

Journal of
Information
Systems
Education

Volume 29

Issue 2
Spring 2018

Fostering Cooperative Learning with Scrum in a
Semi-Capstone Systems Analysis and Design

Course

Alejandra Magana, Ying Ying Seah, and Paul Thomas

Recommended Citation: Magana, A., Seah Y. Y., & Thomas, P. (2018). Fostering Cooperative
Learning with Scrum in a Semi-Capstone Systems Analysis and Design Course. Journal of
Information Systems Education, 29(2), 75-92.

Article Link: http://jise.org/Volume29/n2/JISEv29n2p75.html

Initial Submission: 16 August 2017
Accepted: 30 January 2018
Abstract Posted Online: 21 March 2018
Published: 13 June 2018

Full terms and conditions of access and use, archived papers, submission instructions, a search tool,

and much more can be found on the JISE website: http://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301383076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://jise.org/Volume29/n2/JISEv29n2p75.html
http://jise.org/

Fostering Cooperative Learning with Scrum in a Semi-

Capstone Systems Analysis and Design Course

Alejandra J. Magana
Ying Ying Seah

Paul Thomas
Computer and Information Technology

Purdue University
West Lafayette, IN 47907, USA

admagana@purdue.edu, yseah@purdue.edu, pjosekut@purdue.edu

ABSTRACT

Agile methods such as Scrum that emphasize technical, communication, and teamwork skills have been practiced by IT
professionals to effectively deliver software products of good quality. The same methods combined with pedagogies of engagement
can potentially be used in the setting of higher education to promote effective group learning in software development classrooms.
Therefore, the purpose of this study is to integrate both Scrum and cooperative learning guidelines into a systems analysis and
design classroom to promote the skills of teamwork, communication, and problem-solving while learning systems analysis and
design methods. This integration was implemented in a sophomore, semi-capstone design course where students were engaged in
collaborative classroom activities. Two different approaches – overlapped approach and delayed approach – were used in two
different semesters for this implementation. Based on the analysis of student performance in the course, student reflections on their
team performance, and student overall perceptions of the teaching approach, this study suggests that the integration of cooperative
learning and Scrum serves as guidance for students to effectively analyze and design software solutions, as well as to reflect on
their team performance and learning process. In addition, a delayed approach for Scrum implementation appears to effectively
support student learning by providing better and earlier feedback.

Keywords: Cooperative learning, Scrum, Systems analysis & design, Student performance

1. INTRODUCTION

It has been widely acknowledged that professionals in
Information Technology (IT) are required to possess knowledge
and skills that allow them to solve organizational problems by
working with technically-oriented peers, as well as by
interacting with end users involved in the functional areas of the
organization (Koong, Liu, and Liu, 2002; Sivitanides et al.,
1995). This necessitates IT professionals to possess technical
knowledge as well as soft skills such as communication,
problem-solving, and teamwork (Bailey and Stefaniak, 1999).
In addition, writing and presentation delivery, along with
interpersonal and management skills, are critical for success in
the IT profession (Wilkins and Noll, 2000). Such a combination
of skills has been identified as relevant by industry experts and
academicians alike (Aasheim, Li, and Williams, 2009). As a
response to these needs, bodies of program accreditation such
as ABET (2016) have now identified not only the required
knowledge and skills that information technology graduates
should exhibit, but also the attitudes and behaviors needed to
confront complex problems. For instance, ABET (2016)
considers the criteria “an ability to design, implement, and
evaluate a computer-based system, process, component, or

program to meet desired needs” as equally important as “an
ability to function effectively on teams to accomplish a
common goal.” Accordingly, IT programs need to identify
ways in which students can effectively be exposed to this broad
range of skills sooner and more often throughout their
undergraduate programs of study.

One way in which industry IT professionals can effectively
combine such technical, communication, and teamwork skills
for the delivery of quality software products is facilitated by
Agile methods such as Scrum. Scrum (Takeuchi and Nonaka,
1986) is composed of a set of guidelines for implementing
Agile project management with the goal of creating tested and
usable results within weeks. Originally introduced in the
context of Japanese manufacturing by Takeuchi and Nonaka in
1986, Scrum as an Agile framework for software development
was introduced in the mid-to-late 1990s (Schwaber and Beedle,
2002). Variations or extensions of Scrum, such as Scrum/XP
Hybrid, have appeared since then. However, a recent survey
with thousands of companies responding revealed that the most
commonly used Agile methodology is Scrum, with 58% of
companies using it, with 10% of companies using Scrum/XP
Hybrid (VERSIONONE.COM, 2017). Schwaber and Beedle

Journal of Information Systems Education, Vol. 29(2) Spring 2018

75

(2002) also reported Scrum to be the most prevalent Agile
methodology in the IT industry.

On the other hand, in higher education settings, technical
knowledge, communication, problem-solving, and teamwork
skills can be effectively combined through classroom-based
pedagogies of engagement (Smith et al., 2005). Pedagogies of
engagement simultaneously promote teamwork and students’
involvement in their own learning (Smith et al., 2005). A means
for implementing pedagogies of engagement that promote
small-group learning is cooperative learning (Smith et al.,
2005). This study combines both Scrum and cooperative
learning guidelines (Johnson, Johnson, and Smith, 1998b) with
the goal of promoting teamwork, communication, and problem-
solving skills, with the learning of systems analysis and design
methods. We argue that bringing together best practices for
managing software development projects from industry with
best practices for meaningful group learning from academia can
result in synergistic ways for implementing teamwork learning
approaches in large classrooms. This paper, therefore, describes
the design elements of a sophomore course in the department of
Computer and Information Technology at Purdue University,
CNIT 280 Systems Analysis and Design Methods, which aims
at delivering authentic learning experiences for undergraduate
students early in their academic careers.

We situate CNIT 280 as a semi-capstone design course
where students are expected to demonstrate and integrate
knowledge and skills learned in this specific course with those
acquired from previous courses along with IT workplace
techniques and frameworks for documenting and managing
software projects. The guiding research questions for this study
are: 1) What are students’ levels of achievement on a systems
analysis and design course that integrates learning and Agile
methods through a semester-long project? 2) What are students’
team reflections on their learning and performance as a team
working on a semester-long project facilitated with Agile
methods? and 3) What are students’ perceptions of a systems
analysis and design course that integrates cooperative learning
and Agile methods through a semester-long project?

2. AGILE APPROACHES TO TEACHING AND
LEARNING IN SYSTEMS DEVELOPMENT COURSES

The use of Agile methodologies, in general, and Scrum, in
particular, in software engineering educational contexts is not
new. Previous work in educational settings that studied 49
capstone projects revealed that Agile approaches were more
appealing to student teams and resulted in greater project
success in terms of customer expectations being met by the final
software product (Umphress, Hendrix, and Cross, 2002).
Mahnic (2012) reported overwhelmingly positive student
perceptions about an undergraduate capstone course in software
engineering where Agile software development using Scrum
was introduced. Kamthan (2016) advocated for the use of
Scrum in software engineering courses to improve
collaboration within teams and to equip students with the
practical experience of Agile methodologies. For instance,
Master’s degree programs have adapted Agile methods into
their capstone courses based on observations that the use of
Agile methods along with customer collaboration and
programming ability had resulted in better productivity and
website quality (Rico and Sayani, 2009). Shukla and Williams

(2002) recommended that different Agile methodologies must
be assessed by educators and integrated into courses. Their
discussion was based on the introduction of extreme
programming in a senior level, software engineering course at
North Carolina State University. Coupal and Boechler’s (2005)
experience with independent external projects undertaken by
final year, computer systems technology students pointed to the
Agile approach supporting learning while providing practical
experience to students within an academic environment, with
usable software being the product.

3. PEDAGOGICAL FRAMEWORK

Cooperative learning refers to a pedagogical approach that
promotes small-group learning and gives recognition based on
group performance (Slavin, 1980). Cooperative learning has
been identified as an effective pedagogical approach where
“positive group-to-individual transfer of learning is a common
result of collaborative interaction” (Sears and Pai, 2012, p. 2).
A meta-analysis investigating instructional innovation in
undergraduate science, technology, engineering, and
mathematics (STEM) revealed that “various forms of small-
group learning are effective in promoting greater academic
achievement, more favorable attitudes toward learning, and
increased persistence through STEM courses and programs”
(Springer, Stanne, and Donovan, 1999, p. 21). In addition,
associations between students’ use of small-group learning
strategies and students’ self-efficacy for learning the course
material, as well as course grade, have been found (Stump et
al., 2011). Similarly, when integrating small-group learning
approaches, positive effects have been regularly identified not
only on student achievement outcomes (Slavin, 1980), but also
on other outcomes such as “self-esteem, intergroup relations,
acceptance of academically handicapped students, attitudes
toward school, and ability to work cooperatively” (Slavin,
1991, p. 71).

Cooperative learning was used as the pedagogical
framework that guided the integration of teamwork with Agile
teaching and learning methods. Cooperative learning guided the
design of this course by using Johnson, Johnson, and Smith’s
(1998a) five characteristics of cooperative learning as elements
of the CNIT 280 course. Table 1 depicts an overview of the
course design that aligns the five principles of cooperative
learning that were implemented in the course. Additional details
of the course implementation are presented in the next sections.

4. COURSE OVERVIEW AND CONTEXT

The Purdue Polytechnic Institute Transformation
Implementation plan 2014-2017 (2015) calls for the need to
produce more graduates who can meet the evolving needs of
industries and communities. Specifically, it requests the
integration of authentic learning experiences that are student-
centered, delivered via active learning pedagogies, and situated
in meaningful contexts providing students with opportunities to
acquire knowledge and practices in the modes of a discipline.
Cooperative learning has been identified as an approach that
can effectively implement active learning, student-centered
learning, problem-based learning, and project-based learning
(Gol and Nafalski, 2007).

Journal of Information Systems Education, Vol. 29(2) Spring 2018

76

Principle Definition Course Implementation
Positive
interdependence

The group has a clear task or
goal.

The project was divided in clear milestones and deliverables (see
Appendices A and B). The deliverables for the project are
established from the very beginning of the semester.

Individual and group
accountability

The group is accountable for
achieving its goals. Each
member must be accountable
for contributing a fair share of
the work.

Students are expected to work together as a team throughout all
milestones and deliverables of the project. However, as part of the
project, students are also expected to contribute individually. Two-
thirds of the project are graded as a team but about a third of it is
graded individually. In addition, students perform a self and peer
evaluation at the end of the semester.

Interpersonal and
small group skills

Basic teamwork skills: as a
group, provide effective
leadership, make decisions,
build trust, communicate, and
manage conflict.

Students are expected to work in-class and out-of-class throughout
the entire semester. However, during class time, the instructor and
TAs monitor group performance and facilitate conflict resolution if
needed.

Face-to-face
promotive interaction

A group member teaches
classmates about a topic.

As part of the individual portion of the project students become
specialized in one aspect of the system. However, in order for them
to complete the prototype, everyone must understand the system
functionality as a whole. In addition, students utilize in-class time
to work on the project and help each other as a team.

Group processing As a group, make decisions
about which behaviors to
continue and which behaviors to
change.

Team retrospectives are used as a mechanism for group processing.
For every milestone students are asked to reflect on what went well
and what challenges they encountered. They commit to improve at
least one team behavior from milestone to milestone.

Table 1. Alignment between Principles of Cooperative Learning and Elements of the Course

The design of the CNIT 280 systems analysis and design
course embodies some of the elements of the transformation
implemented via cooperative learning. It also includes
approaches used by today’s information system developers to
discover and model the requirements and then construct an
acceptable design to implement a successful system solution
and a functional prototype. Course emphasis focuses on
techniques that a programmer or analyst uses to develop
information systems, such as object-oriented tools and the
Unified Modeling Language (UML). In addition, this course
surveys other important skills for a systems analyst, such as
fact-finding, communications, project management, and cost-
benefit analysis. The elements of the Purdue Polytechnic
transformation integrated into CNIT 280 are the following:

4.1 Theory-Based Applied Learning
The course is designed as an active learning rather than a
passive learning experience. The students are responsible for
exploring and gathering relevant information and then
constructing meaningful personal experiences that add to their
own individual knowledge. The instructor’s role is to establish
parameters and facilitate the learning process. The instructor,
therefore, is not the primary source of information, but one of
many potential sources available to students. As such, this class
relies heavily on student participation in the form of classroom
collaborative activities, discussions, and projects. This is
similar to an inverted classroom approach (Gannod, Burge, and
Helmick, 2008), also called the flipped classroom approach, in
the sense that class time is devoted to projects and other active
learning approaches. However, it is also different because
students did not have to access video lectures online. Lectures
were delivered during class time and were, in addition,
combined with team exercises and practice.

4.2 Learning in Context
As part of the course, students are engaged in a semester-long
design experience where they apply tools and techniques
practiced during class-time via mini cases, to then transfer their
knowledge and skills to a more complex design problem.
Students continuously work on their design problem inside and
outside of the classroom, which culminates with a design
specification documentation, a functional prototype, a usability
evaluation of their prototype, and a sales presentation along
with a prototype walkthrough.

4.3 Modernized Teaching Methods
A typical class is composed of 15-20 minutes of lecture, 10-15
minutes of practice and feedback, and 30 minutes of term-
project work. At the beginning of the class, the instructor
presents an agenda of the day followed by an introduction of
the topic. Then, the instructor presents mini-cases for students
to solve in teams. Mini-cases describe certain functionality of a
system that usually has the scope of a complete use case
narrative. Students work in teams on the mini-cases using
whiteboards, while the instructor and graders walk around the
classroom providing feedback on their work. Then, the
instructor solves/models the mini-case for students using a
document camera.

For the rest of the class time, students have time to attempt
to apply the new knowledge or skills to their term-project
design problem. Students work in teams on their solutions, and
the instructor, teaching assistant, and graders walk around the
classroom providing feedback and guidance to students. At the
end of the class, students are required to model their solution
using a CASE tool and submit it via Blackboard the following
day for grading. Figure 1 and Figure 2 show instances of a
typical day during in-class teamwork.

Journal of Information Systems Education, Vol. 29(2) Spring 2018

77

Figure 1. Students Brainstorming Requirements for their

Design Project

Figure 2. Students Generating a Product Backlog for their

Projects

4.4 Team Project-Based Learning
The course implemented a Scrum approach (Rising and Janoff,
2000) to software development for the enactment of the teams’
prototypes. Scrum is an iterative and incremental approach to
product development where teams work as a unit to reach a
common goal. Students worked in teams of five members
where they analyzed individual requirements, documented
them, and implemented them into a functional prototype.
Following this approach, students created their prototypes
throughout the entire semester where they delivered their
project in increments at the end of every one or two weeks.
Students started their analysis by identifying a set of
requirements that were organized by priority in the product
backlog. Each item in the product backlog was then organized
into user stories. Students selected a set of user stories to be
implemented and delivered as a project increment. Each project
increment is called a sprint. In addition, within each major
delivery, students also reflected on the process as a team by
performing a team retrospective. The team reflected on the
previous deliverable and identified and agreed on continuous
process improvement actions. Once the sprint was delivered,
the sprint review was performed by the teaching assistant.

Scrum practices promoted team collaboration and
reflection by implementing specific roles (Kamthan, 2016).
The three most important roles in a Scrum approach are:

• Development team, performed by teams as a unit,

where students did the work of creating a product.
• Product owner, rotated by all team members throughout

each sprint. A student was responsible for keeping the
Gantt chart and product backlog for that sprint.

• Scrum master, also rotated by each team member, was
the person responsible for supporting the development
team, enabled communication during meetings, and
facilitated conflict resolution.

In addition to their prototypes and evaluation of their

prototypes, students generated a comprehensive design
document. The document specified the systems request,
systems requirements, and systems specification using the
Unified Modeling Language (Rumbaugh, Jacobson, and
Booch, 2004) to visualize the functional, structural, and
behavioral views of the system. The design document was
delivered in the form of four major milestones and a final
project. The solution of the design problem concluded with self
and peer evaluations. Appendices A and B describe the
elements students had to complete as part of each milestone.

4.5 Formative Feedback and Course Assessment
Throughout the entire semester, students for both approaches
had the opportunity to receive formative feedback on their
sprints and milestones. That is, in each of the sprints, students
could incorporate elements of the feedback received in the
previous sprints. During class time, the teaching assistant met
with each group to discuss the feedback and address
clarifications. To expose students to the iterative nature of
systems analysis and design, students had an opportunity to
revise and resubmit their milestones within one week after
receiving detailed feedback. Each sprint was assessed based on
students’ ability to clearly align the user stories with the
functionalities implemented through their prototypes. Students
also generated a navigation map which also had to align with
the navigation of the prototype. The design document was
assessed based on students’ ability to 1) accurately and
thoroughly apply project management techniques, 2) accurately
identify and analyze system requirements and present those as
user stories, 3) accurately construct UML models to represent
the functional, structural, and behavioral views of the system,
and 4) professionally prepare and present an organized final
report. As explained in Table 1, components of the final report
were evaluated individually and also as a team. Appendices A
and B describe the components evaluated for each of the
milestones. At the end of the semester, students submitted a
final design document compiling all previous milestones along
with an executive summary.

The course also implemented traditional, individual
assessment methods including weekly quizzes delivered online
as well as three exams where students demonstrated their
acquisition of conceptual knowledge as well as modeling skills.
The course final grade was calculated as follows: eight online
quizzes (10%), class participation in the form of attendance
(15%), three conceptual and modeling exams (20%), functional
prototype and interface usability evaluation (20%), final project
group grade including all milestones (20%), final project
individual grade (10%), and self and peer evaluations (5%).

5. METHODS

This design-based research presents two iterations of an
implementation of Agile teaching methods to promote elements
of cooperative learning.

Journal of Information Systems Education, Vol. 29(2) Spring 2018

78

5.1 Participants
Participants of this study included two cohorts of a systems
analysis and design methods course offered in the Fall of 2016
and Spring of 2017. Each cohort had 100 students. As
mentioned earlier, students from this course were
undergraduate learners with most of them majoring in computer
and information technology. Table 2 presents detailed
information of students’ majors for both implementations of the
course. In the Fall of 2016, 1 student was a freshman, 52 were
sophomores, 32 were juniors, and 15 were seniors. In the Spring
of 2017, 47 students were sophomores, 41 were juniors, and 12
were seniors. The Fall of 2016 class consisted of 81 male
students and 19 female students. The Spring of 2017 class
consisted of 84 male students and 16 female students.

Major
Fall of
2016

Spring of
2017

Computer & Information
Technology 83 81
Computer Engineering 1 0
Computer Graphics Technology 1 1
Computer Science 0 1
Electrical Engineering
Technology 2 2
Explorers 0 1
Network Engineering
Technology 8 9
Pre Management/Management 2 0
Systems Analysis & Design 3 4
Undesignated 0 1

Table 2. Number of Students per Major

5.2 Procedures
The integration of Scrum with cooperative learning was
implemented slightly differently in the Fall of 2016 than in the
Spring of 2017. The differences in the implementation process
were based on student feedback as well as observations and
feedback gathered from the instructional team. In both
semesters, the instructional team consisted of one instructor,
one graduate teaching assistant with industry experience, and
two undergraduate graders who had previously taken the course
and who excelled at demonstrating modeling skills while taking
the course. The two approaches for implementing Scrum with
cooperative learning are herein called the overlapped approach
in the Fall of 2016 and the delayed approach in the Spring of
2017.

The overlapped approach included all the design elements
described in Section 4 Course Overview and Context.
However, sprints for the implementation and delivery of the
prototype and milestones for the design document documenting
the functional, structural, and behavioral views of the system
overlapped throughout the entire semester (see Figure 3). In
addition, each sprint was incremental and delivered every two
weeks. Specifically, in each sprint, students were asked to
specify detailed functionality of two user stories each time and
generate the corresponding functionalities in the prototype.

Milestones were also delivered incrementally, meaning that
only user stories identified in each sprint were considered as
part of the documentation required for each milestone. For
example, as indicated in Appendix A, Milestone 2 required
students to detail the user stories through use-case narratives,
corresponding activity diagrams, and corresponding class
diagrams up to sprint 3. Since students were requested to work
on only two user stories in each sprint, they needed to only
deliver those elements for the first six user stories. However,
students had to keep adding two detailed user stories for each
remaining milestone (i.e., Milestone 3 and Milestone 4).

Figure 3. Alignment between Project Documentation and Prototype Development (Fall 2016)

Journal of Information Systems Education, Vol. 29(2) Spring 2018

79

Figure 4. Alignment between Project Documentation and Prototype Development (Spring 2017)

The delayed approach also included all the design elements
described in Section 4. However, in this approach, sprints were
delayed until after students had detailed all their user stories
into detailed use case narratives (see Figure 4). That is, students
were not able to start on their prototypes until all user stories
were documented and approved by the instructional team. In
this implementation, the sprints were delivered every single
week. In each sprint, students were asked to implement the
corresponding functionality detailed in the use case narrative in
their prototypes, and in addition, keep track of their projects
using Kanban. Kanban is a Japanese method of a flow control
used in manufacturing as a scheduling system (Ahmad,
Markkula, and Oivo, 2013). This approach has been adopted in
software development due to its benefits in improving “lead
time to deliver software, improved quality of software,
improved communication and coordination, increased
consistency of delivery, and decreased customer reported
defects” (Ahmad, Markkula, and Oivo, 2013, p. 10). The
description of the deliverables required for each milestone for
the Spring of 2017 implementation is detailed in Appendix B.

The main distinction between these two approaches was
that in the overlapped approach students were uncovering user
stories two by two at a time and implementing them
incrementally every two weeks from the beginning of the
semester. On the other hand, the delayed approach guided

students to first identify all requirements described as user
stories in their product backlog before actually starting to
construct their prototypes toward the middle of the semester.

5.3 Data Collection and Data Analysis Methods
This study hypothesized that combining both Scrum Agile
approaches with cooperative learning guidelines will promote
student systems analysis and design knowledge as well as
develop student teamwork skills. We, therefore, focus on three
main constructs as evidence of the effectiveness of this
approach: student performance in the course, student reflections
on their team performance, and student overall perceptions of
the teaching approach. Table 3 presents an alignment between
the research questions, data collection method, and data
analysis methods for each of the three constructs.

6. RESULTS

Results from this study are presented by research question
identifying similarities and differences between the overlapped
approach (Fall of 2016) and the delayed approach (Spring of
2017) in terms of student performance in the course, student
reflections on their team performance, and student overall
perceptions of the teaching approach.

Journal of Information Systems Education, Vol. 29(2) Spring 2018

80

Research Question Data Collection Method Data Analysis Method
Construct: Student academic performance
What are students’ level of
achievement in a systems
analysis and design course that
integrates learning and Agile
methods through a semester-
long project?

Student performance on elements of the course:
• Overall final grade as evidence of overall

student performance throughout the semester.
• Final project as evidence of student ability to

document the analysis and design of a system.
• Total average of the five sprints as evidence of

students’ ability to translate a system design
into a working prototype.

Data was analyzed using descriptive
statistics including measures of central
tendency and variability (mean and
standard deviation).
Inferential statistics (Wilcoxon-Mann-
Whitney U-Test) was used to identify
possible performance differences
between Fall of 2016 and Spring of
2017.

Construct: Student reflections on team performance
What are students’ team
reflections on their learning
and performance as a team
working on a semester-long
project facilitated with Agile
methods?

Team reflection in the form of Scrum team
retrospective:
Evaluation of the team about their performance on
the milestone just finished:
• What went well in this milestone?
• What went wrong in this milestone?
• What are possible concerns?
• What should we keep doing?

Plan of action:
• How to improve people?
• How to improve processes?
• How to improve tools?
• You must commit to have something to

improve every milestone.

Qualitative analysis was performed on
team reflections. Open coding was
used to identify categories. Axial
coding was then used to identify
themes.
Patterns were then then quantified by
identifying frequencies or counts of
themes.

Construct: Student perceptions of the course
What are students’ perceptions
of a systems analysis and
design course that integrates
cooperative learning and Agile
methods through a semester-
long project?

Final teaching evaluation multiple choice survey
(sample questions):
• The instructor employs effective teaching

methods.
• The instructor gives valuable feedback on each

student’s performance.
Final teaching evaluations open-response questions:
• What is something/are some things that the

instructor does well, e.g., something you hope
that the instructor will continue to do in the
class in the future?

• Make a suggestion(s) for improving the course
(a criticism alone is not helpful; tell your
instructor how you would fix any problem).

Student survey data analyzed using
descriptive statistics including
measures of central tendency and
variability (i.e., mean and standard
deviation).
Inferential statistics (two sample-t
test) used to identify possible
differences between groups.
Qualitative analysis performed on
student open-response questions.
Open coding used to identify
categories. Axial coding then used to
identify themes.

Table 3. Alignment between Research Questions and Data Collection and Data Analysis Methods

6.1 Student Academic Performance
This section responds to the first research question: What are
students’ levels of achievement in a systems analysis and design
course that integrates learning and Agile methods through a
semester-long project? The Mann-Whitney U-Test was used to
check for significant differences in academic performance
between students in the Fall of 2016 and Spring of 2017
semesters. As shown in Table 4, academic performance was
measured in terms of final project scores, prototype sprint
scores, and final course grade. Effect size as given by Cohen’s
d was computed using the point-biserial correlation estimate
(Ivarsson et al., 2013).

The Mann-Whitney test showed that the final project score
in the Spring of 2017 semester (Median = 96) was significantly
greater than the final project score in the Fall of 2016 semester
(Median = 83), U = 3092.5, p < 0.0001. The effect size given

by Cohen’s d = 1.06 indicated a large practical significance.
The test also revealed that the total sprints score in the Spring
of 2017 semester (Median = 100) was significantly greater than
the total sprints score in the Fall of 2016 semester (Median =
94), U = 1695, p < 0.0001. The effect size given by Cohen’s d
= 3.01 indicated a large practical significance. The Mann-
Whitney test also indicated that the final grade in the Spring of
2017 semester (Median = 87.55) was significantly greater than
the final grade in the Fall of 2016 semester (Median = 84.68),
U= 3799.5, p < 0.005. The effect size given by Cohen’s d = 0.59
indicated a moderate or medium practical significance.

The overall academic performance was proficient in both
semesters. However, performance in the Spring of 2017 was
significantly higher than in the Fall of 2016 in the three overall
measures, with moderate to extremely large practical
significance.

Journal of Information Systems Education, Vol. 29(2) Spring 2018

81

 Semester

 Fall of 2016 Spring of 2017

 Median Range N Median Range N U P d

Final Project 83.00 40.00 100 96.00 20.00 99 3092.5 < 0.01 1.06
Total Sprints 94.00 30.00 100 100.00 40.00 99 1695.0 < 0.01 3.01
Final Grades 84.68 47.01 100 87.55 32.40 99 3799.5 < 0.01 0.59

Table 4. Academic Performance Comparing the Overlapped Approach (Fall 2016) and the Delayed Approach (Spring
2017)

6.2 Student Reflections on Team Performance
This section responds to the second research question: What are
students’ team reflections on their learning and performance as
a team working on a semester-long project facilitated with
Agile methods? A qualitative analysis was performed on
students’ team reflections for each of their four milestones.
Since each team was composed of 5 students and each course
offering had 100 students, a total of 20 teams and their
reflections were analyzed. Because the team reflections were

qualitatively analyzed, not all teams discussed the same themes.
Based on this analysis, five main themes were identified: time
management, teamwork, communication among team
members, quality of work, and progress toward project
completion. Table 5 below describes each of these themes, their
definitions, and sample quotes. In addition, Table 6 depicts the
counts of each of the identified themes per team and for each of
the milestones.

 Themes Definition Sample Quote

Time
Management

Episodes where students reflected on
scheduling and on-time task completion. They
talked about how they scheduled group
meetings as well as how they went about
making sure they adhered to the project
deadlines.

Some possible concerns is team scheduling. Since we have
five members who are all involved in various activities and
classes besides this one, it can be difficult to find a time
suitable for all of us which may lead to some team
members doing more work than others. This milestone,
that hurt us in particular. We also had a tough time
completing this on time because it was due the night
Thanksgiving Break started.

Teamwork Episodes where students reflected on how
well they worked together as a team. Things
that students touched on included fair share of
work, contribution of different skills, as well
as efficiency of work.

During this milestone as a group we worked very well in
small groups. We split off into smaller groups to work on
the different parts of the project which worked a lot better
than all of us working on the same part of the project at the
same time. After we finished whatever part we have
chosen to work on, we were able to pass it over to another
person within the group to be able to check over the work
so that everyone is in agreement with the work.

Communication Episodes where students reflected on the
efficiency and effectiveness of
communication within and outside the team.
This included communication between team
members and communication between the
team and the instructional team. They talked
about medium of communication, conflict
resolution, clarity of exchanged messages, as
well as frequency of communication.

We had no trouble dividing the work almost ourselves, and
communication was constant and conductive.

Our communication, while already strong, could be used
better to make sure everyone is completing the work in a
timely manner.

Quality of Work Episodes where students reflected on the
quality of their work. They discussed about
the accuracy of their work as well as the
consistency of their work across milestones.

We are concerned that our estimates in the Cash Flow
diagram might not be as accurate as we would like.
Another concern is that the information included in our
Gantt chart is not specific enough.

Project Progress Episodes where students reflected on their
progress in the project. They mentioned things
like which part of a milestone they have
completed and what their next step was in
terms of project completion.

Milestone 3 brought together some of the final pieces of
the project. We were able to update our product backlog to
represent more closely how close everything is and how
long they will take to complete. The team has worked hard
to finalize activity diagrams for all of the use case
narratives. Along with the activity diagrams the team has
completed sequence diagrams.

Table 5. Themes Emerged from Team Performance from Both Approaches

Journal of Information Systems Education, Vol. 29(2) Spring 2018

82

Theme Semester
 Fall of 2016 Spring of 2017

Total
Total
(M1)

Total
(M2)

Total
(M3)

Total
(M4)

Total

Total
(M1)

Total
(M2)

Total
(M3)

Total
(M4)

Time Mgmt. 35 9 6 9 11 45 8 12 14 11
Teamwork 37 12 7 7 11 52 11 14 13 14
Communication 27 8 5 6 8 33 6 9 9 9
Quality of Work 26 5 7 5 9 11 0 2 5 4
Project Progress 27 3 5 6 13 21 3 7 3 8

Table 6. Overall Count of Themes from Student Reflections Comparing the Overlapped Approach (Fall of 2016) and the
Delayed Approach (Spring of 2017)

Results from Table 6 suggest that students in the Spring of 2017
semester reflected more on their time management and
teamwork skills. On the other hand, students from the Fall of
2016 semester reflected more on the quality of their work.
Students from both semesters reflected about the same number
of times on their communication strategies and project progress.

6.3 Student Perceptions of the Course
This section responds to the third research question: What are
students’ perceptions of a systems analysis and design course
that integrates cooperative learning and Agile methods through
a semester-long project? Students from both semesters
responded to a final teaching evaluation where they rated
statements about the instructor and the course on a Likert scale
with the options Strongly Disagree, Disagree, Undecided,
Agree, and Strongly Agree. These were assigned scores from
one to five with the extremes of the scale (strongly disagree and
strongly agree) assigned scores of one and five, respectively.

The students from the Spring of 2017 semester reported
more positive perceptions of the course, the instructor, and the
teaching methods employed as compared to the students from
Fall of 2016 semester. This is shown in Table 7 with a much
larger percentage of responses recorded by the students of
Spring of 2017 for the agree and strongly agree options as
compared to those of Fall of 2016. As recommended by
McCrum-Gardner (2008), Mann-Whitney U-test was used for
analyzing ordinal data recorded using Likert scales. Resulting
p-values were less than 0.05, thereby indicating a significant
difference in perceptions between the Spring of 2017 and Fall
of 2016 semesters.

As part of the final teaching evaluations, students were also
given the opportunity to provide feedback to the instructor.
Students’ comments were categorized in positive comments,
constructive comments, and complaints. Although we do not
provide in-depth detail over such comments, we offer here
representative comments from each semester. Overall positive
comments from both semesters are consistent. Students
appreciated in-class exercises, detailed feedback, and
teamwork. For instance, samples of quotes include:

I really enjoyed being able to resubmit milestones if our
group received a poor grade the first time we submitted
it. This helped our grade a lot, and I think it also helped
us learn the material better by learning from our
mistakes and correcting them. I also very much
appreciated having class time to work on the project,
since it was difficult to find times outside of class when

everyone could meet. I found our TA to be very patient
and helpful with our sprints and milestones. (Student,
Fall of 2016)

She was prepared for every class. There was a great
amount of time to work on the projects, which was great
(depending on teammates showing up). I was able to
use the diagrams in other classes. I know how to use
those in real life applications and on development teams
I won’t feel lost trying to understand the
documentation, which is great. Also, she really made
the class engaging and made sure everyone was on the
same page before totally moving on which really
helped. (Student, Spring of 2017)

From our own reflections of the course offered in Fall of

2016, and from students’ comments such as the one below, it
was clear that students felt the first implementation of the
course following an overlapped approach was confusing:

Some of the problem in the class were the material was
very confusing and it was not clear what we were
learning in the class. The classroom itself did not fit the
needs of the students it was very tough to understand
what the instructor was doing because of the unusual
setup of the classroom. The amount of work in the class,
the class needs a lab in it. (Student, Fall of 2016)

7. DISCUSSION AND IMPLICATIONS FOR
TEACHING AND LEARNING

This study implemented and compared two approaches, an
overlapped approach and a delayed approach, for the
integration of Scrum practices to promote cooperative learning
in a systems analysis and design course. The implementation of
the two approaches were compared in terms of academic
achievement, teams’ perceptions of their performance, and
students’ perceptions of the course. In terms of these three
constructs, findings from this study suggest that in terms of
student achievement, the delayed approach was more
supportive of student learning. In terms of teams’ perceptions
of their performance, students from both approaches reflected
equally about their communication strategies and project
progress. However, students in the delayed approach reflected
more on their time management and teamwork skills, while
students in the overlapped approach reflected more on the
quality of their work.

Journal of Information Systems Education, Vol. 29(2) Spring 2018

83

 Semester
 Fall of 2016 Spring of 2017

 SA A U D SD SA A U D SD

The instructor's course materials are helpful 12.5 39.6 12.5 16.7 19.0 36.2 37.7 11.6 13.0 1.4

The instructor employs effective teaching
methods and techniques 10.4 37.5 16.7 18.8 17.0 33.3 30.4 20.3 13.0 2.9

The instructor teaching is creative and
innovative 12.5 38.3 21.3 10.6 17.0 31.9 30.4 17.4 17.0 2.9

The instructor demonstrates how to apply
concepts and methodologies 16.7 45.8 12.5 10.4 15.0 33.8 42.6 14.7 7.4 1.5

The instructor presents sufficient and
relevant examples 16.7 41.7 14.6 16.7 10.0 35.8 40.3 11.9 10.0 1.5

The instructor relates course material to
industry 12.5 47.9 16.7 6.2 17.0 33.8 41.2 11.8 10.0 2.9

The instructor the instructor's tests or
assignments are relevant to the subject 12.5 48.9 6.4 14.9 17.0 33.3 52.2 8.7 2.9 2.9

The instructor gives valuable feedback on
each student's performance 12.5 33.3 14.6 27.1 13.0 36.2 33.3 15.9 10.0 4.3

The instructor provides help and suggests
ways for students to improve 20.8 43.8 16.7 10.4 8.3 31.2 50.6 13.0 3.9 1.3

The instructor explains difficult material
clearly 8.3 30.4 15.2 23.9 22.0 27.5 36.2 15.9 17.0 2.9

The instructor is effective in instruction 10.4 39.6 14.6 20.8 15.0 26.5 42.6 14.7 13.0 2.9

Note. SA – Strongly Agree, A – Agree, U – Undecided, D – Disagree, SD – Strongly Disagree
Table 7. Percentage (%) Distribution of Student Responses Comparing the Overlapped Approach (Fall of 2016) and the

Delayed Approach (Spring of 2017)

Finally, considering students’ perceptions of the course,
students from the delayed approach on average reported
positive perceptions of the course, the instructor, and the
teaching methods employed. In contrast, students from the
overlapped approach were undecided on their perceptions of
the usefulness of the course materials and the overall
effectiveness of the instructors’ teaching methods including
examples, tests, explanations, and feedback.

We hypothesize that differences in students’ performance,
team perceptions of their performance, and students’
perceptions of the course, in general, can be attributed to the
students’ level of uncertainty experienced throughout the
semester in terms of the organization of the course, as well as
their performance in their work regarding the solution of the
case study. The Control-Value Theory of Achievement
Emotions (Pekrun, 2006) posits that students’ appraisals of their
control are central to the activation of achievement emotions
affecting their levels of engagement and consequently their
achievement. Specifically, students in the overlapped approach
might have felt confused or might have experienced uncertainty

pertaining to the course structure, as well as their limited
understanding of the case study. For instance, as shown in the
last quote from the previous section, some students felt unclear
about the unusual setup of the classroom. This discomfort was
also evidenced in the final teaching evaluations where students
found the course materials and the instructor’s explanations
difficult to understand (see Table 7). Also, students in the
overlapped approach actually reflected more about the quality
of their work (as opposed to team management and planning),
possibly suggesting that they were uncertain or non-confident
of their performance, and therefore felt the need to reflect on it.
On the other hand, students in the delayed approach might have
had a clearer understanding of the case study before moving
onto the prototype. Similarly, each milestone in the delayed
approach was self-contained in terms of the scope, and not
incremental as in the overlapped approach, giving students a
better sense of control.

The implications for teaching and learning relate to the need
of timing formative feedback and guidance to support students’
design processes (Shute, 2008). In both implementations of the

Journal of Information Systems Education, Vol. 29(2) Spring 2018

84

course, students were provided with verification and
elaboration feedback. Verification feedback was provided using
a rubric. Students were informed about their correct or incorrect
approaches to systems analysis and design. Elaboration was
provided via detailed corrections in every milestone specifically
telling the students what needed to be addressed (Black and
Wiliam, 1998). Although students submitted their design
documents through the course management system, each team
was required to print their documents and deliver them in the
next class for detailed correction of the diagrams and overall
documentation. As mentioned earlier, teams were allowed to
revise and resubmit their documentation within the next week
after receiving the feedback. What did change from both
approaches (i.e., overlapped and delayed) was the timing of the
feedback relative to the time students started with their
prototypes. While students in the delayed approach started their
prototype once they received feedback on all identified user
stories and requirements of the system, the students in the
overlapped approach started their sprints before receiving
feedback on their requirements and the feedback they received
was more incremental. The timing of the feedback received
might have had an impact on students’ appraisals of their
control and therefore their perceptions of and performance in
the course.

8. CONCLUSION, LIMITATIONS AND FUTURE
WORK

Findings from our study suggest that cooperative learning
combined with Scrum can effectively guide students in
analyzing and designing software solutions. Other studies that
implemented collaborative group projects with Scrum have also
identified that this combination allows students to effectively
frame, plan, and manage group projects (Pope-Ruark, 2012).
Our study suggests that in addition, the implementation of team
retrospectives allowed students to reflect not only on their
learning process, but also on aspects of team performance such
as time management, communication, quality of work, and
progress toward completion.

Our study also presented two approaches for integrating
cooperative learning with Scrum: an overlapped approach and
a delayed approach. Although the overlapped approach may be
closest to the way Scrum is applied in industry settings, results
from our study suggest that for learning purposes, a delayed
approach for Scrum implementation may support better student
learning allowing for timely verification and elaboration
feedback. As a result, students may have a better sense of
control in their learning and consequently feel better prepared
to activate their levels of engagement. That is, better guidance
can be provided to students when they have an opportunity to
receive feedback in their preliminary analysis before moving on
into aspects of design and implementation. Evidence of that
includes better performance on the final project, the
implementation of their functional prototypes, and their overall
course performance. In addition, students reported overall
positive perceptions of the course because they thought it was
better organized and that more guidance, feedback, and
opportunities to revise their work were provided to them.

Limitations of our study relate to the potential impact of our
variations of Scrum for learning purposes. However, we are
confident that students benefited from their learning and are

now better prepared for internships and future careers. For
instance, in the Summer of 2017, the course instructor received
the following email from a student with the subject “Thank
you”:

Dr. Magana,
My name is [student’s name] and I just took your class
(CNIT 280) this past spring and I just wanted to take a
second to thank you for being a great professor.
Honestly, when I first started your class I did not know
how useful the information that I would learn in your
class would be but, I was wrong. This summer I am
interning at Intel Corp and the first day of my internship
I was introduced to our Scrum master and was told that
my team followed an Agile Framework method. I was
shocked because being a cybersecurity major I did not
think I would be using user stories and everything else
during my internship. Thanks to your class I was able
to skip an entire day of training regarding how to write
a user story and how the entire process works and I was
also able to help my team be more efficient in the way
we track our stories.
Thank you once again and I hope you are having a
wonderful summer.

We will continue making improvements in the course based

on feedback from students, the curriculum committee, and our
advisory board to continuously adapt the course to industry
needs. Specifically, in the near future, we will continue our
work toward a more rigorous application of the Scrum
methodology integrating other practices such as stand-up
meetings, burn charts to track the velocity of the team, and so
forth.

9. ACKNOWLEDGEMENTS

We thank Jeffrey Brewer, associate professor of CIT; Kevin
Dittman, associate professor of CIT; and Jeffrey Whitten,
professor of CIT, for their continuous feedback in improving
the course. We would also like to show our gratitude to the
Purdue Polytechnic Institute for their support with
transformation funds for curricular innovations.

10. REFERENCES

ABET. (2016). Criteria for Accrediting Engineering Programs

Effective for Reviews During the 2017-2018 Accreditation
Cycle. Retrieved from http://www.abet.org/wp-
content/uploads/2016/12/E001-17-18-EAC-Criteria-10-29-
16-1.pdf.

Aasheim, C. L., Li, L., & Williams, S. (2009). Knowledge and
Skill Requirements for Entry-Level Information Technology
Workers: A Comparison of Industry and Academia. Journal
of Information Systems Education, 20(3), 349-356.

Ahmad, M. O., Markkula, J., & Oivo, M. (2013). Kanban in
Software Development: A Systematic Literature Review.
Proceedings from the Software Engineering and Advanced
Applications (SEAA), 2013 39th EUROMICRO Conference,
9 - 16.

Journal of Information Systems Education, Vol. 29(2) Spring 2018

85

Bailey, J. L. & Stefaniak, G. (1999). Preparing the Information
Technology Workforce for the New Millennium. ACM
SIGCPR Computer Personnel, 20(4), 4-15.

Black, P. & Wiliam, D. (1998). Assessment and Classroom
Learning. Assessment in Education: Principles, Policy &
Practice, 5(1), 7-74.

Coupal, C. & Boechler, K. (2005). Introducing Agile into a
Software Development Capstone Project. Proceedings from
the Agile Conference, 2005, Denver, CO.

Gannod, G. C., Burge, J. E., & Helmick, M. T. (2008). Using
the Inverted Classroom to Teach Software Engineering.
Proceedings of the 30th International Conference on
Software Engineering.

Gol, O. & Nafalski, A. (2007). Collaborative Learning in
Engineering Education. Global Journal of Engineering
Education, 11(2), 173-180.

Ivarsson, A., Andersen, M. B., Johnson, U., & Lindwall, M.
(2013). To Adjust or not Ddjust: Nonparametric Effect Sizes,
Confidence Intervals, and Real-World Meaning. Psychology
of Sport and Exercise, 14(1), 97-102.

Johnson, D. W., Johnson, R. T., & Smith, K. A. (1998a). Active
Learning: Cooperation in the College Classroom. ERIC.

Johnson, D. W., Johnson, R. T., & Smith, K. A. (1998b).
Cooperative Learning Returns to College: What Evidence is
there that it Works? Change: The Magazine of Higher
Learning, 30(4), 26-35.

Kamthan, P. (2016). On the Nature of Collaborations in Agile
Software Engineering Course Projects. International Journal
of Quality Assurance in Engineering and Technology
Education (IJQAETE), 5(2), 42-59.

Koong, K. S., Liu, L. C., & Liu, X. (2002). A Study of the
Demand for Information Technology Professionals in
Selected Internet Job Portals. Journal of Information Systems
Education, 13(1), 21.

Mahnic, V. (2012). A Capstone Course on Agile Software
Development Using Scrum. IEEE Transactions on
Education, 55(1), 99-106.

McCrum-Gardner, E. (2008). Which is the Correct Statistical
Test to Use? British Journal of Oral and Maxillofacial
Surgery, 46(1), 38-41.

Pekrun, R. (2006). The Control-Value Theory of Achievement
Emotions: Assumptions, Corollaries, and Implications for
Educational Research and Practice. Educational Psychology
Review, 18(4), 315-341.

Pope-Ruark, R. (2012). We Scrum Every Day: Using Scrum
Project Management Framework for Group Projects. College
Teaching, 60(4), 164-169.

Purdue Polytechnic Institute. (2015). Purdue Polytechnic
Institute Transformation Implementation Plan August 2014
– December 2017 (Updated August 24, 2015). West
Lafayette, IN: Purdue University.

Rico, D. F. & Sayani, H. H. (2009). Use of Agile Methods in
Software Engineering Education. Agile Conference, 2009.
AGILE’09, 174-179.

Rising, L. & Janoff, N. S. (2000). The Scrum Software
Development Process for Small Teams. IEEE Software,
17(4), 26-32.

Rumbaugh, J., Jacobson, I., & Booch, G. (2004). The Unified
Modeling Language Reference Manual. Pearson Higher
Education.

Schwaber, K. & Beedle, M. (2002). Agile Software
Development with Scrum (Vol. 1). Upper Saddle River, NJ:
Prentice Hall.

Sears, D. A. & Pai, H.-H. (2012). Effects of Cooperative Versus
Individual Study on Learning and Motivation after Reward-
Removal. The Journal of Experimental Education, 80(3),
246-262.

Shukla, A. & Williams, L. (2002). Adapting Extreme
Programming for a Core Software Engineering Course.
Proceedings from the 15th Conference on Software
Engineering Education and Training (CSEE&T 2002),
Covington, KY.

Shute, V. J. (2008). Focus on Formative Feedback. Review of
Educational Research, 78(1), 153.

Sivitanides, M. P., Cook, J. R., Martin, R. B., Chiodo, B. A., &
Landram, F. (1995). Verbal Communication Skills
Requirements for Information Systems Professionals.
Journal of Information Systems Education, 7(1), 38-43.

Slavin, R. E. (1980). Cooperative Learning. Review of
Educational Research, 50(2), 315-342.

Slavin, R. E. (1991). Synthesis of Research of Cooperative
Learning. Educational Leadership, 48(5), 71-82.

Smith, K. A., Sheppard, S. D., Johnson, D. W., & Johnson, R.
T. (2005). Pedagogies of Engagement: Classroom‐Based
Practices. Journal of Engineering Education, 94(1), 87-101.

Springer, L., Stanne, M. E., & Donovan, S. S. (1999). Effects
of Small-Group Learning on Undergraduates in Science,
Mathematics, Engineering, and Technology: A Meta-
Analysis. Review of Educational Research, 69(1), 21-51.

Stump, G. S., Hilpert, J. C., Husman, J., Chung, W. T., & Kim,
W. (2011). Collaborative Learning in Engineering Students:
Gender and Achievement. Journal of Engineering
Education, 100(3), 475-497.

Takeuchi, H. & Nonaka, I. (1986). New Product Development
Game. Harvard Business Review.

Umphress, D. A., Hendrix, T. D., & Cross, J. H. (2002).
Software Process in the Classroom: The Capstone Project
Experience. IEEE Software, 19(5), 78-81.

VERSIONONE.COM. (2017). 11th Annual State of Agile
Report. Retrieved from http://stateofagile.versionone.com/.

Wilkins, M. L. & Noll, C. L. (2000). Critical Skills of IS
Professionals: Developing a Curriculum for the Future.
Journal of Information Systems Education, 11(3-4), 105-110.

Journal of Information Systems Education, Vol. 29(2) Spring 2018

86

AUTHOR BIOGRAPHIES

Alejandra J. Magana is an Associate Professor in the
Department of Computer and
Information Technology with a
courtesy appointment at the
School of Engineering Education
at Purdue University. Her
research program investigates
how model-based cognition in
Science, Technology,
Engineering, and Mathematics
(STEM) can be better supported
by means of expert technological

and computing tools such as cyberinfrastructure, cyber-
physical systems, and computational modeling and
simulation tools.

Ying Ying Seah is a Ph.D. student in the Department of

Computer Information
Technology at Purdue
University. Her research
interests include system
analysis and design
education, K – 12 STEM
learning, educational CAD,
student experimentation
strategies, and design
thinking.

Paul Thomas is a Ph.D. student in the Department of

Computer Information
Technology at Purdue
University. His research
interests include project
management practices,
gamification in education,
and student engagement.

Journal of Information Systems Education, Vol. 29(2) Spring 2018

87

Appendix A: Description of Project Milestones and Deliverables Fall of 2016

Milestone Deliverables
Milestone 1 • Introduction: Who are you and what is your requirement analysis strategy (BPA, BPI, BPR)?

• Project Vision Statement: What do you want your end product to be?
• Context Diagram: Inputs/Outputs to and from the system.
• System Request: project sponsor, business need, business requirements, business value and special

constraints.
• Product Roadmap: (optional) a picture of your post-it notes.
• Product Backlog: the master to-do list considering input from..
• Use-case Diagram: A diagram that represents the interactions between actors and use cases, including

the relationship among use cases, and relationships between actors.
• Team Retrospective: Evaluation of the milestone just finished and plan of action.

Milestone 2 • Updated product backlog: Created from the requirements from product roadmap.
• Documentation up to Sprint 3: Include use-case narratives, corresponding activity diagrams, and

corresponding class diagram.
• Gantt Chart: Include the estimates for each sprint. It should be updated along the process and

delivered for each milestone.
• Cash Flow: Financial cost-benefit analysis.
• Team Retrospective: Evaluation of the milestone just finished and plan of action.

Milestone 3 • Updated product backlog: Created from the requirements from product roadmap.
• Documentation up to Sprint 4: Include updated use-case narratives, corresponding activity diagrams,

corresponding class diagram, and corresponding sequence diagrams.
• Updated Gantt Chart: Include the estimates for each sprint. It should be updated along the process and

delivered for each milestone.
• Team Retrospective: Evaluation of the milestone just finished and plan of action.

Milestone 4 • One-Page Executive Summary: highlights of the main points of the problem and main points of your
proposed solution
o Start by describing the mission of the company and briefly describe the problem they have.
o Describe your solution. You may want to start by stating the project vision statement and then

the system you are proposing. It would be a good idea to describe here your architecture design
(web-based, cloud-based, software, hardware, etc.).

o Briefly describe how features of your system address the company's problem. (You can state
them as a paragraph or as bullet points).

o Provide details about your estimated timeline to complete the system as well as the overall cost.
o Conclude by stating your competitive advantage.

• Updated product backlog: Created from the requirements from product roadmap.
• Documentation up to Sprint 5: Include updated use-case narratives, corresponding activity diagrams,

corresponding class diagram, and corresponding sequence diagrams.
• Packages: Group class diagram into packages.
• Entity Relationship Diagram: Design your data storage mechanism.
• Updated Gantt Chart: Include the estimates for each sprint. It should be updated along the process and

delivered for each milestone.
• Team Retrospective: Evaluation of the milestone just finished and plan of action

Final design
document

• One-Page Executive Summary (highlights of the main points of the problem and main points of your
proposed solution)

• Table of Contents
• All revised milestones
• Updated Product Backlog
• Deployment Diagram: Describe the physical layer where your system will be installed and create a

deployment diagram. Describe each component (e.g., servers, devices, etc.) providing the
specifications of each of them and the communication protocols and type of network.

• Revised Cash Flow
• Revised Gantt Chart
• Screen shots of the final product (working software)
• Executable file or link of the final product (include username and password, if applies)
• Evidence of preliminary usability testing of the prototype

o Discuss strengths and weaknesses of your prototype.

Journal of Information Systems Education, Vol. 29(2) Spring 2018

88

Usability
evaluation

report

• Evidence of preliminary usability testing of the prototype. Suggested steps:
o Select the dimensions you want to evaluate (e.g., navigation, links, layouts, etc.). My suggestion

is to focus on 4 to 5 most important dimensions.
o Samples of dimensions or questions can be found here: https://stayintech.com/info/UX. You can

come up with your own rubric.
o Select the specific items (questions) that will evaluate each dimension. My suggestion is to keep

4 to 5 questions per dimension. Make sure you attach your usability survey.
o Ask each member of the team to evaluate the prototype individually. Ask at least one friend to

evaluate it for you (minimum 6 evaluations, ideal 10 evaluations).
o Make sure you report final number of evaluators.
o Calculate average scores per dimension.
o Discuss strengths and weaknesses of your prototype.

Sales
presentation and

final
walkthrough

• Required presentation format (10 minutes per team +2 for questions)
o Product Vision
o Strategy proposed & Justification (BPA, BPI, BPR)
o Physical design including equipment specifications
o Product demonstration
o Results preliminary usability testing
o Estimated cost (Cash Flow)
o Estimated timeline (Gantt chart)
o Team's retrospective

Journal of Information Systems Education, Vol. 29(2) Spring 2018

89

Appendix B: Description of Project Milestones and Deliverables Spring of 2017

Milestone Deliverables
Milestone 1 • Introduction: Who are you and what is your requirement analysis strategy (BPA, BPI, BPR)?

• Project Vision Statement: What do you want your end product to be?
• Context Diagram: Inputs/Outputs to and from the system.
• System Request: project sponsor, business need, business requirements, business value and special

constraints.
• Product Roadmap: a picture of your post-it notes listing and prioritizing requirements
• Product backlog: the master to-do list considering input from Product Roadmap. See guidelines for

more info.
• Use-case Diagram: A diagram that represents the interactions between actors and use cases, including

the relationship among use cases, and relationships between actors.
• Team Retrospective: Evaluation of team performance during the milestone just finished and plan of

action.
Milestone 2 • Updated product backlog: Created from the requirements from product roadmap.

o State each requirement as a user story.
• Use-Case narratives: Describe in detail each user story including the ideal course of event and at least

one alternate course of event (more than one if needed).
o Each team member should build at least two use-case diagrams

• Gantt Chart: Include the estimates for each sprint. It should be updated along the process and
delivered for each milestone.

• Cash Flow: Financial cost-benefit analysis.
• Team Retrospective: Evaluation of the milestone just finished and plan of action.

Milestone 3 • Updated product backlog: Created from the requirements from product roadmap.
• Class diagram: Identify the classes for your solution and the relationships among them. Build the

class-diagram including attributes, relations and cardinality/multiplicity.
• Activity Diagrams: Each team member should work on his or her two use case narratives. For each

use case narrative, build the corresponding activity diagram.
o Each team member should build at least two activity diagrams

• Sequence Diagrams: Each team member should work on his or her two use case narratives. For each
use case narrative, build a sequence diagram for at least two of the scenarios in them.
o Each team member should build at least four activity diagrams

• Updated Gantt Chart: Include the estimates for each sprint. It should be updated along the process and
delivered for each milestone.

• Team Retrospective: Evaluation of the milestone just finished and plan of action
Milestone 4 • One-Page Executive Summary: highlights of the main points of the problem and main points of your

proposed solution
o Start by describing the mission of the company and briefly describe the problem they have.
o Describe your solution. You may want to start by stating the project vision statement and then

the system you are proposing. It would be a good idea to describe here your architecture design
(web-based, cloud-based, software, hardware, etc.).

o Briefly describe how features of your system address the company's problem. (You can state
them as a paragraph or as bullet points).

o Provide details about your estimated timeline to complete the system as well as the overall cost.
o Conclude by stating your competitive advantage.

• Updated product backlog: Created from the requirements from product roadmap.
• Packages: Group class diagram into packages.
• Entity Relationship Diagram: Design your data storage mechanism.
• Updated Gantt Chart: Include the estimates for each sprint. It should be updated along the process and

delivered for each milestone.
• Team Retrospective: Evaluation of the milestone just finished and plan of action

Final design
document

• One-Page Executive Summary (highlights of the main points of the problem and main points of your
proposed solution)

• Table of Contents
• All revised milestones
• Updated Product Backlog
• Deployment Diagram: Describe the physical layer where your system will be installed and create a

deployment diagram. Describe each component (e.g., servers, devices, etc.) providing the
specifications of each of them and the communication protocols and type of network.

Journal of Information Systems Education, Vol. 29(2) Spring 2018

90

• Revised Cash Flow
• Revised Gantt Chart
• Screen shots of the final product (working software)
• Executable file or link of the final product (include username and password, if applies)
• Evidence of preliminary usability testing of the prototype

o Discuss strengths and weaknesses of your prototype.
Usability

evaluation
report

• Evidence of preliminary usability testing of the prototype. Suggested steps:
o Select the dimensions you want to evaluate (e.g., navigation, links, layouts, etc.). My suggestion

is to focus on 4 to 5 most important dimensions.
o Samples of dimensions or questions can be found here: https://stayintech.com/info/UX. You can

come up with your own rubric.
o Select the specific items (questions) that will evaluate each dimension. My suggestion is to keep

4 to 5 questions per dimension. Make sure you attach your usability survey.
o Ask each member of the team to evaluate the prototype individually. Ask at least one friend to

evaluate it for you (minimum 6 evaluations, ideal 10 evaluations).
o Make sure you report final number of evaluators.
o Calculate average scores per dimension.
o Discuss strengths and weaknesses of your prototype.

Sales
presentation and

final
walkthrough

• Required presentation format (10 minutes per team +2 for questions)
o Product Vision
o Strategy proposed & Justification (BPA, BPI, BPR)
o Physical design including equipment specifications
o Product demonstration
o Results preliminary usability testing
o Estimated cost (Cash Flow)
o Estimated timeline (Gantt chart)
o Team's retrospective

Journal of Information Systems Education, Vol. 29(2) Spring 2018

91

Journal of Information Systems Education, Vol. 29(2) Spring 2018

92

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2018 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 2574-3872

