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Abstract: With the development of the Internet and the continuous expansion of the online video market scale, it is 

increasingly important to accurately predict broadcast volume before the launch of videos. On the one hand, it can provide 

investors and producers with recommendation scheme for video shooting. On the other hand, it can fully understand users' 

preferences and find videos which potentially to be popular. In allusion to problems of low predictive accuracy and lack of 

practical application value in video prediction research, this paper, based on the related data of online video website TED, 

obtains a prediction model with high-precision broadcast volume through feature selection and model fusion. Further, it 

analyzes the impact of video themes, the number of languages and official events, which can provide some reference for 

investors and producers of different scales before the videos go online. 

 

Keywords: broadcast volume, data mining, TED 

 

1. INTRODUCTION 

The prediction of broadcast volume is a kind of estimation of the unreleased video, which can provide 

valuable reference for the investors and producers of video. Along with the development of the Internet, online 

video market scale is increasing fast. Large network video services system will have tens of millions of daily 

broadcast volume. For example, the total broadcast volume of Facebook reaches 3 billion times in a day, the 

video uploaded by YouTube video website is about 300 hours long every minute, and Tencent video generates 

nearly 1 billion volume by several million of users every day. With the explosive growth of video data, accurate 

prediction of video broadcast volume is becoming more and more important. 

For service providers, the popularity of videos and prediction of broadcast volume are of great help to their 

future content filtering, video ranking and the design of recommendation system, which would help users find 

videos with more potential value more easily
[1]

. For advertisers in online marketing, predicting the next rising 

Internet star precisely will maximize revenue through better advertising
[2]

. Meanwhile, network operators can 

also take the initiative to manage bandwidth requirements and deploy cache servers in the popular video content 

distribution network in advance
[3]

. 

Online video website TED is a nonprofit organization dedicated to spreading ideas, which often in the form of 

short and powerful talks. TED was started in 1984 as a networking event for the elite, which originally opened 

to 1,000 people and was expensive. In order to spread great ideas more broadly, TED began offering free online 

TED talks in 2006. The TED talk brings technology, entertainment and design together, covering almost every 

topic from science, business to global issues in more than 100 languages. Meanwhile, TED also hosts 

independent TEDx events to help share ideas with communities worldwide. 

From the global TEDx community to the TED-ed series, all of them are driven by the goal: how can we best 

spread great ideas? How do we maximize our influence? To be more precise, an important measure of influence 

is the broadcast volume. Accurate prediction of broadcast volume of online video of can help improve service 

efficiency, enhance video quality and enrich video resources. It can effectively improve user experience, as 
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platform can reasonably schedule and combine videos to achieve higher communication effectiveness. 

 

2. LITERATURE REVIEW 

Previous literature has lots of elaboration on the prediction of movie box office. For movies, box office can 

measure the influence and popularity of a film, while for many online free videos, the broadcast volume can be 

compared to the box office to a certain extent, which represents its influence. 

At present, there are two main prediction methods for movie box office, one is the prediction based on 

movie content, and the other is the prediction based on user-generated content. User-generated content can be 

further divided into research based on user feedback and related social media communication. 

 

2.1 Prediction based on movie content 

Barry Litman
[4]

, a pioneer in the prediction of movie box office revenue, evaluated 697 films screened in 

the United States in the 1980s, replaced the film box office with the rental income. He used the regression 

analysis method to obtain the three major factors influencing the box office: creativity, release and marketing 

ability. Although Litman's model can enlighten the thinking of subsequent researchers, its actual prediction 

accuracy may not be ideal. Sharda
[5]

, who took the lead in proposing a new prediction method in big data era, 

regarded the prediction problem as a classification problem, used the neural network method to divide movies 

into different categories, but the prediction accuracy of this model is not very ideal. L Zhang, J Luo, S Yang
[6] 

in 

2008, Zheng Jian, Zhou Shangbo
[7] 

in 2014 and Li Yi and Wang Xiaofeng
[8] 

in 2018 all made predictions based 

on meta data related to films. One of their common focuses is to improve the prediction accuracy. The realistic 

significance of prediction models with high accuracy is very strong. Therefore, this paper carries out feature 

processing and model fusion to achieve higher accuracy.  

 

2.2 Prediction based on user-generated content 

User-generated content includes research based on user feedback and related media communications. The 

former is to add user feedback for box office forecast. In the blog box office prediction model built by Gilad 

Mishne and Natalie Glance, they compared the quantity of word of mouth and the tendency of emotional 

evaluation of word-of-mouth in box office prediction. This study adopted the opening week date, the opening 

week box office and the opening screen data of each film from IMDB. As a result, the highest correlation 

coefficient reaches 0.614
[9]

. While in the news reports of box office forecasting model, put forward by Wenbin 

Zhang and Steven Skiena in 2009, they used the film's budget, the number of screens, the box office of first 

week and others to forecast the box office with K-NN model, further improving the prediction accuracy
[10]

. 

In addition, film reviews are also a major indicator closely related to the box office. Timothy King studied 

the relationship between the score and the total box office of the United States films in 2003 and found that the 

score of films on more than 1000 screens was positively correlated with the total box office
[11]

. Suman Basuroy 

systematically revealed how film reviews would affect the box office, and studied the influence and predictive 

power of reviews of film
[12]

. Peter Boatwright
[13]

, Anindita Chakravarty
[14]

 and others respectively revealed the 

influence of different film critics on the film's box office and the film's audiences. 

The research on related media communication focuses on the correlation between user behavior and box 

office. Li. H studied the influence of video's inherent attraction and potential transmission, and predicted the 

video heat trend based on the previous broadcast volume and potential friend sharing rate
[15]

. Asur reflected 

users' interest in video by using the heat of users' community themes on social media Twitter and predicted the 

potential correlation between social themes and video heat
[16]

. Szabo
[17]

 found a similar pattern with Asur. He 

used Digg and YouTube data to conduct quantitative processing on user behavior in different periods and 
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accurately predicted the trend of video broadcast volume over time. A great characteristic of box office 

forecasting which can be found from the literature review is that the predictions are based on the user generated 

data, such as the opening week box office, grading, user emotions and so on. A large part of the prediction often 

occurs after the release of the film. At this time, the film has become a finished product. In other words, for 

investors and producers, the scope of adjustment is often limited in marketing, film scheduling etc. As a result, it 

is still a valuable question how to accurately predict broadcast volume before its release. 

Based on above research, we dedicate to use the characteristics and information of online video themselves 

to more accurately predict the broadcast volume of video, to analyze the important characteristics affecting the 

broadcast volume, and provide better suggestions for investors to invest in video and producers to choose films. 

 

3. DATA UNDERSTANDING 

The source of dataset is a dataset of TED released by Kaggle, including 2,550 pieces of data by 21
st
 Sep. 

2019 from the official website of TED with recording and producing information of a TED talk. 

From the descriptive statistics of histogram, we find that the normality of duration of speech and broadcast 

volume is bad. Also, there are partial missing values such as broadcast volume, occupation of speaker. It is also 

shown in the boxplot that variables including duration of speech, number of languages, type of TED event, main 

speaker and occupation of speaker have strong correlation with broadcast volume. Partial charts are as follows. 

                    

Figure 1.  Scatter plot of duration of speech           Figure 2.  Partial box chart of occupation of speaker 

 

4. DATA PREPARATION 

4.1  Data Cleaning 

A total of 10 rows with missing values were found after recounting, including 7 rows from occupation of 

speaker, 1 row from type tag and 3 rows from broadcast volume. We deleted the data with missing value of 

occupation of speaker and type tag as they are textual variables and far-fetched to replace the blank with mode. 

As for the broadcast volume, we filled the blank with mean value. 

Then we deleted the outliers of each column. The types of outliers are mainly as follows: 

 In the pre-process of rating of speech, it was found that some values didn’t correspond to the attributes 

resulting from dislocation. 

 After the conversion of filming date according to the UNIX time rule, there exist some abnormal values 

which are earlier than the foundation of TED. 

 Irregular values (e.g. ‘health’, ’A3C’, etc.) were found in the column of broadcast volume. 

8 rows containing outliers were deleted due to outliers, and 8 rows were deleted due to missing value. After 

deletion, the remaining sample contains 2,534 rows of data. 

 

4.2  Data Transformation 

4.2.1  Standardization 

There are three types of numerical variables that can be directedly standardized: duration of speech, number 
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of languages and broadcast volume. We normalized the three variables to be within the threshold value of 0 to 1. 

  
       

         
                                          (1) 

4.2.2  Discretization 

The relative values of 1,2,3,4 are determined according to the mean value of broadcast volume corresponding 

to each categorical variable. TED event, occupation of speaker and main speaker are standardized in this way. 

The filming and publishing date are represented by UNIX timestamp. We use the datetime library to convert 

them into a more readable and calculable form. Following one-hot coding is carried out, which means the 

normality transformation can be avoided after one-hot coding. 

4.2.3  Normality Transformation 

The transformation formula should be determined according to distribution shape of variables. If skewness is 

2-3 times of its standard deviation, square root value can be considered. Or the skewness is more than 3 times of 

the standard deviation, using logarithm is more favorable. We applied this principle to all numerical variables. 

4.2.4  Construction of New Variables 

 Preparation time (pretime) 

Preparation time=Publishing time – Filming time. It is speculated that the longer the preparation time is, the 

higher quality of TED is, which may symbolize the higher broadcast volume. 

 Publishing time and filming time in month form 

We transformed the two variables into month form and classified data by month. From the distribution of 

TED talks in different months, it is said that number of talks in February is most, while January and August are 

few, which suggests the publishing time of speech may influence the broadcast volume of TED talk. 

Then we generated 24 new variables according to month, respectively 12 months of publishing date and 12 

months of filming date processed by one-hot coding, representing whether filmed in x month and whether 

published in x month. (flim1, flim2…flim12; publish 1, publish 2…publish12) 

 Dismantling of related talk (ave_rt_duraion, ave_rt_broadcast volume) 

Related talk, a textual variable, includes id, url, main speaker, title, duraion and broadcast volume of 6 related 

talks. We extracted duration and broadcast volume of 6 related talks and got mean value, deriving 2 new 

attributes, namely average duration of related talks and average broadcast volume of related talks. 

 Transformation of type tag 

Each talk has 6 type tags and the number of different type tag amounts to 569. It is hypothesized that the type 

tags of TED talk with a broadcast volume more than 10 million reflected the social hot spots and audience’s 

preferences. Thus, we assigned high weights to rows which contained these tags and add it up to generate a new 

variable. The partial weight distribution of type tag with broadcast volume more than 10 million is as follows: 

Table 1.  The partial weight distribution of type tag 

Type tag Weight Type tag Weight Type tag Weight 

'psychology' 9 'culture' 4 'mind' 2 

'science' 7 'health' 3 'poetry' 2 

'culture' 5 'humor' 3 'productivity' 2 

'technology' 5 'motivation' 3 'relationships' 2 

'work' 5 'social change' 3 'self' 2 

'TEDx' 5 'storytelling' 3 'sex' 2 

'entertainment' 4 'choice' 2 'society' 2 

'happiness' 4 'depression' 2 'time' 2 

The new variable: type_tags_zong, which value is added up by 6 original type tags, representing the hot 

degree of type of this TED talk. Normalization was conducted. 
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4.3  Data Reduction 

4.3.1  Correlation Analysis 

Table 2.  Thermal force diagram about broadcast volume 

Variable Correlation 

coefficient 

Variable Correlation 

coefficient 

Variable Correlation 

coefficient ave_rt_viewcount 0.26 film10 -0.025 publish6 0.015 

ave_rt_duration -0.019 film11 -0.029 publish7 -0.062 

film1 -0.023 film12 -0.015 publish8 -0.02 

film2 0.06 pretime 0.046 publish9 -0.012 

film3 0.016 duration 0.05 publish10 -0.0047 

film4 -0.047 languages 0.38 publish11 -0.017 

film5 -0.0083 publish1 -0.015 publish12 0.0028 

film6 0.004 publish2 0.0098 type_tags_zong 0.16 

film7 0.018 publish3 0.036 event 0.26 

film8 -0.017 publish4 -0.0062 main_speaker 0.51 

film9 0.0014 publish5 0.033 speak_occupation 0.44 

As is shown in the thermal force diagram about broadcast volume, the variables highly correlated to broadcast 

volume are main speaker(0.51), occupation of speaker(0.44), number of languages(0.38), average broadcast 

volume of related talks(0.26), type of TED event(0.26) and type tag(0.16). It is not surprising about number of 

languages, as it is logically assumed that the more the number of languages is, the larger number of the target 

audience is. Also, the higher broadcast volume of related talk could lead more people to view relevant video. As 

for main speaker and occupation of speaker, it is understandable that these two variables have great impacts on 

the choice of audience. 

4.3.2  Method of Feature Selection 

Comparing three methods, respectively stability selection, RFE based on logistic regression and RFE based 

on ridge regression (RFE: Recursive Feature Elimination), we chose stability selection. 

Stability selection is a method based on quadratic sampling and selection algorithm. Selection algorithm can 

be regression, SVM or other similar methods. The principle is to run the feature selection algorithm on different 

subsets of data and features repeatedly, and finally summarize the result of feature selection such as the 

frequency of a feature being selected as important feature. Ideally, the score for important feature would be close 

to 1. Correspondingly, the most irrelevant feature would get zero. 

The main idea of RFE is to build a model (such as SVM or regression) and eliminate the best feature, then 

repeat the process on the remaining features until all the features are traversal. The order in which features are 

eliminated is the order of significance. Thus, it is a greedy algorithm to find the optimal subset of features. 

Running stability selection in python, we got the stability score for selected 33 features as follows: 

Table 3.  Stability score of 33 features 

Variable Score Variable Score Variable Score Variable Score 

duration 1 main_speaker_E 1 film5 0.985 publish9 0.885 

languages 1 speaker__occupation_E 1 film3 0.98 film12 0.875 

pretime 1 ave_rt_duration 1 film6 0.98 Publish6 0.87 

flim1 1 ave_rt_viewcount 1 publish3 0.98 publish1 0.86 

film4 1 film7 0.995 publish7 0.965 publish10 0.845 

publish11 1 film8 0.995 publish5 0.96 publish2 0.77 

type_tags_zong 1 film9 0.995 publish12 0.96 film2 0.75 

event_E 1 publish4 0.995 publish8 0.91 film11 0.745 

film10 0.7       

According to the results, the stability score of all variables are relatively high, with no variables close to 0, 
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indicating that they are of much importance and we should keep them into the next step of model construction. 

 

5. MODEL CONSTRUCTION 

5.1 Selection of Basic Model 

We imported 11 models respectively and selected optimal model by MSE and standard deviation of MSE, 

using 5-fold cross validation. 

Table 4.  Test result of different model 

Model MSE SD Model MSE SD 

Ridge 0.051049 0.0089 LinearSVR 0.053269 0.0085 

Lasso 0.063639 0.0181 SGDRegressor 0.056887 0.0131 

RandomForestRegressor 0.040762 0.0087 BayesianRidge 0.051125 0.0124 

GradientBoostingRegressor 0.036194 0.0093 KernelRidge 0.050667 0.0088 

SVR 0.055003 0.0085 ExtraTreesRegressor 0.040026 0.0094 

We selected RandomForestRegressor, GradientBoostingRegressor and ExtraTreesRegressor to integrate. 

5.1 Parameter Adjustment 

Since MSE of GradientBoostingRegressor was superior, it was used as the basic model and its parameters 

were adjusted. Finally, the optimal parameters were got and we used GBR (n_estimators=60, max_depth=3, 

min_samples_split=100). 

5.2 Model Integration 

We had tried different weight of the three models above and chose the relative optimal model, the respective 

weight of GradientBoostingRegressor and ExtraTreesRegressor was 0.8 and 0.2. The MSE of this basic 

integrated model is 0.036011, which is the baseline of following analysis. 

5.3 Sensitivity Analysis 

Firstly, we deleted the variable with worst performance according to stability selection, namely whether 

filmed in October. The MSE is 0.036034>0.036011, indicating the model is worse. Then we deleted the two 

worst variables, namely whether filmed in October and whether filmed in November. The MSE is 

0.036071>0.036011, signifying the model is worse. To summarize, the selected 33 variables are superior enough 

to predict the broadcast volume and shouldn’t be eliminated. 

 

6. TESTING AND EVALUATION 

6.1 Analysis of result 

According to the result of final model, MSE is around 0.036. Qianqian Lv used MSE in the prediction of 

music trend based on machine learning
 [18]

 and his MSE was 0.037. Also, Ling Zheng got MSE of 0.077 in the 

research of prediction model of film box-office based on neural network
19]

. Referred to the previous MSE of 

others, the accuracy of our model can be considered to reach optimum level. It is worth noting that we rule out 

variables generated by viewers after the releasing of video in our model, which means our model can accurately 

predict broadcast volume before the releasing and is of great reference significance for investors and producers. 

6.2 Analysis of the relevant characteristics of broadcast 

volume 

From the result analysis of highly correlated features, the 

features highly correlated with the broadcast volume are the 

number of languages, type of video, main speaker, occupation of 

speaker, TED event, average broadcast volume and duration of 

related videos.                                     Figure 3.  Chart of languages and broadcast volume 

First, the influence of number of languages on the broadcast volume is more intuitive. The more languages 
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there are, the more people can understand the video content, and the broadcast volume will gradually increase. 

Secondly, On the one hand, the high correlation between extracted tags and broadcast volume demonstrates 

the effectiveness of this disassembly and dimensionality reduction method; on the other hand, it also shows the 

hot spots and topics of different attention. We find that topics with high broadcast volume include psychology, 

science, culture, society and so on. 

Thirdly, TED event, namely video activity has an impact on broadcast volume. We find that activities with the 

highest TED broadcast volume are TED×Houston, TED×Bloomington, TED Talks Education, Stanford 

University and TED×MET. It shows that the characteristic activities held by some characteristic universities and 

cities are easy to attract the attention of the audience. 

Finally, the broadcast and duration of the relevant videos influence the broadcast volume. Relevant hot 

speeches, often can result in more users to watching related speeches. According to the scatter plot analysis, the 

higher the related video broadcast volume is, the higher broadcast volume is. Rather, there is a non-linear 

relationship between the duration of relevant video and broadcast volume. 

                         

Figure 4.  Scatter plot of related video viewing           Figure 5.  Scatter plot of related video duration 

and self-viewing                                        and self-viewing 

6.3 Expected contribution and future research 

For TED investors, a higher number of viewers represents a higher impact and exposure, which is conducive 

to the promotion of brand awareness. Investors can use our prediction model as a basis to better predict 

broadcast volume, combining scientific and reasonable evaluation system to decide whether to invest in TED 

and the amount of investment. 

For TED producers, they can better arrange a series of procedures of video selection, production, video 

arrangement and promotion, launching more popular video with high broadcast volume. Further, for similar 

speech sites, if it is a new and less well-known producers, the manager can focus on the theme of the video to be 

produced and the link between the video and the related video. Specifically, selecting the themes with high 

volume and using existing hot videos to drive new videos to increase the video broadcast volume and website 

popularity help to reduce costs under certain promotional effects compared with increasing the number of 

languages and organizing special events. If the producers already have a considerable scale, they can focus on 

increasing the number of languages and organizing special events. This may have a huge effect on expanding 

the audience, forming a video brand and further enhancing the influence of the website. 

In order to better predict the broadcast volume before going online, we only consider the characteristics of the 

video itself. With the video going online, user evaluation and the performance of competitors in the same period 

will have a further impact on the broadcast volume, and broadcast volume may show dynamic changes. 

Therefore, we still need to collate the follow-up data, add time series considerations to further study the factors 

affecting video broadcast volume, so as to excavate more general rules of broadcast volume change. 
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