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ABSTRACT 

SQL query writing is a challenging task for novices, even after considerable training. Query writing is a programming task and a 
translation task where the writer must translate a user’s request for information into code that conforms to the structure, constraints, 
and syntax of an SQL SELECT statement and that references specific tables and columns from a database. This paper investigates 
the impact of two instructional interventions on query errors under conditions of low and high query complexity. Data was collected 
from an experimental study of 63 undergraduate students nearing completion of a 15-week database course. Our analysis reveals 
specific areas of query writing where each of the interventions helped, and hindered, task performance. We discuss the implications 
of these findings for improving SQL training and for future research on SQL training effectiveness. 

Keywords: Information retrieval, Relational database, Structured query language (SQL), Human-computer interaction (HCI) 

1. INTRODUCTION

Structured Query Language (SQL) has been the de facto 
programming standard for accessing data in relational databases 
for over three decades (Allen and March, 2006). A recent 
survey of data scientists found SQL to be the third most 
commonly used data analysis tool (Kaggle, 2017), and many of 
the languages for accessing NO-SQL databases also incorporate 
SQL (Soat, 2014). We expect the demand for SQL skills to 
persist and grow, which in turn reinforces its importance in 
university database courses (Topi et al., 2010; Bell, Mills, and 
Fadel, 2013). 

A primary SQL skill is writing ad hoc queries that pull data 
from multiple tables in a database in response to an information 
request. However, novices struggle to acquire these query-
writing skills (e.g., Bowen, O’Farrell, and Rohde, 2009; Allen 
and Parsons, 2010; Casterella and Vijayasarathy, 2013). One of 
the learning challenges relates to the gap between the data that 
the user wants to see (the query result) and the way the data is 
organized in the database. The query writer must be able to 

think in sets – not in steps as with other programming languages 
– to determine how to manipulate detailed data scattered across
multiple tables to obtain the desired data set, which may be at a 
summarized level. Added to this is the fact that the initial 
request for information is typically expressed in the end user’s 
natural language, rife with ambiguity, and the query writer must 
transform that request into a highly-structured SQL statement 
that references specific tables and columns in a data model, 
which itself is often represented in diagrammatic form 
(Borthick et al., 2001). Clearly, there are significant cognitive 
obstacles learners must overcome to be competent query 
writers.  

We are interested in the impact of different training 
interventions on query writing performance, and how those 
interventions can be improved. Vijayasarathy and Casterella 
(2016), hereafter called VC2016, investigated the impact of two 
training interventions on novices’ overall query task 
performance. The training interventions were designed to 
reduce specific sources of task complexity and thus promote 
successful query writing performance. One intervention 
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changed the way the information retrieval task was presented to 
the novice (the request language treatment), and the other 
intervention added a planning task prior to the query coding 
task (the planning task treatment). Data was collected from 63 
university undergraduate students who had completed several 
weeks of training on SQL queries. VC2016 found that the 
request language treatment improved task performance but only 
for less complex queries, while the planning task treatment 
improved task performance only for more complex queries. 
While the findings provide some support for the training 
interventions, the interaction effects were not entirely as 
expected. Further, VC2016’s focus on overall query writing 
performance (e.g., overall query accuracy, time to complete 
task), while useful, does not provide the fine-grained 
information needed to improve the training interventions.  

To gain a deeper understanding of how the experimental 
treatments helped or hindered novices, in this paper we analyze 
the VC2016 data set with a focus on specific types of error that 
directly relate to the treatments. The request language and 
planning task treatments were designed to reduce query-writing 
complexity by making it easier for novices to: 1) map words 
from the information request to tables and columns in the data 
model and 2) identify which clauses were needed in the query 
solution. We define two corresponding types of error – data 
model (DM) and query structure (QS) – and we examine the 
effect of the treatments on each error type. In addition, since 
prior research indicates that certain parts of a SELECT 
statement are particularly difficult (Reisner, 1981, Greene et al., 
1990), we analyze errors on a clause-by-clause basis. Finally, 
to examine the impact of the planning task on final query errors, 
we compare errors in the planning task to those in the final 
queries.  

We find that many of the errors in VC2016 stemmed from 
overlooking adjectives in the natural-language information 
request, a weak understanding of the data model, or both. The 
request language treatment – where information requests were 
presented in pseudo-SQL rather than the more ambiguous 
“Manager-English” – helped reduce these errors, particularly 
errors of omitted filtering conditions in the WHERE clause. The 
planning task treatment – where students made notes in a query 
template prior to coding – helped reduce errors in the SELECT, 
FROM, and ORDER BY clause, but not with the WHERE, 
GROUP BY, and HAVING clauses. We discuss the 
implications of these findings for future research on SQL 
training.  

 
2. QUERY WRITING TASK COMPLEXITY 

 
In practice, the user requesting information from a database is 
often not the same individual who writes the query to retrieve 
that information. The query writer must bridge the distance 
between the source language (natural language) and the target 
language (SQL) to produce a query that executes and returns 
the requested information from the database. The cognitive 
complexity of a query-writing task is determined by factors 
inherent in the task itself that increase the mental effort required 
(Batra, 2007). This is not the same as the perceived difficulty of 
a task, or the cognitive load the writer experiences, which will 
vary across individuals depending, for example, on their 
knowledge of the domain and their SQL expertise (Batra, 
2007). The cognitive complexity of writing SQL queries has 

been discussed extensively in prior research (e.g., Borthick et 
al., 2001; Bowen, O’Farrell, and Rohde, 2009; Allen and 
Parsons, 2010). We use the following two examples to illustrate 
the complexities. 
 
2.1 Example of a Less Complex Query Formulation Task 
Consider the following information request and corresponding 
query solution.  
 

Information request: 
 
“Who placed online 
orders after December 
23, 2015, and what 
was the subtotal for 
each of those orders?” 

Query solution: 
 
SELECT FirstName, LastName, 
SubTotal  
FROM   Person INNER JOIN 
SalesOrderHeader ON PersonPK = 
CustomerFK  
WHERE  OnlineOrderFlag = 1  
 AND OrderDate > '12/23/2015' 
 

The query writer must transform the natural-language 
request into the SQL code based on a given data model, which 
in this case is for a sales order database whose schema is shown 
in Appendix 1. This transformation requires an understanding 
of the database design as well as of SQL syntax and the specific 
rules for how to structure SQL queries using at most six clauses 
(SELECT, FROM, WHERE, GROUP BY, HAVING, and 
ORDER BY), each with a specific purpose. Two main subtasks 
involved in this transformation are query structure generation 
and data model mapping (Reisner, 1977). Query structure 
generation is the process of generating the basic outline or 
template of the query solution, while data model mapping is 
identifying which columns and tables from the data model to 
include in the outline or template. 

In this example, query structure generation would produce 
the following solution outline: SELECT ____ FROM ____ 
INNER JOIN ____ ON ____ WHERE ____ AND ____. The 
query writer must determine that the FROM clause needs to join 
two tables (hence the INNER JOIN and ON keywords), that a 
WHERE clause is needed with two conjunctive conditions 
(hence the AND keyword), and that the GROUP BY, 
HAVING, and ORDER BY clauses are not needed. 
Recognizing the need for a WHERE clause involves 
recognizing the need to restrict the rows (in this case, orders) in 
the result set and, in this case, we would expect that the phrase 
“after December 23, 2015,” would be a clue that a filtering 
condition is needed. Recognizing the need for a compound 
condition is more difficult, as its clue is just one word, “online.” 
Thus, even though the query solution is rather short, there are 
several sources of complexity that could impact the structure 
generation portion of the task. 

Table 1 shows the data model mappings needed to fill in 
parts of the solution outline. These mappings are the 
connections the query writer must make between elements in 
the original information request and elements in the data model. 
The right-hand column in Table 1 highlights the mappings from 
the information request to the empty “slots” in the query 
structure outline that are needed. The bolded elements in the 
right column are the data model elements (i.e., tables and 
columns).  
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Query 
Structure 

Data Model Mappings to Complete 
the Query Structure 

SELECT ____ “who”  LastName, FirstName 
“subtotal”  SubTotal 

FROM ____ 
INNER JOIN 
____ ON ____ 

“who placed”  Person  
“orders”  SalesOrderHeader 
∅   PersonPK = CustomerFK 

WHERE ____ 
AND ____ 
 

“online”  OnlineOrderFlag = 1 
“after December 23, 2015”  
OrderDate > ‘12/23/2015’ 

Table 1. Data Model Mappings for a Less Complex Query 
 
For the SELECT clause, the writer must map terms in the 

request to the appropriate columns that the user wants to see in 
the query result. This mapping may be complex when there is 
ambiguity in the information request, such as if the user asked 
for the “total” of each order (e.g., including shipping, tax, etc.) 
rather than the “subtotal” (which has an exact column match). 
Mapping the data model elements to the FROM clause requires 
identifying which tables are needed (in this case, Person and 
SalesOrderHeader) and the columns that link the two tables 
together. There is no word in the information request that 
indicates what this linking or join column is (i.e., ∅   
PersonPK = CustomerFK). In the WHERE clause, the phrase 
“after December 23, 2015” is mapped to a search condition 
based on the OrderDate column. For the “online orders” phrase, 
the writer needs to: (1) notice the single word “online,” (2) 
know that the SalesOrderHeader table includes online and not-
online orders, and (3) recognize that the OnlineOrderFlag 
column will indicate whether an order is online with a 1 or 0 
value. Even with a relatively short query, there are places where 
data model mapping is a source of complexity. 

2.2 Example of a More Complex Query Formulation Task 
Consider another information request and corresponding query 
solution for the same sales order database: 
 

Information request: Query solution: 
 

“For each product 
subcategory with an 
average list price 
above $100, show 
the name of the 
subcategory, the 
name of the parent 
category, the 
average price of 
products in the 
subcategory, and 
the number of 
different product 
colors in the 
subcategory. Sort 
the results 
alphabetically by 
the category name 
and the subcategory 
name.” 

SELECT 
ProductSubCategoryName, 
ProductCategoryName, 
AVG(ListPrice), 
COUNT(DISTINCT Color)  
FROM ProductCategory INNER 
JOIN ProductSubcategory ON 
ProductCategoryPK = 
ProductCategoryFK INNER JOIN 
Product ON 
ProductSubCategoryPK = 
ProductSubcategoryFK  
GROUP BY 
ProductCategoryName, 
ProductSubCategoryName  
HAVING AVG(ListPrice) > 100  
ORDER BY 
ProductCategoryName, 
ProductSubCategoryName 

 

Consider the query’s structure: SELECT ____ FROM 
____ INNER JOIN ____ ON ____ INNER JOIN ____ ON 
____ GROUP BY ____ HAVING ____ ORDER BY ____. 
The query writer must recognize that two joins are needed in 
the FROM clause, that the WHERE clause is not needed 
(although “average list price above $100” sounds like a filtering 
condition that might be specified in a WHERE clause), and that 
three other clauses are needed (GROUP BY, HAVING, and 
ORDER BY). The information request does not have clear 
clues that tell the query writer to include a GROUP BY or 
HAVING clause. The request does include the phrase, “for each 
product subcategory,” which implies a need for grouping if the 
writer recognizes that rows in the merged table after the join 
will be at the individual product level rather than at the 
subcategory level, but this is difficult for novices to recognize 
(Bowen, O’Farrell, and Rohde, 2006). The challenge with table 
joins and grouping is that there is a mismatch between data 
model representation and the requirements of the information 
retrieval task. The data model shows each table’s structure (i.e., 
its columns) and lines represent the relationships between 
tables, but the task requires the writer to think about 
manipulating the specific rows in the tables, joining them, and 
rearranging them into subsets (Reisner, 1977). Thus, 
performance is expected to decline for queries that involve 
grouping. 

There are also data-model mapping challenges in this 
example. Table 2 shows the transformations needed to complete 
the query structure outline. The data-model mapping elements 
are shown in bolded text in the right-hand column.  Note that 
many transformations do not have a counterpart in the 
information request. 

 
Query Structure Transformations to Complete the 

Query Structure 
SELECT ____ “the name of the subcategory”  

ProductSubCategoryName 
“the name of the parent category”  
ProductCategoryName 
“the average price of products in the 
subcategory”  AVG(ListPrice) 
“the number of different product 
colors in the subcategory”  
COUNT(DISTINCT Color) 

FROM____ 
INNER JOIN  
____ ON ____ 
INNER JOIN 
____ ON ____ 

“For each product subcategory”  
ProductSubcategory 
∅   ProductCategory 
∅ ProductCategoryPK = 
ProductCategoryFK 
∅ Product 
∅  ProductSubCategoryPK = 
ProductSubcategoryFK 

GROUP BY ____ ∅  ProductCategoryName 
∅  ProductSubCategoryName 

HAVING ____ “an average list price above $100” 
 AVG(ListPrice) > 100 

ORDER BY ____ “sort results alphabetically by the 
category name”  
ProductCategoryName 
“and the subcategory name”  
ProductSubCategoryName 

Table 2. Data Model Mappings for a More Complex Query 
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These two examples illustrate some of the difficulties a 
novice query writer faces. While awareness of these challenges 
is important when teaching SQL, we are interested in teaching 
resources that target the early stages of SQL skill acquisition so 
that novices are not in a situation where they have to be 
competent at many things before they can accomplish anything. 
Toward that end, we next summarize the VC2016 study which 
included two training interventions to improve novices’ query 
writing task performance. 

 
3. SUMMARY OF VC2016 

  
The VC2016 study examined the impact of two training 
interventions on query writing. One was the information request 
language, which was based on prior research showing improved 
query writing performance when the information request was 
written in “pseudo-SQL” rather than “manager-English” 
(Borthick et al., 2001; Casterella and Vijayasarathy, 2013). 
Pseudo-SQL requests used terms that more closely matched the 
SELECT statement solution than the manager-English requests. 
Pseudo-SQL requests were expected to improve task 
performance because they provided clearer clues about which 
data model elements were needed and which SELECT 
statement clauses were needed when compared to the less-
precise manager-English requests. 

The second intervention was to introduce a planning task 
prior to coding, where participants were asked to take notes in 
a query template. The template outlined the six possible clauses 
to include in the query solution, along with questions to prompt 
participants to consider which clauses were needed and what to 
specify in each. The template was expected to improve task 
performance by providing reminders about the order in which 
clauses must be written and the purpose of each clause. 
Participants had to use the template before they could begin 
writing queries in the editor window. The notes written in the 
template were visible throughout the query writing task so that 
it was, in essence, an intermediate solution that was expected to 
reduce the participants’ cognitive load.  

VC2016 conducted a 2 x 2 x 2 repeated measures 
experiment to assess the impact of three factors – query 
complexity, request language, and planning task – on overall 
query task performance. Query complexity was either low or 
high.  Low complexity queries were about half the length and 
less than half the difficulty of the high complexity queries. The 
four low complexity query solutions were similar to the first 
example discussed in the prior section, with the same structural 
characteristics shown in Table 1. The four high complexity 
queries were similar to the second example discussed earlier, 
with the same structural characteristics shown in Table 2. 
Request language referred to the task presentation, where the 
information request was presented in either pseudo-SQL or 
manager-English. Planning task referred to whether the 
participant was given a query planning task prior to coding. 

Sixty-three undergraduate students in an introductory 
database course completed the study, which consisted of eight 
query tasks, one for each condition. VC2016 found main effects 
for query complexity and request language, such that overall 
query accuracy was higher for less complex queries and for 
pseudo-SQL requests (Note: Two control variables, GPA and 
prior SQL experience, also had significant positive effects on 
overall query accuracy, as expected). VC also found an 

interaction effect for complexity and request language, but it 
was opposite of their hypothesis – the pseudo-SQL requests 
improved overall query accuracy for less complex queries but 
not for more complex queries. They found that the planning task 
improved overall query accuracy for more complex queries but 
not for less complex queries. While the VC2016 findings 
provide some support for their training interventions, it is not 
clear why the planning task had no main effect on query 
accuracy or why the pseudo-SQL requests were no more helpful 
than manager-English requests for complex queries. The rest of 
the paper describes several new analyses of the VC2016 data to 
uncover specific trouble spots in the participants’ queries.    

 
4. A CLOSER LOOK AT QUERY ERRORS 

 
The main dependent variable of interest in VC2016 was overall 
query accuracy, calculated as the ratio of the number of actual 
correct elements to the number of required correct elements in 
each query solution. This accuracy score included all coding 
elements in a query, including punctuation, function names, 
mathematical operators, etc. However, not all of these elements 
are directly related to the experimental treatments. Thus, we 
conducted a finer-grained analysis of two specific types of error 
– query structure (QS) errors and data model (DM) errors. 
Query structure (QS) errors are missing or incorrectly 
specified SQL keywords that are needed to begin each clause, 
indicate table joins, and/or indicate compound search 
conditions (see the examples in Tables 1 & 2). Data model 
(DM) errors are missing or incorrectly specified table names or 
column names from the data model that are needed in the query 
(see the examples in Tables 1 & 2). We expect the treatments 
to directly impact these two error types, as described below. 
 
4.1 Hypotheses 
With respect to the request language treatment, the pseudo-SQL 
requests include explicit table and column names, and thus are 
expected to reduce DM errors. The pseudo-SQL requests also 
include terms that directly match the keywords for certain 
clauses in the SELECT statement and so should reduce the 
cognitive load needed for generating the query’s structure, and 
reduce the QS errors. On the other hand, if a request is presented 
in manager-English, more cross-referencing between the 
request, the data model, and the query editor is needed, which 
may lead to more DM errors. Without the explicit clues 
indicating the clauses needed in the query, we expect more QS 
errors as well. In the VC2016 study, pseudo-SQL had a main 
effect on overall query accuracy. Here, we expect that it will 
have a main effect on both types of error. 
 

H1:  Query writers given pseudo-SQL requests will have 
lower DM and QS error rates than writers given 
manager-English requests. 

 
The interaction between query complexity and request 

language on overall query accuracy was not as expected in the 
VC2016 study. Participants had several weeks of practice 
writing queries prior to the study, so VC2016 expected that the 
pseudo-SQL assistance would not be as useful for the less 
complex queries as for the more complex queries. However, the 
opposite was found. In our analysis, we investigate whether our 
more focused dependent variables detect the expected 
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difference. We have no a priori reason to believe that the 
pseudo-SQL requests would impact one error type more/less 
than the other. Thus, our second hypothesis is as follows. 
 

H2:  The impact of pseudo-SQL requests on QS and DM 
error rates will be greater when query complexity is 
high versus low.  

 
With respect to the planning task treatment, the VC2016 

study found that completing the planning task prior to coding 
did not significantly improve overall query accuracy, except 
when query complexity was high. The planning template 
prompts the writer to consider which clauses are needed in the 
query solution (a QS issue) and indicates what should be 
specified within each clause (a DM issue). With our dependent 
variables narrowly focused on QS and DM errors, we expect 
the planning task will have a significant main effect on both 
error rates. 

 
H3: Query writers who complete the planning task prior 

to coding will have lower DM and QS error rates than 
writers who have no planning task prior to coding. 

 
As with the request language intervention, we expect that 

for less complex queries, the benefits of the planning task will 
be negligible but as complexity increases, the planning task will 
be more helpful. The prompts in the planning task were 
designed to engage the participants in task analysis and 
planning prior to coding. Taking notes in the template would 
also allow writers to “offload” some of their cognitive load to 
this external artifact and free up cognitive resources for the 
coding part of the task, which we expected to be particularly 
helpful for complex queries that involved aggregation and 
grouping. Thus, the hypothesis is: 

 
H4:  The impact of the planning task on QS and DM error 

rates will be greater when query complexity is high 
versus low. 

4.2 Results of Hypothesis Testing 
To measure QS and DM errors, we first re-examined each of 
the correct query solutions and counted the number of elements 
in the queries related to QS and DM. All other elements were 
considered “other” and not included in our hypothesis testing or 
subsequent analyses. Appendix 2 shows the breakdown of the 
eight query solutions into QS, DM, and other elements. The 
“other” category accounts for one-third to one-half of each 
solution, and is not included in our analysis. The next step was 
to re-evaluate the participants’ queries for each task to identify 
the corresponding number of QS and DM errors that were 
present. Because the maximum possible number of errors 
differed depending on complexity level, we transformed each 
error count into a rate by dividing by the maximum number of 
errors possible for that task. Thus, the two dependent variables 
were defined as follows. The DM error rate is the proportion 
of required table and column references that were missing or 
incorrect in each participant’s final query solution, and the QS 
error rate is the proportion of required query structure 
keywords that were missing or incorrect in each participant’s 
final query solution.  

We analyzed the final queries from the same 63 participants 
in the VC2016 study using these new DM and QS error rates. 
To test our hypotheses, we used repeated-measures MANOVA 
(Hair et al., 2010). One of the 63 participants had error rates in 
excess of the threshold for multivariate outliers, and was 
dropped for this analysis. Further, since one of the eight 
experimental groups exhibited multi-collinearity between the 
dependent variables (r > 0.80), only the univariate results from 
the MANOVA procedure are reported and discussed. Table 3 
shows the mean error rate by error type and experimental 
treatment, and Table 4 shows the within-subjects effects of our 
treatments on the two types of error. 

 
 

 

 
 Data-Model 

Mapping (DM) Error Rate 
Query Structure (QS) Error 

Rate 
Low 
Complexity 

Pseudo-SQL No Planning 2.87 2.69 
Planning 3.76 2.33 

Manager-English No Planning 8.42 6.99 
Planning 11.65 11.47 

High 
Complexity 

Pseudo-SQL No Planning 17.34 14.68 
Planning 11.52 11.13 

Manager-English No Planning 16.43 16.77 
Planning 12.50 14.19 

Low Complexity 6.68 5.87 
High Complexity 14.45 14.19 
Pseudo-SQL 8.87 7.71 
Manager-English 12.25 12.36 
No Template 11.27 10.28 
Template 9.86 9.78 
Overall 10.56 10.03 

Table 3. Mean Error Rate (%) by Error Type and Experimental Treatment 
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Source Error Type F Sig. 
Query Complexity Data-Model (DM) 58.81 0.000 

Query Structure (QS) 35.88 0.000 
Request Language Data-Model (DM) 12.50 0.001 

Query Structure (QS) 27.84 0.000 
Planning task Data-Model (DM) 4.29 0.043 

Query Structure (QS) 0.47 0.495 
SQL Proficiency Data-Model (DM) 4.97 0.030 

Query Structure (QS) 12.82 0.001 
GPA Data-Model (DM) 12.35 0.001 

Query Structure (QS) 10.75 0.002 
Query Complexity * Request Language Data-Model (DM) 15.21 0.000 

Query Structure (QS) 6.39 0.014 
Query Complexity * Planning task Data-Model (DM) 21.74 0.000 

Query Structure (QS) 8.86 0.004 
Table 4. Within-Subject Effects on Error Rates (%) 

Note: For SQL Proficiency and GPA, the effects are between subjects 
 

Hypothesis H1 is supported. Request language had a 
significant main effect on both error rates. Participants had 
significantly lower DM error rates and lower QS error rates 
when given pseudo-SQL requests rather than manager-English 
requests. 

With respect to H2, the interaction effect of complexity and 
request language on error rates was significant, such that 
pseudo-SQL requests reduced both error rates for less complex 
queries but not for more complex queries. This effect is in the 
opposite direction of our hypothesis. As shown in Figure 1, 
participants with pseudo-SQL requests had much lower error 
rates than those with manager-English requests when 
complexity was low, but the request language had little impact 
when complexity was high. This is consistent with VC2016’s 
unexpected finding. Our findings, however, shed some light on 
this discrepancy. When query complexity was high, pseudo-
SQL requests provided some benefit in lowering QS error rates, 
but no benefit with respect to DM error rates. We explore this 
finding further in the next section. 

Hypothesis H3 is partially supported. The planning task 
significantly reduced DM errors, but not QS errors. This 

provides some insight into the non-significant main effect in the 
VC2016 study where overall accuracy was not improved with 
the planning task. In part, this was because the planning task 
did not significantly reduce QS errors. This is surprising 
because the planning task focuses heavily on which clauses 
might be needed and so might be expected to reduce QS errors 
more so than DM errors. We explore this finding further in the 
next section.  

H4 is supported. The interaction effect of planning task and 
query complexity was significant for both error rates, and in the 
expected direction. As shown in Figure 2, the planning task 
clearly helped reduce both QS and DM error rates for more 
complex queries, but actually increased both error rates for less 
complex queries. 

Query complexity had a significant main effect on both 
error types – we did not have a hypothesis for this as is it has 
been such a consistent finding that complexity reduces 
performance across many studies of query writing. We also 
note that individual differences have a significant impact on 
error rates, such that participants with higher GPAs and higher 
self-reported SQL proficiency had lower error rates.  

 

  

Figure 1. Interaction Effect between Query Complexity and Request Language  
on Data Model (DM) and Query Structure (QS) Error Rates 
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Figure 2. Interaction Effect between Query Complexity and Planning Task 
on Data Model (DM) and Query Structure (QS) Error Rates 

 
Comparing the results of our analysis with that of VC2016, 

we find that, in general, our results using the specific error types 
are consistent with their overall query accuracy measure. 
However, our analysis uncovers two issues. First, when query 
complexity was high, the pseudo-SQL requests were no better 
than manager-English requests in terms of reducing DM error 
rates. Second, when query complexity was high, the planning 
task did not have as strong an impact on reducing QS errors as 
expected. 

 
4.3 Analysis of Errors by Clause 

We wanted to see how widespread errors were, so we calculated 
how many participants had one or more errors of each type in 

each clause. The vertical axes in the following figures show the 
percentage of students who had at least one occurrence of the 
error type. 

Figure 3 shows the errors by clause for the four low-
complexity queries. Recall that all low complexity tasks 
required a solution with a SELECT, FROM, and WHERE 
clause. For these three clauses, both DM and QS errors are 
shown. Participants may have incorrectly included GROUP 
BY, HAVING, and/or ORDER BY clauses. We coded a 
solution as having a QS error if it incorrectly included one of 
these clauses, but we did not analyze the clauses further for DM 
errors. 

 
 

 
 

Figure 3. Errors in Low Complexity Tasks, by Clause 
 

Task Abbreviations: L = Low complexity; P = Pseudo-SQL request; M = Manager-English request; Y = Yes planning template 
was used; N = No planning template was available. 
 
Note: The GROUP BY, HAVING, and ORDER BY clauses were not applicable to the low-complexity tasks. We coded an 
unnecessary clause inclusion as a structural (QS) error, but did not examine the contents of the incorrectly-added clause, so data 
model (DM) errors are not applicable for these clauses in the low-complexity tasks. 

 

Participants w
ith errors 
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In Figure 3, the first two tasks in each series are the pseudo-
SQL tasks (LPY & LPN), and the latter two tasks in each series 
are the manager-English tasks (LMY & LMN). In general, 
fewer participants had errors with pseudo-SQL requests than 
with manager-English requests, and this is most evident in the 
WHERE clause, where roughly 40-60% of participants had DM 
and QS errors. The manager-English tasks included modifiers – 
“online” orders in the LMY task and “salaried” employees in 
the LMN task – that were overlooked by these participants 
when specifying the filtering conditions in the WHERE clause. 
They missed both the fact that a second condition was needed 
(omitting the keyword AND, a QS error) as well as the column 
needed in that condition (OnlineOrderFlag or SalariedFlag, 
respectively, a DM error). This was the most common problem 
in the low-complexity tasks. The pseudo-SQL requests 
explicitly outlined both filtering conditions needed (e.g., “end 
date is null” or “group name is manufacturing”), and 10% or 
fewer participants had WHERE clause errors. 

While the WHERE clause errors stem from incompletely 
specifying the solution, the GROUP BY, HAVING, and 
ORDER BY clause errors stem from over-specifying the 
solution. These clauses were not needed for the low-complexity 
tasks and, while some of the queries executed without error, 
they produced the wrong results. However, other than the LMY 
task, 10% or fewer of the participants had these over-
specification errors in the low complexity tasks. In the LMY 
task, however, about 20% of participants incorrectly included a 
GROUP BY clause (QS error) and also incorrectly specified the 
columns in the SELECT clause (DM error). The LMY 
manager-English request asked for the “total amount” for each 
order, which seems to have led this 20% of participants into 
thinking they needed to aggregate rows (GROUP BY clause) 
and calculate a sum, rather than simply listing the amount 

already stored in the TotalDue column. It is clear that the 
shorter, more natural phrasing used in the manager-English 
requests resulted in more errors than the longer but more 
programming-like phrasing used in the pseudo-SQL requests 
for the low complexity tasks. 

Figure 4 shows a similar analysis, but for the high 
complexity queries. Our hypothesis testing and the interaction 
effect graphs in Figure 1 showed that, for high complexity 
queries, pseudo-SQL provided no benefit over manager-
English requests in terms of reduced DM errors and only a 
slight benefit in terms of QS errors.  All high complexity queries 
required a solution with a SELECT, FROM, GROUP BY, 
HAVING, and ORDER BY clause. For these clauses, both DM 
and QS errors are shown. Participants may have incorrectly 
included a WHERE clause, which we coded as a QS error. 

In Figure 4, the first two tasks in each series are the pseudo-
SQL tasks (HPY & HPN) and the latter two tasks in each series 
are the manager-English tasks (HMY & HMN). Comparing the 
pseudo-SQL to manager-English tasks on a clause-by-clause 
basis, we note the following. First, the HPN task had the highest 
frequency of DM errors for the SELECT, GROUP BY, and 
ORDER BY clauses (30%, 38%, and 57% of participants had 
DM errors in these clauses, respectively). A closer examination 
of the HPN solutions indicates that the dominant DM error in 
the SELECT and GROUP BY clauses was omitting a table 
name as a prefix to the “title” column to clarify which of two 
possible title columns was referenced (i.e., the title in a person’s 
name, Person.Title, or the job title of an employee, 
Employee.Title). This ambiguous-column situation was only 
applicable to the HPN condition and is likely why DM error 
rates for pseudo-SQL high complexity tasks were comparable 
to their manager-English counterparts. 

 
 

 

Figure 4. Errors in High Complexity Tasks, by Clause 
 

 Task Abbreviations: H = High complexity; P = Pseudo-SQL request; M = Manager-English request; Y = Yes planning template 
was used; N = No planning template was available. 

 
 Note: The WHERE clause was not applicable to the high-complexity tasks. We coded an unnecessary WHERE clause inclusion as 

a structural (QS) error, but did not examine the contents of the incorrectly-added clause, so data model (DM) errors are not 
applicable for the WHERE clause in the high-complexity tasks.    
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Second, for the high complexity queries, fewer participants 
had QS errors in the FROM, WHERE, and HAVING clauses 
when given pseudo-SQL requests versus manager-English 
requests. All participants included a FROM clause in their 
query solutions, but QS errors occurred if the solution did not 
recognize the need for two joins of three tables inside the 
FROM clause. The pseudo-SQL requests explicitly listed the 
needed tables, and very few participants had errors recognizing 
the needed structure in the FROM clause. The WHERE and 
HAVING clauses, on the other hand, were more problematic. 
The high complexity queries required a HAVING clause but not 
a WHERE clause, yet 24-38% of participants incorrectly 
included a WHERE clause and 27-46% incorrectly excluded 
the HAVING clause. Clearly, participants struggled with the 
distinction between WHERE and HAVING clauses when query 
complexity was high. However, it appears that the pseudo-SQL 
requests, which explicitly included the word “having” instead 
of “where” (e.g., “show only those groups having more 
than...”), helped more than the manager-English requests 
without this clue (e.g., “for each order with a total….above”). 

Third, we note that for high complexity tasks, the ORDER 
BY clause was error-prone with 21-57% of participants having 
a DM and/or QS error. The pattern of errors in Figure 4 is not 
driven by request language, however, but rather by the planning 
task, discussed below. The ORDER BY clause is one of the 
easier clauses to understand and learn, since it simply specifies 

the desired sort order for the rows in the query result. However, 
it is also the last clause of a query, and a review of the 
participant solutions indicates that most of the ORDER BY 
errors were due to omitting the clause and its columns entirely. 
It may be that participants were mentally fatigued working on 
other parts of the high-complexity queries and simply forgot 
about sorting the rows in the requested order. 
 
4.4 Analysis of Planning Task Errors versus Final Query 
Errors 
Our final analysis concerns the effect of the planning task on 
final query errors, particularly QS errors. We re-examined the 
notes that participants wrote for each prompt/clause in the four 
planning task conditions to record on a clause-by-clause basis 
whether the clause contained a QS error. The note-taking in the 
planning task varied considerably in terms of detail – for 
example, one participant’s notes for the SELECT clause state, 
“last name and total quantity,” while another writes, 
“LastName, SUM(OrderQty) AS TotalQuantity.” Thus, we 
dropped the DM coding for the planning task and focus only on 
the QS coding. 

Figure 5 compares QS errors in the planning task to the QS 
errors in the final query solution, by clause. Note that the 
comparison is for only the four query tasks that were preceded 
by the planning task (LPY, LMY, HPY, HMY). 

 
 

 

Figure 5. Errors in Planning Task Conditions, by Clause 
 
Task Abbreviations: L = Low complexity; H = High complexity; P = Pseudo-SQL request; M = Manager-English request; Y = Yes 
planning template was used. 
 
Note: Errors in WHERE clause for HPY and HMY tasks, and errors in the GROUP BY, HAVING, and ORDER BY clauses for 
the LPY and LMY tasks are for incorrectly including the clause(s).    
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We note the following observations from Figure 5. First, 
and unsurprisingly, there are no QS errors in the SELECT 
clause; this is the first keyword in every query and participants 
clearly understand this. Second, few participants have QS errors 
in the FROM clause, which for all of the query tasks required 
at least one join of two tables. This is interesting in that 
recognizing and specifying table joins has been problematic in 
prior studies (e.g., Welty, 1985; Borthick et al., 2001; Bowen, 
O’Farrell, and Rohde, 2006). We attribute this difference to the 
fact that in prior studies, join conditions were specified in the 
WHERE clause, where a missing join condition would not 
cause an error in the query’s execution. In this study, 
participants were trained to specify joins in the FROM clause 
using the keywords JOIN and ON, which, if missing, will throw 
an error when the query is executed. The error message would 
provide immediate feedback that likely helped participants 
revise their queries accordingly. 

The more interesting observations are about the WHERE, 
GROUP BY, and HAVING clause results shown in Figure 5. 
The number of participants who struggled with these clauses 
varied considerably from the low complexity queries (LPY & 
LMY) to the high complexity queries (HPY & HMY). For the 
high complexity queries, more people had WHERE, GROUP 
BY, and HAVING clause errors in the template than in their 
final queries. In other words, the prompts in the planning task, 
intended to help participants determine which clauses were or 
were not needed in the solution, seem to have hurt their initial 
solution’s structure. For example, in the plans for the HMY 
condition, 63% of participants incorrectly included a WHERE 
clause and 55% incorrectly excluded a required HAVING 
clause. On the positive side, many of these planning task errors 
were corrected in the participants’ final query solutions, 
although participants may have overcome the problems in spite 
of the template rather than because of it. A review of the 
planning notes for the HPY and HMY tasks indicates that most 
participants knew an aggregate function was needed in either 
the SELECT statement or a filtering condition (i.e., a WHERE 
or HAVING clause). If their first query attempts included 
aggregate functions in the SELECT clause with the related 
clauses mis-specified, error messages would have provided 
some feedback which may have helped them correct the 
problems. 

On the other hand, the planning task did appear to help with 
the ORDER BY clause. All participants in the low-complexity 
planning tasks correctly recognized that an ORDER BY clause 
was not needed, and less than 20% of participants in the high-
complexity planning tasks failed to correctly include this 
clause. For this clause, participants’ final queries were more 
error-prone than their planning notes. This suggests that prior 
to coding, most participants knew that an ORDER BY clause 
was needed but possibly, by the time they worked through 
errors in the WHERE, GROUP BY, and/or HAVING clauses, 
they were not paying attention to their planning notes. 

A final observation from Figure 5 is that the WHERE clause 
in the LMY condition was clearly problematic, both in terms of 
template notes and final query accuracy. This was discussed 
earlier – the problem with the “hidden” online order condition 
in the manager-English request that was missed in the final 
queries. Similarly, this condition was missed in the planning 
task, where almost 60% of the planning templates were missing 
any hint of a second filtering condition. 

5. SUMMARY, IMPLICATIONS, AND FUTURE 
RESEARCH 

 
Our analysis of query formulation errors from the VC2016 
study furthers our understanding of the usefulness of two SQL 
training interventions. First, there is support for using pseudo-
SQL requests in the early stages of skill acquisition. We found 
that pseudo-SQL requests help novices identify WHERE clause 
conditions that are easy to miss with manager-English requests 
because they may be “hidden” as adjectives (e.g., online orders, 
salaried employees). The fact that over half of the participants 
missed a filtering condition with manager-English requests 
suggests that novices struggle with analyzing natural language 
and mapping it to specific columns in the data model. The use 
of pseudo-SQL removes some of the natural language 
translation complexity and allows the novice to focus on 
SELECT statement coding.  

The use of exact table and column names in the pseudo-
SQL requests helped reduced data-model mapping errors in 
other clauses as well, with one notable exception – when the 
same-named column appeared in two tables and the tables were 
joined. In this case, the column name required a table name 
prefix, which novices often omitted. Pseudo-SQL requests 
could be modified to include table name prefixes. This explicit 
use of database table and column names reduces another source 
of complexity for novices – the complexity of repeatedly 
referencing the data model to determine the tables and columns 
to include. However, reducing this complexity may also 
encourage novices to ignore the data model and rely exclusively 
on the terms in the pseudo-SQL request. 

These findings have implications for instructors who may 
find it useful to begin practice with each new SQL concept (e.g., 
the WHERE clause, the HAVING clause, or AND/OR/NOT 
conditions) using pseudo-SQL requests until students are 
competent with the structure and syntax. Instructors can 
increase the realism of the information request wording over 
time. However, with the increased realism, novices must learn 
to dissect the request (e.g., to look for adjectives), compare it to 
the data model, and ask questions to ensure they understand 
what tables and columns need to be included in their query 
solutions. There are many sources of ambiguity in a natural-
language information request, and we need more research on 
how to promote novices’ engagement with query formulation 
tasks. Research on cognitive load theory and scaffolding may 
be particularly useful here, as it focuses on instructional design 
that addresses both learner motivation and cognitive support 
(e.g., Belland, Kim, and Hannafin, 2013). 

The usefulness of the second intervention, the planning 
template, is mixed. As instructors, we believe it is valuable for 
novices to think about (plan) their query solution before getting 
bogged down in SQL syntax and trouble-shooting error 
messages. Our analysis did find support for template usefulness 
in reducing FROM and ORDER BY clause errors. However, it 
did not help with more challenging parts of queries, such as 
recognizing when to use WHERE versus HAVING and 
recognizing when a GROUP BY clause is needed. We view this 
as primarily a query structure problem – understanding the 
purpose and function of these three clauses and their inter-
relatedness (along with SELECT clause). There is unavoidable 
complexity here and those teaching SQL are likely keenly 
aware of these problem areas for novices.  
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The implication of these findings, along with other research 
on complex queries (e.g., Allen and Parsons, 2010), is that 
instructors still lack effective tools and strategies for teaching 
SQL grouping and aggregation. One avenue for future research 
is to improve the planning task so that participants more deeply 
engage with it. An interactive planning template could be 
designed, for example, to prompt for a GROUP BY clause only 
if the participant specifies an aggregate function in the SELECT 
clause in order to emphasize the relationship between these two 
clauses. The template contents could also be transferred to the 
query editor so that the plan, when complete, would essentially 
become the first draft of the query.  

Another direction for future research is to abandon the 
planning task and instead focus on providing better feedback on 
query errors. We observed that for the WHERE, GROUP BY, 
and HAVING clauses, many participants overcame the errors 
in their initial planning notes by the time they submitted their 
final queries. This is likely due to errors in their initial queries 
that produced errors and led to iterative query refinement. A 
trial-and-error approach may be more natural for novices, and 
research on errorful learning followed by corrective feedback 
shows that it can be effective (e.g., Metcalfe, 2017). However, 
learning from erroneous examples may not be particularly 
efficient for novices (McLaren et al., 2016). Another approach 
would combine planning with coding, in smaller increments (a 
couple of clauses at a time) and iteratively, so that incomplete 
but working queries are successively refined to get to the correct 
result set. This could reduce the number of errors and provide 
positive feedback as novices more quickly get “some” results. 
It might also promote more engagement with the task, if novices 
examine the results in the context of what results are desired 
and use this “gap analysis” to drive their refinements to the 
query. 
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APPENDIX 1. Data Model 

 

APPENDIX 2. Query Solution Analysis by Experimental Treatment 
 

 Pseudo-SQL Wording (P) Managerial Wording (M) 
 Planning Task 

(Y) 
No Planning 

Task (N) 
Planning Task 

(Y) 
No Planning 

Task (N) 
Low Query Complexity (L) LPY LPN LMY LMN 
Query solution breakdown: 
Data-model mapping (DM) elements1 
Query structure (QS) elements2  
Other3 

 
37.5% 
25.0% 
37.5% 

 
39% 
26% 
35% 

 
37.5% 
25.0% 
37.5% 

 
37.5% 
25.0% 
37.5% 

 
Halstead’s program length 

 
24 

 
23 

 
24 

 
24 

High Query Complexity (H) HPY HPN HMY HMN 
Query solution breakdown: 
Data-model mapping (DM) elements1 
Query structure (QS) elements2  
Other3 

 
30% 
20% 
50% 

 

 
34% 
19% 
47% 

 

 
34% 
19% 
47% 

 

 
20% 
36% 
44% 

Halstead’s program length 46 47 47 44 
1 Data-model (DM) elements = proportion of the query solution made up of table names and column names. 
2 Query structure (QS) elements = proportion of the query solution made up of SQL keywords that outline the structure 

of the correct solution (e.g., SELECT, FROM, JOIN, ON, WHERE, AND, OR, GROUP BY, HAVING, ORDER BY). 
3 Other = proportion of the query solution made up of punctuation marks (e.g., commas, quotation marks, parentheses), 

comparison operators (e.g., <, >, =, IS NULL), function names (e.g., MIN, SUM, COUNT, YEAR), literal values (e.g., 
1, manufacturing) 
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