enterprise applications) to demonstrate our approach’s general feasibility and expediency, as we are con-
vinced that such a methodical application is not necessarily limited to maintenance scenarios. 

Conclusion and Outlook 

In this paper, we developed a first draft of a benchmarking framework for data-driven prognostic solu-
tions. To this end, we applied a taxonomy approach to reach better transparency and decompose complex 
solutions into more manageable pieces. In subsequent steps, it is planned to refine our results by address-
ing the discussed limitations - especially towards extending the investigation to other maintenance set-
tings and related datasets as well as extracting further aspects for the three prognostic modelling classes 
in which more specific subdimensions are conceivable. After the refinement, the results will be used for 
the implementation of the benchmarking framework, where the extracted dimensions and characteristics 
serve as evaluation options to be iteratively modified under ceteris paribus conditions. Thus, by using 
dynamic programming pipelines, a varying combination of pre-processing and modelling approaches 
(e.g., no noise reduction vs. exponential smoothing + wrapper vs. filter + direct LSTM vs. indirect LSTM 
vs. indirect HMM) will be studied based on different dataset characteristics with regard to their impact on 
selected performance metrics. In this way, it is planned to establish a better and unbiased understanding 
to what extent certain method components affect the results of prognostic solutions, which can guide the 
development and the application of such data-driven approaches in similar maintenance environments. 
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[1] Heimes (2008) Recurrent Neural Network (RNN)     X X   X           X   X   

[2] Peel (2008) Kalman Filter (KF), Ensemble of Neural Network Models     X X   X X          X   X   

[3] Wang et al. (2008) Damage Estimation with Linear Regression (LR), Similarity-based Matching     X X   X      X       X X   

[4] Peysson et al. (2009) Support Vector Regression (SVR)     X X   X      X     X   X   

[5] Siegel (2009) Health Indicator (HI), Logistic Regression X     X  X       X      X  X   

[6] Coble (2010) Weibull Fitting (WF), Markov Chain, General Path Model (GPM)     X X   X       X     X  X   

[7] Gouriveau & Ramasso (2010) Takagi-Sugeno Neuro-Fuzzy System (TSNFS), Evidential Hidden Markov Model (EHMM)      X X   X       X     X  X   

[8] Jianzhong et al. (2010) Ensemble of Multi-Layer Perceptron (MLP) Networks               X     X   X   

[9] Riad et al. (2010) MLP     X X   X X  X   X     X   X   

[10] Wang (2010) HI-based Similarity Matching, Kernel Smoothing    X   X  X X     X X   X   X   X 

[11] Zemouri & Gouriveau (2010) Recurrent Radial Basis Function Network, Autoregressive Model (ARM)     X X   X           X   X X  

[12] Coble & Hines (2011) GPM with Dynamic Bayesian Updating     X X   X       X     X  X   

[13] El-Koujok et al. (2011) Takagi-Sugeno NFS     X X   X            X  X   

[14] Gauvain et al. (2011) Connexionist-based Multi-Step Prediction     X X   X            X  X   

[15] Giantomassi et al. (2011) MLP, HMM     X X   X            X  X   

[16] Hu et al. (2012) Ensemble of SVM/Relevance VM (RVM)/Exponential Fitting (EF)/Quadratic Fitting (QF)/RNN     X X   X X     X     X X X X  X 

[17] Le Son et al. (2012) Non-homogeneous Gamma Process with Gaussian Noise Model, Gibbs Sampling (GS)     X X   X            X  X   

[18] Peng, Wang, et al. (2012) Echo State Network (ESN), KF X     X  X            X   X   

[19] Peng, Xu, et al. (2012) Instance-Based Learning (IBL)  X    X   X      X X      X   X 

[20] Sun et al. (2012) State Space Model (SSM), Sequential Monte Carlo (SMC) Method               X      X  X   

[21] Wang et al. (2012) Sparse Bayes Learning with RVM     X X   X      X      X  X   

[22] Ishibashi & Júnior (2013) Genetic Fuzzy Rule-based System, Decision Tree (DT)     X X   X  X   X X  X   X      

[23] Le Son et al. (2013) Wiener Process Model (WPM)     X X   X      X    X  X  X   

[24] Li et al. (2013) Mixture of Gaussian HMM, Fixed Size Least Squares SVR X X X X  X X X X  X          X  X  X 

[25] Louen et al. (2013) SVM, WF X     X  X             X  X   

[26] Ramasso et al. (2013) Case-based Reasoning, K-Nearest Neighbours (KNN), Belief Functions X     X  X       X       X X   

[27] Bluvband et al. (2014) SVM, SVR X     X  X     X X      X   X   

[28] Fagogenis et al. (2014) AR Locally Weighted Projection Regression, Random Undersampling Boosting Classifier X     X  X            X      

[29] Khelif et al. (2014) IBL X     X  X              X X   

[30] Liu et al. (2014) Superstatistics Theory, Information Fusion, SSM, KF                     X  X   

[31] Mosallam et al. (2014) Discrete Bayesian Filter (DBF), KNN, Gaussian Process Regression (GPR) X     X  X        X   X  X  X   

[32] Ramasso & Denoeux (2014) Evidential Expectation-Maximization (EM), Partially HMM (PHMM) X     X  X             X  X   

[33] Ramasso & Gouriveau (2014) TSNFS, Evidential HMM     X X   X       X     X  X   

[34] Ramasso (2014) Imprecise Health Indicator, Similarity-based Reasoning, Polygon Clipping X X X X X X X X X      X  X     X X   

[35] Wang & Gao (2014) Regularized Particle Filtering (PF)                     X  X   

[36] Xi et al. (2014) Copula-based Sampling Method     X X   X      X      X  X   

[37] Xu et al. (2014) Comentropy-based Fusion Model, Dempster-Shafer Regression (DSR), SVM, RNN X     X  X       X      X  X   

[38] García Nieto et al. (2015) SVM, Particle Swarm Optimization (PSO) X     X  X       X      X     

[39] Javed et al. (2015) Extreme Learning Machine (ELM), Subtractive Maximum Entropy Fuzzy Clustering X     X  X       X  X    X  X   

[40] Lasheras et al. (2015) Regression Trees, Multivariate Adaptive Regression Splines (MARS) X     X  X        X   X  X  X   

[41] Le et al. (2015) Multibranch Hidden Semi-Markov Model (HSMM)     X X   X            X  X   

[42] Malinowski et al. (2015) RUL Shapelet Extraction X   X  X X X X     X X       X X  X 

[43] Mosallam et al. (2015) DBF, GPR X     X  X        X   X  X  X   

[44] Peng et al. (2015) IBL X     X  X       X  X     X   X 

[45] Xinxin et al. (2015) Exponential Damage Modelling  X    X   X      X       X X   

[46] Al-Dahidi et al. (2016) Homogeneous Discrete-Time Finite-State SMM, WF, Monte Carlo Simulation (MCS)  X    X   X X   X  X      X  X X X 

[47] Babu, Li, et al. (2016) Meta-Cognitive Regression Neural Network (MCRNN)     X X   X X          X   X   

[48] Babu, Zhao, et al. (2016) Deep Convolutional Neural Network (CNN) X X X X X X X X X X          X   X   

[49] Chen et al. (2016) Non-homogeneous HSMM (NHSMM) X     X  X           X  X  X   

[50] Juesas & Ramasso (2016) Discrete HMM, EM with Weighted Distribution Theory (WDT) X X X X  X X X X            X  X   

[51] Juesas et al. (2016) Autoregressive PHMM, WDT X     X  X             X  X   

[52] Le Son et al. (2016) Non-homogeneous Gamma Process with Gaussian Noise Model, GS, Stochastic EM     X X   X            X  X   

[53] Li et al. (2016) Discrete-Time Markov Chain     X X   X      X  X    X  X   

[54] Lim et al. (2016) Time-Window Neural Network X X X X  X X X X  X      X  X X   X   

[55] Malhotra et al. (2016) Long Short Term Memory based Encoder-Decoder (LSTM-ED), Curve Matching X     X  X  X         X   X X   

[56] Porotsky & Bluvband (2016) SVM, SVR X     X  X     X X      X   X   

[57] Ramasso (2016) EHMM, EM X     X  X             X     

[58] Shi et al. (2016) Hierarchical Failure State Clustering, RVM X     X  X   X    X       X X   

[59] Tao et al. (2016) Dynamic Neural Network (DNN) X     X  X   X    X      X  X   

[60] Xin et al. (2016) Similarity-based Method based on Kernel Density Estimation     X X   X X         X   X    

[61] Xinxin et al. (2016) Average and Comentropy Fusion Model, HSMM, Similarity-based Approach, SVM  X     X         X     X X X X   

[62] Yan et al. (2016) Extended GPM, Data-Level Fusion via Composite HI  X    X   X      X      X  X   

[63] Yang et al. (2016) Back Propagation Neural Network (BPNN), ELM  X    X   X X   X  X X    X   X  X 

[64] Yongxiang et al. (2016) IBL, Weighted Euclid Distance (WED) X     X  X  X     X    X   X    

[65] Yuan et al. (2016) SVM Sample Labeling, LSTM/Gated Recurrent Unit (GRU)-LSTM/AdaBoost-LSTM X X X X  X X X X X          X   X   

[66] Aydin & Guldamlasioglu (2017) LSTM               X X    X   X   

[67] Bektas et al. (2017) Multiple LR, SSM X X X X  X X X X            X  X   

[68] Bouzidi et al. (2017) Non-linear Autoregressive Neural Network, Adaptative-Network-based Fuzzy Inference System     X X   X           X   X X  

[69] Chehade et al. (2017) Degradation Estimation with Convex Quadratic Formulation, Bayesian Updating                     X  X   

[70] Chen et al. (2017) Three Layer Non-linear Multistate Deterioration Model, NHSMM X     X  X           X  X  X X  

[71] Dong et al. (2017) LSTM     X X   X           X   X   

[72] Fang et al. (2017) Adaptive Penalized (Log)-Location-Scale Regression X     X  X         X  X X   X X  

[73] Khelif et al. (2017) SVR X     X  X      X   X   X   X   

[74] Krishnan et al. (2017) Deep Neural Network (DNN)     X X   X         X  X   X   

[75] Li et al. (2017) Locally Weighted LR, Degradation-Dependent Weights, Ensemble of RVM/SVM/EF/QF/RNN     X X   X      X      X  X   

[76] Lim et al. (2017) Switching KF, Ensemble of MLP Networks X X X X X X X X X  X          X  X   

[77] K. Liu et al. (2017) Signal-to-Noise-Ratio (SNR)-based Data Fusion Model, Bayesian Updating X     X  X       X      X  X   

[78] L. Liu et al. (2017) GPR X X X X  X X X X       X       X X  

[79] Mathew et al. (2017) LR, DT, SVM, Random Forest (RF), KNN, K-Means, Gradient Boosting, AdaBoost, DNN, Anova X X X X  X X X X           X   X   

[80] Salah et al. (2017) ESN, PSO X     X  X       X     X   X   

[81] Singh et al. (2017) Stacking Ensemble of Gradient Boosted Trees/Feed-Forward NN, NN as Meta Learner X X X X  X X X X X          X   X   

[82] Wang et al. (2017) Trajectory Matching with Information Fusion X     X  X       X       X X   

[83] Xi et al. (2017) Fractional Brownian Motion (FBM) Degradation Model, MCS X     X  X    X         X  X   

[84] Zhang et al. (2017) Ensemble of Multi-Objective Deep Belief Networks X X X X  X X X X  X    X     X   X   

[85] Zhao et al. (2017) Adjacent Difference Neural Network (ADNN) X    X X  X X            X  X   

[86] Zheng et al. (2017) LSTM X X X X X X X X X X          X   X   

[87] Zhou et al. (2017) Reduced Kernel Recursive Least Squares Algorithm, HMM X     X  X   X X   X      X  X   

[88] Baraldi et al. (2018) ELM  X    X   X X   X   X     X    X 

[89] Elattar et al. (2018) KF, MLP Combination for Inference and Projection     X X   X      X      X  X   

[90] Hsu & Jiang (2018) LSTM X X X X  X X X X X          X   X   

[91] N. Li et al. (2018) WPM, PF with Fuzzy Resampling X     X  X       X      X    X 

[92] X. Li et al. (2018) CNN X X X X  X X X X  X    X     X   X   

[93] Lim et al. (2018) MLP X X X X  X X X X  X X     X  X X   X   

[94] Lin et al. (2018) Integrated Hierarchical Learning via Stacked ELM-based Auto-Encoder X     X  X            X   X   

[95] Rigamonti et al. (2018) Ensemble of ESN, Mean Variance Estimation     X X   X X   X   X    X     X 

[96] Schlegel et al. (2018) Distribution-based Similarity Estimation, Bucketized RUL Regression via RF/SVR  X  X X X X  X       X X     X X   

[97] Song et al. (2018) SNR- and Kernel-Based Data Fusion Model, Bayesian Updating X     X  X       X      X  X   

[98] Q. Wu et al. (2018) Combination of LSTM Networks and Gaussian Mixture Model X     X  X   X X    X    X   X   

[99] Y. Wu et al. (2018) Vanilla LSTM X X X X  X X X X X          X   X   

[100] Z. Wu et al. (2018) Cluster-based HMM X     X  X             X     

[101] Xi et al. (2018) FBM Degradation Model, Weak Convergence Theorem for Approximation   X    X X    X   X      X  X   

[102] Zeming et al. (2018a) Operational Reliability Fused Index, Multi-factor Similarity Measurement X     X  X        X      X X   

[103] Zeming et al. (2018b) Degradation Degree Weighted Similarity Measurement X     X  X        X      X X   

[104] Zhang et al. (2018a) Single-Layer Perceptron, LSTM X  X   X X X  X     X      X  X   

[105] Zhang et al. (2018b) Single-Layer Perceptron, Bi-directional LSTM X     X  X  X     X      X  X   

[106] Zhou et al. (2018) Echo State Kernel Recursive Least Squares Algorithm, Bayesian Updating           X    X      X  X   

Total Number of Coverage  60 24 19 20 36 97 22 60 57 20 12 6 6 5 44 18 10 1 13 36 54 19 93 6 11 

Table 2. Application of the Taxonomy on Reviewed Studies 
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