

Journal of
Information
Systems
Education

Volume 30

Issue 3
Summer 2019

Query Structure and Data Model Mapping
Errors in Information Retrieval Tasks

Gretchen I. Casterella and Leo Vijayasarathy

Recommended Citation: Casterella, G. I. & Vijayasarathy, L. (2019). Query Structure and Data
Model Mapping Errors in Information Retrieval Tasks. Journal of Information Systems
Education, 30(3), 178-190.

Article Link: http://jise.org/Volume30/n3/JISEv30n3p178.html

Initial Submission: 25 May 2018
Accepted: 20 February 2019
Abstract Posted Online: 5 June 2019
Published: 12 September 2019

Full terms and conditions of access and use, archived papers, submission instructions, a search tool,

and much more can be found on the JISE website: http://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301383108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://jise.org/Volume30/n3/JISEv30n3p178.html
http://jise.org/

Query Structure and Data Model Mapping Errors in
Information Retrieval Tasks

Gretchen I. Casterella
Department of Accountancy & Business Law

Cameron School of Business
University of North Carolina
Wilmington, NC 28403, USA

casterellag@uncw.edu

Leo Vijayasarathy
Computer Information Systems Department

College of Business
Colorado State University

Fort Collins, CO 80523, USA
Leo.Vijayasarathy@colostate.edu

ABSTRACT

SQL query writing is a challenging task for novices, even after considerable training. Query writing is a programming task and a
translation task where the writer must translate a user’s request for information into code that conforms to the structure, constraints,
and syntax of an SQL SELECT statement and that references specific tables and columns from a database. This paper investigates
the impact of two instructional interventions on query errors under conditions of low and high query complexity. Data was collected
from an experimental study of 63 undergraduate students nearing completion of a 15-week database course. Our analysis reveals
specific areas of query writing where each of the interventions helped, and hindered, task performance. We discuss the implications
of these findings for improving SQL training and for future research on SQL training effectiveness.

Keywords: Information retrieval, Relational database, Structured query language (SQL), Human-computer interaction (HCI)

1. INTRODUCTION

Structured Query Language (SQL) has been the de facto
programming standard for accessing data in relational databases
for over three decades (Allen and March, 2006). A recent
survey of data scientists found SQL to be the third most
commonly used data analysis tool (Kaggle, 2017), and many of
the languages for accessing NO-SQL databases also incorporate
SQL (Soat, 2014). We expect the demand for SQL skills to
persist and grow, which in turn reinforces its importance in
university database courses (Topi et al., 2010; Bell, Mills, and
Fadel, 2013).

A primary SQL skill is writing ad hoc queries that pull data
from multiple tables in a database in response to an information
request. However, novices struggle to acquire these query-
writing skills (e.g., Bowen, O’Farrell, and Rohde, 2009; Allen
and Parsons, 2010; Casterella and Vijayasarathy, 2013). One of
the learning challenges relates to the gap between the data that
the user wants to see (the query result) and the way the data is
organized in the database. The query writer must be able to

think in sets – not in steps as with other programming languages
– to determine how to manipulate detailed data scattered across
multiple tables to obtain the desired data set, which may be at a
summarized level. Added to this is the fact that the initial
request for information is typically expressed in the end user’s
natural language, rife with ambiguity, and the query writer must
transform that request into a highly-structured SQL statement
that references specific tables and columns in a data model,
which itself is often represented in diagrammatic form
(Borthick et al., 2001). Clearly, there are significant cognitive
obstacles learners must overcome to be competent query
writers.

We are interested in the impact of different training
interventions on query writing performance, and how those
interventions can be improved. Vijayasarathy and Casterella
(2016), hereafter called VC2016, investigated the impact of two
training interventions on novices’ overall query task
performance. The training interventions were designed to
reduce specific sources of task complexity and thus promote
successful query writing performance. One intervention

Journal of Information Systems Education, Vol. 30(3) Summer 2019

178

mailto:casterellag@uncw.edu
mailto:Leo.Vijayasarathy@colostate.edu

changed the way the information retrieval task was presented to
the novice (the request language treatment), and the other
intervention added a planning task prior to the query coding
task (the planning task treatment). Data was collected from 63
university undergraduate students who had completed several
weeks of training on SQL queries. VC2016 found that the
request language treatment improved task performance but only
for less complex queries, while the planning task treatment
improved task performance only for more complex queries.
While the findings provide some support for the training
interventions, the interaction effects were not entirely as
expected. Further, VC2016’s focus on overall query writing
performance (e.g., overall query accuracy, time to complete
task), while useful, does not provide the fine-grained
information needed to improve the training interventions.

To gain a deeper understanding of how the experimental
treatments helped or hindered novices, in this paper we analyze
the VC2016 data set with a focus on specific types of error that
directly relate to the treatments. The request language and
planning task treatments were designed to reduce query-writing
complexity by making it easier for novices to: 1) map words
from the information request to tables and columns in the data
model and 2) identify which clauses were needed in the query
solution. We define two corresponding types of error – data
model (DM) and query structure (QS) – and we examine the
effect of the treatments on each error type. In addition, since
prior research indicates that certain parts of a SELECT
statement are particularly difficult (Reisner, 1981, Greene et al.,
1990), we analyze errors on a clause-by-clause basis. Finally,
to examine the impact of the planning task on final query errors,
we compare errors in the planning task to those in the final
queries.

We find that many of the errors in VC2016 stemmed from
overlooking adjectives in the natural-language information
request, a weak understanding of the data model, or both. The
request language treatment – where information requests were
presented in pseudo-SQL rather than the more ambiguous
“Manager-English” – helped reduce these errors, particularly
errors of omitted filtering conditions in the WHERE clause. The
planning task treatment – where students made notes in a query
template prior to coding – helped reduce errors in the SELECT,
FROM, and ORDER BY clause, but not with the WHERE,
GROUP BY, and HAVING clauses. We discuss the
implications of these findings for future research on SQL
training.

2. QUERY WRITING TASK COMPLEXITY

In practice, the user requesting information from a database is
often not the same individual who writes the query to retrieve
that information. The query writer must bridge the distance
between the source language (natural language) and the target
language (SQL) to produce a query that executes and returns
the requested information from the database. The cognitive
complexity of a query-writing task is determined by factors
inherent in the task itself that increase the mental effort required
(Batra, 2007). This is not the same as the perceived difficulty of
a task, or the cognitive load the writer experiences, which will
vary across individuals depending, for example, on their
knowledge of the domain and their SQL expertise (Batra,
2007). The cognitive complexity of writing SQL queries has

been discussed extensively in prior research (e.g., Borthick et
al., 2001; Bowen, O’Farrell, and Rohde, 2009; Allen and
Parsons, 2010). We use the following two examples to illustrate
the complexities.

2.1 Example of a Less Complex Query Formulation Task
Consider the following information request and corresponding
query solution.

Information request:

“Who placed online
orders after December
23, 2015, and what
was the subtotal for
each of those orders?”

Query solution:

SELECT FirstName, LastName,
SubTotal
FROM Person INNER JOIN
SalesOrderHeader ON PersonPK =
CustomerFK
WHERE OnlineOrderFlag = 1
 AND OrderDate > '12/23/2015'

The query writer must transform the natural-language
request into the SQL code based on a given data model, which
in this case is for a sales order database whose schema is shown
in Appendix 1. This transformation requires an understanding
of the database design as well as of SQL syntax and the specific
rules for how to structure SQL queries using at most six clauses
(SELECT, FROM, WHERE, GROUP BY, HAVING, and
ORDER BY), each with a specific purpose. Two main subtasks
involved in this transformation are query structure generation
and data model mapping (Reisner, 1977). Query structure
generation is the process of generating the basic outline or
template of the query solution, while data model mapping is
identifying which columns and tables from the data model to
include in the outline or template.

In this example, query structure generation would produce
the following solution outline: SELECT ____ FROM ____
INNER JOIN ____ ON ____ WHERE ____ AND ____. The
query writer must determine that the FROM clause needs to join
two tables (hence the INNER JOIN and ON keywords), that a
WHERE clause is needed with two conjunctive conditions
(hence the AND keyword), and that the GROUP BY,
HAVING, and ORDER BY clauses are not needed.
Recognizing the need for a WHERE clause involves
recognizing the need to restrict the rows (in this case, orders) in
the result set and, in this case, we would expect that the phrase
“after December 23, 2015,” would be a clue that a filtering
condition is needed. Recognizing the need for a compound
condition is more difficult, as its clue is just one word, “online.”
Thus, even though the query solution is rather short, there are
several sources of complexity that could impact the structure
generation portion of the task.

Table 1 shows the data model mappings needed to fill in
parts of the solution outline. These mappings are the
connections the query writer must make between elements in
the original information request and elements in the data model.
The right-hand column in Table 1 highlights the mappings from
the information request to the empty “slots” in the query
structure outline that are needed. The bolded elements in the
right column are the data model elements (i.e., tables and
columns).

Journal of Information Systems Education, Vol. 30(3) Summer 2019

179

Query
Structure

Data Model Mappings to Complete
the Query Structure

SELECT ____ “who”  LastName, FirstName
“subtotal”  SubTotal

FROM ____
INNER JOIN
____ ON ____

“who placed”  Person
“orders”  SalesOrderHeader
∅  PersonPK = CustomerFK

WHERE ____
AND ____

“online”  OnlineOrderFlag = 1
“after December 23, 2015” 
OrderDate > ‘12/23/2015’

Table 1. Data Model Mappings for a Less Complex Query

For the SELECT clause, the writer must map terms in the

request to the appropriate columns that the user wants to see in
the query result. This mapping may be complex when there is
ambiguity in the information request, such as if the user asked
for the “total” of each order (e.g., including shipping, tax, etc.)
rather than the “subtotal” (which has an exact column match).
Mapping the data model elements to the FROM clause requires
identifying which tables are needed (in this case, Person and
SalesOrderHeader) and the columns that link the two tables
together. There is no word in the information request that
indicates what this linking or join column is (i.e., ∅ 
PersonPK = CustomerFK). In the WHERE clause, the phrase
“after December 23, 2015” is mapped to a search condition
based on the OrderDate column. For the “online orders” phrase,
the writer needs to: (1) notice the single word “online,” (2)
know that the SalesOrderHeader table includes online and not-
online orders, and (3) recognize that the OnlineOrderFlag
column will indicate whether an order is online with a 1 or 0
value. Even with a relatively short query, there are places where
data model mapping is a source of complexity.

2.2 Example of a More Complex Query Formulation Task
Consider another information request and corresponding query
solution for the same sales order database:

Information request: Query solution:

“For each product
subcategory with an
average list price
above $100, show
the name of the
subcategory, the
name of the parent
category, the
average price of
products in the
subcategory, and
the number of
different product
colors in the
subcategory. Sort
the results
alphabetically by
the category name
and the subcategory
name.”

SELECT
ProductSubCategoryName,
ProductCategoryName,
AVG(ListPrice),
COUNT(DISTINCT Color)
FROM ProductCategory INNER
JOIN ProductSubcategory ON
ProductCategoryPK =
ProductCategoryFK INNER JOIN
Product ON
ProductSubCategoryPK =
ProductSubcategoryFK
GROUP BY
ProductCategoryName,
ProductSubCategoryName
HAVING AVG(ListPrice) > 100
ORDER BY
ProductCategoryName,
ProductSubCategoryName

Consider the query’s structure: SELECT ____ FROM
____ INNER JOIN ____ ON ____ INNER JOIN ____ ON
____ GROUP BY ____ HAVING ____ ORDER BY ____.
The query writer must recognize that two joins are needed in
the FROM clause, that the WHERE clause is not needed
(although “average list price above $100” sounds like a filtering
condition that might be specified in a WHERE clause), and that
three other clauses are needed (GROUP BY, HAVING, and
ORDER BY). The information request does not have clear
clues that tell the query writer to include a GROUP BY or
HAVING clause. The request does include the phrase, “for each
product subcategory,” which implies a need for grouping if the
writer recognizes that rows in the merged table after the join
will be at the individual product level rather than at the
subcategory level, but this is difficult for novices to recognize
(Bowen, O’Farrell, and Rohde, 2006). The challenge with table
joins and grouping is that there is a mismatch between data
model representation and the requirements of the information
retrieval task. The data model shows each table’s structure (i.e.,
its columns) and lines represent the relationships between
tables, but the task requires the writer to think about
manipulating the specific rows in the tables, joining them, and
rearranging them into subsets (Reisner, 1977). Thus,
performance is expected to decline for queries that involve
grouping.

There are also data-model mapping challenges in this
example. Table 2 shows the transformations needed to complete
the query structure outline. The data-model mapping elements
are shown in bolded text in the right-hand column. Note that
many transformations do not have a counterpart in the
information request.

Query Structure Transformations to Complete the

Query Structure
SELECT ____ “the name of the subcategory” 

ProductSubCategoryName
“the name of the parent category” 
ProductCategoryName
“the average price of products in the
subcategory”  AVG(ListPrice)
“the number of different product
colors in the subcategory” 
COUNT(DISTINCT Color)

FROM____
INNER JOIN
____ ON ____
INNER JOIN
____ ON ____

“For each product subcategory” 
ProductSubcategory
∅  ProductCategory
∅ ProductCategoryPK =
ProductCategoryFK
∅ Product
∅  ProductSubCategoryPK =
ProductSubcategoryFK

GROUP BY ____ ∅  ProductCategoryName
∅  ProductSubCategoryName

HAVING ____ “an average list price above $100”
 AVG(ListPrice) > 100

ORDER BY ____ “sort results alphabetically by the
category name” 
ProductCategoryName
“and the subcategory name” 
ProductSubCategoryName

Table 2. Data Model Mappings for a More Complex Query

Journal of Information Systems Education, Vol. 30(3) Summer 2019

180

These two examples illustrate some of the difficulties a
novice query writer faces. While awareness of these challenges
is important when teaching SQL, we are interested in teaching
resources that target the early stages of SQL skill acquisition so
that novices are not in a situation where they have to be
competent at many things before they can accomplish anything.
Toward that end, we next summarize the VC2016 study which
included two training interventions to improve novices’ query
writing task performance.

3. SUMMARY OF VC2016

The VC2016 study examined the impact of two training
interventions on query writing. One was the information request
language, which was based on prior research showing improved
query writing performance when the information request was
written in “pseudo-SQL” rather than “manager-English”
(Borthick et al., 2001; Casterella and Vijayasarathy, 2013).
Pseudo-SQL requests used terms that more closely matched the
SELECT statement solution than the manager-English requests.
Pseudo-SQL requests were expected to improve task
performance because they provided clearer clues about which
data model elements were needed and which SELECT
statement clauses were needed when compared to the less-
precise manager-English requests.

The second intervention was to introduce a planning task
prior to coding, where participants were asked to take notes in
a query template. The template outlined the six possible clauses
to include in the query solution, along with questions to prompt
participants to consider which clauses were needed and what to
specify in each. The template was expected to improve task
performance by providing reminders about the order in which
clauses must be written and the purpose of each clause.
Participants had to use the template before they could begin
writing queries in the editor window. The notes written in the
template were visible throughout the query writing task so that
it was, in essence, an intermediate solution that was expected to
reduce the participants’ cognitive load.

VC2016 conducted a 2 x 2 x 2 repeated measures
experiment to assess the impact of three factors – query
complexity, request language, and planning task – on overall
query task performance. Query complexity was either low or
high. Low complexity queries were about half the length and
less than half the difficulty of the high complexity queries. The
four low complexity query solutions were similar to the first
example discussed in the prior section, with the same structural
characteristics shown in Table 1. The four high complexity
queries were similar to the second example discussed earlier,
with the same structural characteristics shown in Table 2.
Request language referred to the task presentation, where the
information request was presented in either pseudo-SQL or
manager-English. Planning task referred to whether the
participant was given a query planning task prior to coding.

Sixty-three undergraduate students in an introductory
database course completed the study, which consisted of eight
query tasks, one for each condition. VC2016 found main effects
for query complexity and request language, such that overall
query accuracy was higher for less complex queries and for
pseudo-SQL requests (Note: Two control variables, GPA and
prior SQL experience, also had significant positive effects on
overall query accuracy, as expected). VC also found an

interaction effect for complexity and request language, but it
was opposite of their hypothesis – the pseudo-SQL requests
improved overall query accuracy for less complex queries but
not for more complex queries. They found that the planning task
improved overall query accuracy for more complex queries but
not for less complex queries. While the VC2016 findings
provide some support for their training interventions, it is not
clear why the planning task had no main effect on query
accuracy or why the pseudo-SQL requests were no more helpful
than manager-English requests for complex queries. The rest of
the paper describes several new analyses of the VC2016 data to
uncover specific trouble spots in the participants’ queries.

4. A CLOSER LOOK AT QUERY ERRORS

The main dependent variable of interest in VC2016 was overall
query accuracy, calculated as the ratio of the number of actual
correct elements to the number of required correct elements in
each query solution. This accuracy score included all coding
elements in a query, including punctuation, function names,
mathematical operators, etc. However, not all of these elements
are directly related to the experimental treatments. Thus, we
conducted a finer-grained analysis of two specific types of error
– query structure (QS) errors and data model (DM) errors.
Query structure (QS) errors are missing or incorrectly
specified SQL keywords that are needed to begin each clause,
indicate table joins, and/or indicate compound search
conditions (see the examples in Tables 1 & 2). Data model
(DM) errors are missing or incorrectly specified table names or
column names from the data model that are needed in the query
(see the examples in Tables 1 & 2). We expect the treatments
to directly impact these two error types, as described below.

4.1 Hypotheses
With respect to the request language treatment, the pseudo-SQL
requests include explicit table and column names, and thus are
expected to reduce DM errors. The pseudo-SQL requests also
include terms that directly match the keywords for certain
clauses in the SELECT statement and so should reduce the
cognitive load needed for generating the query’s structure, and
reduce the QS errors. On the other hand, if a request is presented
in manager-English, more cross-referencing between the
request, the data model, and the query editor is needed, which
may lead to more DM errors. Without the explicit clues
indicating the clauses needed in the query, we expect more QS
errors as well. In the VC2016 study, pseudo-SQL had a main
effect on overall query accuracy. Here, we expect that it will
have a main effect on both types of error.

H1: Query writers given pseudo-SQL requests will have
lower DM and QS error rates than writers given
manager-English requests.

The interaction between query complexity and request

language on overall query accuracy was not as expected in the
VC2016 study. Participants had several weeks of practice
writing queries prior to the study, so VC2016 expected that the
pseudo-SQL assistance would not be as useful for the less
complex queries as for the more complex queries. However, the
opposite was found. In our analysis, we investigate whether our
more focused dependent variables detect the expected

Journal of Information Systems Education, Vol. 30(3) Summer 2019

181

difference. We have no a priori reason to believe that the
pseudo-SQL requests would impact one error type more/less
than the other. Thus, our second hypothesis is as follows.

H2: The impact of pseudo-SQL requests on QS and DM
error rates will be greater when query complexity is
high versus low.

With respect to the planning task treatment, the VC2016

study found that completing the planning task prior to coding
did not significantly improve overall query accuracy, except
when query complexity was high. The planning template
prompts the writer to consider which clauses are needed in the
query solution (a QS issue) and indicates what should be
specified within each clause (a DM issue). With our dependent
variables narrowly focused on QS and DM errors, we expect
the planning task will have a significant main effect on both
error rates.

H3: Query writers who complete the planning task prior

to coding will have lower DM and QS error rates than
writers who have no planning task prior to coding.

As with the request language intervention, we expect that

for less complex queries, the benefits of the planning task will
be negligible but as complexity increases, the planning task will
be more helpful. The prompts in the planning task were
designed to engage the participants in task analysis and
planning prior to coding. Taking notes in the template would
also allow writers to “offload” some of their cognitive load to
this external artifact and free up cognitive resources for the
coding part of the task, which we expected to be particularly
helpful for complex queries that involved aggregation and
grouping. Thus, the hypothesis is:

H4: The impact of the planning task on QS and DM error

rates will be greater when query complexity is high
versus low.

4.2 Results of Hypothesis Testing
To measure QS and DM errors, we first re-examined each of
the correct query solutions and counted the number of elements
in the queries related to QS and DM. All other elements were
considered “other” and not included in our hypothesis testing or
subsequent analyses. Appendix 2 shows the breakdown of the
eight query solutions into QS, DM, and other elements. The
“other” category accounts for one-third to one-half of each
solution, and is not included in our analysis. The next step was
to re-evaluate the participants’ queries for each task to identify
the corresponding number of QS and DM errors that were
present. Because the maximum possible number of errors
differed depending on complexity level, we transformed each
error count into a rate by dividing by the maximum number of
errors possible for that task. Thus, the two dependent variables
were defined as follows. The DM error rate is the proportion
of required table and column references that were missing or
incorrect in each participant’s final query solution, and the QS
error rate is the proportion of required query structure
keywords that were missing or incorrect in each participant’s
final query solution.

We analyzed the final queries from the same 63 participants
in the VC2016 study using these new DM and QS error rates.
To test our hypotheses, we used repeated-measures MANOVA
(Hair et al., 2010). One of the 63 participants had error rates in
excess of the threshold for multivariate outliers, and was
dropped for this analysis. Further, since one of the eight
experimental groups exhibited multi-collinearity between the
dependent variables (r > 0.80), only the univariate results from
the MANOVA procedure are reported and discussed. Table 3
shows the mean error rate by error type and experimental
treatment, and Table 4 shows the within-subjects effects of our
treatments on the two types of error.

 Data-Model

Mapping (DM) Error Rate
Query Structure (QS) Error

Rate
Low
Complexity

Pseudo-SQL No Planning 2.87 2.69
Planning 3.76 2.33

Manager-English No Planning 8.42 6.99
Planning 11.65 11.47

High
Complexity

Pseudo-SQL No Planning 17.34 14.68
Planning 11.52 11.13

Manager-English No Planning 16.43 16.77
Planning 12.50 14.19

Low Complexity 6.68 5.87
High Complexity 14.45 14.19
Pseudo-SQL 8.87 7.71
Manager-English 12.25 12.36
No Template 11.27 10.28
Template 9.86 9.78
Overall 10.56 10.03

Table 3. Mean Error Rate (%) by Error Type and Experimental Treatment

Journal of Information Systems Education, Vol. 30(3) Summer 2019

182

Source Error Type F Sig.
Query Complexity Data-Model (DM) 58.81 0.000

Query Structure (QS) 35.88 0.000
Request Language Data-Model (DM) 12.50 0.001

Query Structure (QS) 27.84 0.000
Planning task Data-Model (DM) 4.29 0.043

Query Structure (QS) 0.47 0.495
SQL Proficiency Data-Model (DM) 4.97 0.030

Query Structure (QS) 12.82 0.001
GPA Data-Model (DM) 12.35 0.001

Query Structure (QS) 10.75 0.002
Query Complexity * Request Language Data-Model (DM) 15.21 0.000

Query Structure (QS) 6.39 0.014
Query Complexity * Planning task Data-Model (DM) 21.74 0.000

Query Structure (QS) 8.86 0.004
Table 4. Within-Subject Effects on Error Rates (%)

Note: For SQL Proficiency and GPA, the effects are between subjects

Hypothesis H1 is supported. Request language had a
significant main effect on both error rates. Participants had
significantly lower DM error rates and lower QS error rates
when given pseudo-SQL requests rather than manager-English
requests.

With respect to H2, the interaction effect of complexity and
request language on error rates was significant, such that
pseudo-SQL requests reduced both error rates for less complex
queries but not for more complex queries. This effect is in the
opposite direction of our hypothesis. As shown in Figure 1,
participants with pseudo-SQL requests had much lower error
rates than those with manager-English requests when
complexity was low, but the request language had little impact
when complexity was high. This is consistent with VC2016’s
unexpected finding. Our findings, however, shed some light on
this discrepancy. When query complexity was high, pseudo-
SQL requests provided some benefit in lowering QS error rates,
but no benefit with respect to DM error rates. We explore this
finding further in the next section.

Hypothesis H3 is partially supported. The planning task
significantly reduced DM errors, but not QS errors. This

provides some insight into the non-significant main effect in the
VC2016 study where overall accuracy was not improved with
the planning task. In part, this was because the planning task
did not significantly reduce QS errors. This is surprising
because the planning task focuses heavily on which clauses
might be needed and so might be expected to reduce QS errors
more so than DM errors. We explore this finding further in the
next section.

H4 is supported. The interaction effect of planning task and
query complexity was significant for both error rates, and in the
expected direction. As shown in Figure 2, the planning task
clearly helped reduce both QS and DM error rates for more
complex queries, but actually increased both error rates for less
complex queries.

Query complexity had a significant main effect on both
error types – we did not have a hypothesis for this as is it has
been such a consistent finding that complexity reduces
performance across many studies of query writing. We also
note that individual differences have a significant impact on
error rates, such that participants with higher GPAs and higher
self-reported SQL proficiency had lower error rates.

Figure 1. Interaction Effect between Query Complexity and Request Language
on Data Model (DM) and Query Structure (QS) Error Rates

Journal of Information Systems Education, Vol. 30(3) Summer 2019

183

Figure 2. Interaction Effect between Query Complexity and Planning Task
on Data Model (DM) and Query Structure (QS) Error Rates

Comparing the results of our analysis with that of VC2016,

we find that, in general, our results using the specific error types
are consistent with their overall query accuracy measure.
However, our analysis uncovers two issues. First, when query
complexity was high, the pseudo-SQL requests were no better
than manager-English requests in terms of reducing DM error
rates. Second, when query complexity was high, the planning
task did not have as strong an impact on reducing QS errors as
expected.

4.3 Analysis of Errors by Clause

We wanted to see how widespread errors were, so we calculated
how many participants had one or more errors of each type in

each clause. The vertical axes in the following figures show the
percentage of students who had at least one occurrence of the
error type.

Figure 3 shows the errors by clause for the four low-
complexity queries. Recall that all low complexity tasks
required a solution with a SELECT, FROM, and WHERE
clause. For these three clauses, both DM and QS errors are
shown. Participants may have incorrectly included GROUP
BY, HAVING, and/or ORDER BY clauses. We coded a
solution as having a QS error if it incorrectly included one of
these clauses, but we did not analyze the clauses further for DM
errors.

Figure 3. Errors in Low Complexity Tasks, by Clause

Task Abbreviations: L = Low complexity; P = Pseudo-SQL request; M = Manager-English request; Y = Yes planning template
was used; N = No planning template was available.

Note: The GROUP BY, HAVING, and ORDER BY clauses were not applicable to the low-complexity tasks. We coded an
unnecessary clause inclusion as a structural (QS) error, but did not examine the contents of the incorrectly-added clause, so data
model (DM) errors are not applicable for these clauses in the low-complexity tasks.

Participants w
ith errors

Journal of Information Systems Education, Vol. 30(3) Summer 2019

184

In Figure 3, the first two tasks in each series are the pseudo-
SQL tasks (LPY & LPN), and the latter two tasks in each series
are the manager-English tasks (LMY & LMN). In general,
fewer participants had errors with pseudo-SQL requests than
with manager-English requests, and this is most evident in the
WHERE clause, where roughly 40-60% of participants had DM
and QS errors. The manager-English tasks included modifiers –
“online” orders in the LMY task and “salaried” employees in
the LMN task – that were overlooked by these participants
when specifying the filtering conditions in the WHERE clause.
They missed both the fact that a second condition was needed
(omitting the keyword AND, a QS error) as well as the column
needed in that condition (OnlineOrderFlag or SalariedFlag,
respectively, a DM error). This was the most common problem
in the low-complexity tasks. The pseudo-SQL requests
explicitly outlined both filtering conditions needed (e.g., “end
date is null” or “group name is manufacturing”), and 10% or
fewer participants had WHERE clause errors.

While the WHERE clause errors stem from incompletely
specifying the solution, the GROUP BY, HAVING, and
ORDER BY clause errors stem from over-specifying the
solution. These clauses were not needed for the low-complexity
tasks and, while some of the queries executed without error,
they produced the wrong results. However, other than the LMY
task, 10% or fewer of the participants had these over-
specification errors in the low complexity tasks. In the LMY
task, however, about 20% of participants incorrectly included a
GROUP BY clause (QS error) and also incorrectly specified the
columns in the SELECT clause (DM error). The LMY
manager-English request asked for the “total amount” for each
order, which seems to have led this 20% of participants into
thinking they needed to aggregate rows (GROUP BY clause)
and calculate a sum, rather than simply listing the amount

already stored in the TotalDue column. It is clear that the
shorter, more natural phrasing used in the manager-English
requests resulted in more errors than the longer but more
programming-like phrasing used in the pseudo-SQL requests
for the low complexity tasks.

Figure 4 shows a similar analysis, but for the high
complexity queries. Our hypothesis testing and the interaction
effect graphs in Figure 1 showed that, for high complexity
queries, pseudo-SQL provided no benefit over manager-
English requests in terms of reduced DM errors and only a
slight benefit in terms of QS errors. All high complexity queries
required a solution with a SELECT, FROM, GROUP BY,
HAVING, and ORDER BY clause. For these clauses, both DM
and QS errors are shown. Participants may have incorrectly
included a WHERE clause, which we coded as a QS error.

In Figure 4, the first two tasks in each series are the pseudo-
SQL tasks (HPY & HPN) and the latter two tasks in each series
are the manager-English tasks (HMY & HMN). Comparing the
pseudo-SQL to manager-English tasks on a clause-by-clause
basis, we note the following. First, the HPN task had the highest
frequency of DM errors for the SELECT, GROUP BY, and
ORDER BY clauses (30%, 38%, and 57% of participants had
DM errors in these clauses, respectively). A closer examination
of the HPN solutions indicates that the dominant DM error in
the SELECT and GROUP BY clauses was omitting a table
name as a prefix to the “title” column to clarify which of two
possible title columns was referenced (i.e., the title in a person’s
name, Person.Title, or the job title of an employee,
Employee.Title). This ambiguous-column situation was only
applicable to the HPN condition and is likely why DM error
rates for pseudo-SQL high complexity tasks were comparable
to their manager-English counterparts.

Figure 4. Errors in High Complexity Tasks, by Clause

 Task Abbreviations: H = High complexity; P = Pseudo-SQL request; M = Manager-English request; Y = Yes planning template
was used; N = No planning template was available.

 Note: The WHERE clause was not applicable to the high-complexity tasks. We coded an unnecessary WHERE clause inclusion as

a structural (QS) error, but did not examine the contents of the incorrectly-added clause, so data model (DM) errors are not
applicable for the WHERE clause in the high-complexity tasks.

Participants w
ith errors

Journal of Information Systems Education, Vol. 30(3) Summer 2019

185

Second, for the high complexity queries, fewer participants
had QS errors in the FROM, WHERE, and HAVING clauses
when given pseudo-SQL requests versus manager-English
requests. All participants included a FROM clause in their
query solutions, but QS errors occurred if the solution did not
recognize the need for two joins of three tables inside the
FROM clause. The pseudo-SQL requests explicitly listed the
needed tables, and very few participants had errors recognizing
the needed structure in the FROM clause. The WHERE and
HAVING clauses, on the other hand, were more problematic.
The high complexity queries required a HAVING clause but not
a WHERE clause, yet 24-38% of participants incorrectly
included a WHERE clause and 27-46% incorrectly excluded
the HAVING clause. Clearly, participants struggled with the
distinction between WHERE and HAVING clauses when query
complexity was high. However, it appears that the pseudo-SQL
requests, which explicitly included the word “having” instead
of “where” (e.g., “show only those groups having more
than...”), helped more than the manager-English requests
without this clue (e.g., “for each order with a total….above”).

Third, we note that for high complexity tasks, the ORDER
BY clause was error-prone with 21-57% of participants having
a DM and/or QS error. The pattern of errors in Figure 4 is not
driven by request language, however, but rather by the planning
task, discussed below. The ORDER BY clause is one of the
easier clauses to understand and learn, since it simply specifies

the desired sort order for the rows in the query result. However,
it is also the last clause of a query, and a review of the
participant solutions indicates that most of the ORDER BY
errors were due to omitting the clause and its columns entirely.
It may be that participants were mentally fatigued working on
other parts of the high-complexity queries and simply forgot
about sorting the rows in the requested order.

4.4 Analysis of Planning Task Errors versus Final Query
Errors
Our final analysis concerns the effect of the planning task on
final query errors, particularly QS errors. We re-examined the
notes that participants wrote for each prompt/clause in the four
planning task conditions to record on a clause-by-clause basis
whether the clause contained a QS error. The note-taking in the
planning task varied considerably in terms of detail – for
example, one participant’s notes for the SELECT clause state,
“last name and total quantity,” while another writes,
“LastName, SUM(OrderQty) AS TotalQuantity.” Thus, we
dropped the DM coding for the planning task and focus only on
the QS coding.

Figure 5 compares QS errors in the planning task to the QS
errors in the final query solution, by clause. Note that the
comparison is for only the four query tasks that were preceded
by the planning task (LPY, LMY, HPY, HMY).

Figure 5. Errors in Planning Task Conditions, by Clause

Task Abbreviations: L = Low complexity; H = High complexity; P = Pseudo-SQL request; M = Manager-English request; Y = Yes
planning template was used.

Note: Errors in WHERE clause for HPY and HMY tasks, and errors in the GROUP BY, HAVING, and ORDER BY clauses for
the LPY and LMY tasks are for incorrectly including the clause(s).

Participants w
ith errors

Journal of Information Systems Education, Vol. 30(3) Summer 2019

186

We note the following observations from Figure 5. First,
and unsurprisingly, there are no QS errors in the SELECT
clause; this is the first keyword in every query and participants
clearly understand this. Second, few participants have QS errors
in the FROM clause, which for all of the query tasks required
at least one join of two tables. This is interesting in that
recognizing and specifying table joins has been problematic in
prior studies (e.g., Welty, 1985; Borthick et al., 2001; Bowen,
O’Farrell, and Rohde, 2006). We attribute this difference to the
fact that in prior studies, join conditions were specified in the
WHERE clause, where a missing join condition would not
cause an error in the query’s execution. In this study,
participants were trained to specify joins in the FROM clause
using the keywords JOIN and ON, which, if missing, will throw
an error when the query is executed. The error message would
provide immediate feedback that likely helped participants
revise their queries accordingly.

The more interesting observations are about the WHERE,
GROUP BY, and HAVING clause results shown in Figure 5.
The number of participants who struggled with these clauses
varied considerably from the low complexity queries (LPY &
LMY) to the high complexity queries (HPY & HMY). For the
high complexity queries, more people had WHERE, GROUP
BY, and HAVING clause errors in the template than in their
final queries. In other words, the prompts in the planning task,
intended to help participants determine which clauses were or
were not needed in the solution, seem to have hurt their initial
solution’s structure. For example, in the plans for the HMY
condition, 63% of participants incorrectly included a WHERE
clause and 55% incorrectly excluded a required HAVING
clause. On the positive side, many of these planning task errors
were corrected in the participants’ final query solutions,
although participants may have overcome the problems in spite
of the template rather than because of it. A review of the
planning notes for the HPY and HMY tasks indicates that most
participants knew an aggregate function was needed in either
the SELECT statement or a filtering condition (i.e., a WHERE
or HAVING clause). If their first query attempts included
aggregate functions in the SELECT clause with the related
clauses mis-specified, error messages would have provided
some feedback which may have helped them correct the
problems.

On the other hand, the planning task did appear to help with
the ORDER BY clause. All participants in the low-complexity
planning tasks correctly recognized that an ORDER BY clause
was not needed, and less than 20% of participants in the high-
complexity planning tasks failed to correctly include this
clause. For this clause, participants’ final queries were more
error-prone than their planning notes. This suggests that prior
to coding, most participants knew that an ORDER BY clause
was needed but possibly, by the time they worked through
errors in the WHERE, GROUP BY, and/or HAVING clauses,
they were not paying attention to their planning notes.

A final observation from Figure 5 is that the WHERE clause
in the LMY condition was clearly problematic, both in terms of
template notes and final query accuracy. This was discussed
earlier – the problem with the “hidden” online order condition
in the manager-English request that was missed in the final
queries. Similarly, this condition was missed in the planning
task, where almost 60% of the planning templates were missing
any hint of a second filtering condition.

5. SUMMARY, IMPLICATIONS, AND FUTURE
RESEARCH

Our analysis of query formulation errors from the VC2016
study furthers our understanding of the usefulness of two SQL
training interventions. First, there is support for using pseudo-
SQL requests in the early stages of skill acquisition. We found
that pseudo-SQL requests help novices identify WHERE clause
conditions that are easy to miss with manager-English requests
because they may be “hidden” as adjectives (e.g., online orders,
salaried employees). The fact that over half of the participants
missed a filtering condition with manager-English requests
suggests that novices struggle with analyzing natural language
and mapping it to specific columns in the data model. The use
of pseudo-SQL removes some of the natural language
translation complexity and allows the novice to focus on
SELECT statement coding.

The use of exact table and column names in the pseudo-
SQL requests helped reduced data-model mapping errors in
other clauses as well, with one notable exception – when the
same-named column appeared in two tables and the tables were
joined. In this case, the column name required a table name
prefix, which novices often omitted. Pseudo-SQL requests
could be modified to include table name prefixes. This explicit
use of database table and column names reduces another source
of complexity for novices – the complexity of repeatedly
referencing the data model to determine the tables and columns
to include. However, reducing this complexity may also
encourage novices to ignore the data model and rely exclusively
on the terms in the pseudo-SQL request.

These findings have implications for instructors who may
find it useful to begin practice with each new SQL concept (e.g.,
the WHERE clause, the HAVING clause, or AND/OR/NOT
conditions) using pseudo-SQL requests until students are
competent with the structure and syntax. Instructors can
increase the realism of the information request wording over
time. However, with the increased realism, novices must learn
to dissect the request (e.g., to look for adjectives), compare it to
the data model, and ask questions to ensure they understand
what tables and columns need to be included in their query
solutions. There are many sources of ambiguity in a natural-
language information request, and we need more research on
how to promote novices’ engagement with query formulation
tasks. Research on cognitive load theory and scaffolding may
be particularly useful here, as it focuses on instructional design
that addresses both learner motivation and cognitive support
(e.g., Belland, Kim, and Hannafin, 2013).

The usefulness of the second intervention, the planning
template, is mixed. As instructors, we believe it is valuable for
novices to think about (plan) their query solution before getting
bogged down in SQL syntax and trouble-shooting error
messages. Our analysis did find support for template usefulness
in reducing FROM and ORDER BY clause errors. However, it
did not help with more challenging parts of queries, such as
recognizing when to use WHERE versus HAVING and
recognizing when a GROUP BY clause is needed. We view this
as primarily a query structure problem – understanding the
purpose and function of these three clauses and their inter-
relatedness (along with SELECT clause). There is unavoidable
complexity here and those teaching SQL are likely keenly
aware of these problem areas for novices.

Journal of Information Systems Education, Vol. 30(3) Summer 2019

187

The implication of these findings, along with other research
on complex queries (e.g., Allen and Parsons, 2010), is that
instructors still lack effective tools and strategies for teaching
SQL grouping and aggregation. One avenue for future research
is to improve the planning task so that participants more deeply
engage with it. An interactive planning template could be
designed, for example, to prompt for a GROUP BY clause only
if the participant specifies an aggregate function in the SELECT
clause in order to emphasize the relationship between these two
clauses. The template contents could also be transferred to the
query editor so that the plan, when complete, would essentially
become the first draft of the query.

Another direction for future research is to abandon the
planning task and instead focus on providing better feedback on
query errors. We observed that for the WHERE, GROUP BY,
and HAVING clauses, many participants overcame the errors
in their initial planning notes by the time they submitted their
final queries. This is likely due to errors in their initial queries
that produced errors and led to iterative query refinement. A
trial-and-error approach may be more natural for novices, and
research on errorful learning followed by corrective feedback
shows that it can be effective (e.g., Metcalfe, 2017). However,
learning from erroneous examples may not be particularly
efficient for novices (McLaren et al., 2016). Another approach
would combine planning with coding, in smaller increments (a
couple of clauses at a time) and iteratively, so that incomplete
but working queries are successively refined to get to the correct
result set. This could reduce the number of errors and provide
positive feedback as novices more quickly get “some” results.
It might also promote more engagement with the task, if novices
examine the results in the context of what results are desired
and use this “gap analysis” to drive their refinements to the
query.

6. REFERENCES

Allen, G. N. & March, S. T. (2006). The Effects of State-Based

and Event-Based Data Representation on User Performance
in Query Formulation Tasks. Management Information
Systems Quarterly, 30(2), 269-290.

Allen, G. & Parsons, J. (2010). Is Query Reuse Potentially
Harmful? Anchoring and Adjustment in Adapting Existing
Database Queries. Information Systems Research, 21(1), 56-
77.

Batra, D. (2007). Cognitive Complexity in Data Modeling:
Causes and Recommendations. Requirements Engineering,
12(4), 231-244.

Bell, C. C., Mills, R. J., & Fadel, K. J. (2013). An Analysis of
Undergraduate Information Systems Curricula: Adoption of
the IS 2010 Curriculum Guidelines. Communications of the
AIS, 32(2), 73-94.

Belland, B., Kim, C., & Hannafin, M. (2013). A Framework for
Designing Scaffolds that Improve Motivation and Cognition.
Educational Psychologist, 48(4), 243-270.

Borthick, A. F., Bowen, P. L., Jones, D. R., & Tse, M. H. K.
(2001). The Effects of Information Request Ambiguity and
Construct Incongruence on Query Development. Decision
Support Systems, 32(1), 3-25.

Bowen, P. L., O’Farrell, R. A., & Rohde, F. H. (2006). Analysis
of Competing Data Structures: Does Ontological Clarity
Produce Better End User Query Performance. Journal of the
AIS, 7(8), 514-544.

Bowen, P. L., O’Farrell, R. A., & Rohde, F. H. (2009). An
Empirical Investigation of End-User Query Development:
The Effects of Improved Model Expressiveness vs.
Complexity. Information Systems Research, 20(4), 565-584.

Casterella, G. I. & Vijayasarathy, L. (2013). An Experimental
Investigation of Complexity in Database Query
Formulations Tasks. Journal of Information Systems
Education, 24(3), 211-221.

Greene, S. L., Devlin, S. J., Cannata, P. E., & Gomez, L. M.
(1990). No Ifs, ANDs, or ORs: A Study of Database
Querying. International Journal of Man-Machine Studies,
32(3), 303-326.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010).
Multivariate Data Analysis (7th ed.). Upper Saddle River, NJ:
Prentice Hall.

Kaggle. (2017). The State of Data Science and Machine
Learning. Retrieved April 16, 2018, from
https://www.kaggle.com/surveys/2017.

McLaren, B. M., van Gog, T., Ganoe, C., Karabinos, M., &
Yaron, D. (2016). The Efficiency of Worked Examples
Compared to Erroneous Examples, Tutored Problem
Solving, and Problem-Solving in Computer-Based Learning
Environments. Computers in Human Behavior, 55(PA), 87-
99.

Metcalfe, J. (2017). Learning from Errors. Annual Review of
Psychology, 68(1), 465-489.

Reisner, P. (1977). Use of Psychological Experimentation as an
Aid to Development of a Query Language. IEEE
Transactions on Software Engineering, 3(3), 218-229.

Reisner, P. (1981). Human Factors Studies of Database Query
Languages: A Survey and Assessment. Computing Surveys,
13(1), 13-31.

Soat, J. (2014). As Big Data Booms, SQL Makes a Comeback.
Retrieved April 20, 2017, from
https://www.forbes.com/sites/oracle/2014/09/08/as-big-
data-booms-sql-makes-a-comeback/#6c3f1d3252aa.

Topi, H., Valacich, J. S., Wright, R. T., Kaiser, K., &
Nunamker, J. F. (2010). IS 2010: Curriculum Guidelines for
Undergraduate Degree Programs in Information Systems.
Communications of the AIS, 26(1), 359-428.

Vijayasarathy, L. & Casterella, G. I. (2016). The Effects of
Information Request Language and Planning Task on Query
Formulation. Journal of the Association for Information
Systems, 17(10), 677-710.

Welty, C. (1985). Correcting User Errors in SQL. International
Journal of Man-Machine Studies, 22(4), 463-477.

Journal of Information Systems Education, Vol. 30(3) Summer 2019

188

https://www.kaggle.com/surveys/2017
https://www.forbes.com/sites/oracle/2014/09/08/as-big-data-booms-sql-makes-a-comeback/#6c3f1d3252aa
https://www.forbes.com/sites/oracle/2014/09/08/as-big-data-booms-sql-makes-a-comeback/#6c3f1d3252aa

AUTHOR BIOGRAPHIES

Gretchen Irwin Casterella is an associate professor in the

Accounting & Business Law
Department at the University of
North Carolina Wilmington.
Gretchen holds a Ph.D. and a
Master of Science in Information
Systems from the University of
Colorado. Gretchen’s research
interests are in systems

development, specifically in understanding how individuals
learn and master tools, technologies, and approaches for
systems analysis and design. Gretchen’s research has appeared
in the Communications of the ACM, the Journal of Management
Information Systems, the Journal of the Association for
Information Systems, and IEEE Transactions on Professional
Communication.

Leo R. Vijayasarathy is professor of Computer Information

Systems in the College of Business at
Colorado State University. He earned
an M.B.A. from Marquette University
and his Ph.D. from Florida
International University. His research
on the development, use, and
consequences of information systems
has been published in Electronic
Markets, European Journal of
Information Systems, IEEE Software,
IEEE Transactions on Professional

Communications, Information & Management, Internet
Research, International Journal of Production Economics,
Journal of the Association for Information Systems, and the
Journal of Management Information Systems. He serves on the
editorial advisory board of Internet Research.

Journal of Information Systems Education, Vol. 30(3) Summer 2019

189

APPENDIX 1. Data Model

APPENDIX 2. Query Solution Analysis by Experimental Treatment

 Pseudo-SQL Wording (P) Managerial Wording (M)
 Planning Task

(Y)
No Planning

Task (N)
Planning Task

(Y)
No Planning

Task (N)
Low Query Complexity (L) LPY LPN LMY LMN
Query solution breakdown:
Data-model mapping (DM) elements1
Query structure (QS) elements2
Other3

37.5%
25.0%
37.5%

39%
26%
35%

37.5%
25.0%
37.5%

37.5%
25.0%
37.5%

Halstead’s program length

24

23

24

24

High Query Complexity (H) HPY HPN HMY HMN
Query solution breakdown:
Data-model mapping (DM) elements1
Query structure (QS) elements2
Other3

30%
20%
50%

34%
19%
47%

34%
19%
47%

20%
36%
44%

Halstead’s program length 46 47 47 44
1 Data-model (DM) elements = proportion of the query solution made up of table names and column names.
2 Query structure (QS) elements = proportion of the query solution made up of SQL keywords that outline the structure

of the correct solution (e.g., SELECT, FROM, JOIN, ON, WHERE, AND, OR, GROUP BY, HAVING, ORDER BY).
3 Other = proportion of the query solution made up of punctuation marks (e.g., commas, quotation marks, parentheses),

comparison operators (e.g., <, >, =, IS NULL), function names (e.g., MIN, SUM, COUNT, YEAR), literal values (e.g.,
1, manufacturing)

Journal of Information Systems Education, Vol. 30(3) Summer 2019

190

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2019 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 2574-3872

