
77 Journal of the Association for Information Systems (Volume 3, 2002) 77-111

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

Design Considerations for Incorporating
Flexible Workflow and Multi-Agent

Interactions in Agent Societies

N. C. Narendra
Technology Cell, E-Solutions Center
Hewlett-Packard India Software Operations Ltd.
29 Cunningham Road
Banglore 560 052 INDIA
ncnaren@india.hp.com

ABSTRACT

In this paper, we present our conception of a Flexible Agent Society (FAS), an extension of the
Contractual Agent Society (CAS) idea. Essentially, a FAS is a distributed information system modeling
an agent society, providing agents with the ability to collaborate in order to meet certain common
goals. In a FAS, unlike the CAS, the agents themselves have control over the workflow processes
and multi-agent conversations that they need to execute in order to meet their common goals.

Keywords: Agents, adaptive workflow, agent-oriented workflow, agent societies

I. INTRODUCTION

Recent work on agents (an excellent survey of the latest work is provided by Griss [2000]) has
evoked much interest in multi-agent systems. The logical extension of multi-agent systems is �agent
societies"�groupings of agents that come together to collaborate to meet certain common goals
[Dellarocas 2000; Dellarocas and Klein 1999; Minar et al. 2001]. Another type of agent society is an
�e-services ecosystem,� exemplified by the development and deployment of e-Speak [http://www.e-
speak.net/].

In this paper, we investigate the architectural underpinnings of agent societies. Inspired by the
Contractual Agent Society (CAS) approach [Dellarocas 2000; Dellarocas and Klein 1999], we have
cast this approach in our work on agent-oriented adaptive workflow [Narendra 1999, 2000, 2001a,
2001b, 2001c, 2001d]. Our work provides a sound architectural foundation on which to build a
Flexible Agent Society (FAS).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301382984?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ncnaren@india.hp.com
http://www.e-speak.net/
http://www.e-speak.net/

Journal of the Association for Information Systems (Volume 3, 2002) 77-111 78

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

In particular, we discuss how security, specifically Role-Based Access Control (RBAC), is
implemented in our FAS; our unique contribution is in specifying how RBAC can be implemented for
adaptive and distributed workflows. The other major contribution of this paper is in specifying how the
transactional aspects of distributed workflow adaptivity are managed in our FAS.

This paper is arranged as follows. In section II, definitions of the basic concepts used are
presented. The concept of agent societies and the FAS concept are described in section III. In
Section IV, we discuss how RBAC is implemented in our FAS. Section V describes how workflow
adaptivity and transactionality are managed in the FAS. The conclusions and suggestions for future
work are presented in Section VI.

II. PRELIMINARIES

WORKFLOW

Our basic workflow model is based on the graph-theoretic notions in the OpenPM process model
[Shan et al. 1997]. We assume that each workflow instance is a directed graph W = <N,E>, where
N is the set of nodes and E is the set of edges. Each edge e in E is a tuple of the form <nbegin, nend>,
where the edge is directed from nbegin to nend.

We first define two unique nodes: START and END nodes. For each workflow, there will be only
one of each kind. A START node has no predecessor, and an END node has no successor.

The workflow graph is assumed to obey two simple conditions:

� Every node in the graph is reachable from the START node (i.e., there is a path from the START
node to every other node in the graph).

� The END node is reachable from every node in the graph (i.e., there is a path from the node to
the END node).

Nodes are of two kinds: � work nodes and route nodes. Work nodes are nodes that actually
perform the activities in the workflow. Route nodes are nodes whose only function is to evaluate rules
(i.e., boolean conditions) and, depending on the result of the evaluation, direct the flow of control to
specific work nodes or route nodes. The rules are represented in Event-Condition-Action format (also
known as ECA) [Kappel et al. 1998]; these rules prescribe certain actions to be performed upon
receiving an event that obeys certain conditions.

For each work node, we assume the existence of specific data structures that capture the data
flow information with the node. In other words, each node is assumed to perform certain operations
on data and artifacts (e.g., complete a form, collate and summarize data, etc.). These operations,
together with the data flow, define the flow of control throughout the workflow; this is a consequence
of the workflow design.

Edges are of four kinds: forward edge, loop edge, soft-sync edge, and strict-sync edge. Forward
edges are needed to depict the normal workflow execution, which is in a forward direction. Loop
edges are backward pointing edges that are used to depict the repeated execution of loops.

The sync edges are quite different. These edges are used to support synchronizations of tasks
from different parallel branches of a loop. There are two types:

79 Journal of the Association for Information Systems (Volume 3, 2002) 77-111

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

Start

F

D

G

E

H

Work
Node

A

B

Soft-sync
edge

C

Strict-sync
edge

Loop
Edge

Forward edge

Route
Node

END

Start

F

D

G

E

H

Work
Node

A

B

Soft-sync
edge

C

Strict-sync
edge

Loop
Edge

Forward edge

Route
Node

END

� A soft-sync edge is used to signify a delay dependency between two nodes n1 and n2 (i.e., n2 can
only be executed if n1 is either completed or cannot be triggered any more). This type of synchro-
nization does not require the successful completion of n1.

� A strict-sync edge between n1 and n2 requires that n1 successfully complete before n2 executes.

Clearly, the use of such edges must satisfy some conditions:

� Redundant control flow dependencies between nodes and loops should be avoided.

� A sync edge may not connect a node from inside a loop body with a node not contained within
that loop.

An example workflow graph illustrating all of these definitions is given in Figure 1. The arcs depict
the flow of the data and artifacts from the START to the END node.

We can also define states for each node, depending on where it is during the workflow execution.
Hence we define the following states for nodes: NOT-ACTIVATED, ACTIVATED, DONE, FAILED,
SUSPENDED.

The definition of these states naturally leads to the conclusion that we can define the state
transition diagram that each node has to obey. Indeed, this means that the state of every node in the
workflow instance is governed by the transition rules in the state transition diagram. This diagram is
given in Figure 2.

Figure 1. Workflow Graph

Journal of the Association for Information Systems (Volume 3, 2002) 77-111 80

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

ACTIVATED
Start

Suspend Resume

Commit

Abort
NOT-ACTIVATED

SUSPENDED

DONE

FAILED

ACTIVATED
Start

Suspend Resume

Commit

Abort
NOT-ACTIVATED

SUSPENDED

DONE

FAILED

Figure 2. State Transition Diagram

ADAPTIVE WORKFLOW

A three-tier approach to adaptive workflow management was developed in earlier work [see
Narendra 2000]. Essentially, we recognized that a workflow needs to have a schema (i.e., a basic
definition of its structure) before it can be instantiated and executed. Moreover, since workflow is
typically executed in business organizations, it is essential that it meet certain business goals.
Therefore, we see that business goals (essentially arising out of planning) lead to workflow schema
being defined, out of which a workflow instance is generated for execution. (Later in this section, in
the �Adaptive and Flexible Workflow Example� sub-section, an example illustrating all of these ideas
is presented.)

Workflow adaptivity has been identified as basically one of three types:

� Adaptivity at instance level: here, only the workflow instances need to be modified, perhaps
to make them more efficient, or to make them easier to execute. The modules that implement
this are:
% Basic Workflow Model: stores the instances of our workflow model
% Workflow Change Model: stores the constructs for specifying dynamic workflow changes
% Workflow Change Verifier: performs the syntactic and semantic checking for workflow

adaptation
% Workflow-Schema Interface Manager: interface module that interacts with the Schema Layer

� Adaptivity at schema level: here, the workflow schema will need to be modified. This would
arise if certain "ways of doing things" (e.g., developing a product in-house instead of outsourcing
the development) change, and will necessitate radical modifications to all the workflow instances
of the schema in question. The modules that implement this are:
% Schema Handler: creates, versions and stores the workflow schema
% Schema Migration Manager: handles migration of workflow instances between schemas and

interfaces with the Schema Handler
% Schema-Planning Interface Manager: interface module that interacts with the Planning Layer

� Adaptivity at planning/goal level: here, the goals may have to be modified in response to
changing environmental conditions. This could cause radical changes in the schema (e.g., a

81 Journal of the Association for Information Systems (Volume 3, 2002) 77-111

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

change in the outsourcing goals of an organization could result in �going back to the drawing
board� in order to redefine all its workflow schema), which could cause disruptive changes in the
workflow instances. The modules that implement this are:
% Organizational Workflow Repository: organization-wide repository of all workflow processes

stored in the system; stores the workflow schemas and their instances, and also stores the
goals that led to the creation of the workflow in the first place.

% Goal Specification Module: through this module, the workflow administrator first enters the
goals that the workflow has to satisfy. He/she can then look into the Organizational Workflow
Repository for reusing any workflows from the past that can satisfy�either fully or partially�
the goals that he/she has specified.

% Workflow Design Module: with this module, and with the goal and workflow information from
the Goal Specification Module and the Organizational Workflow Repository, the workflow
administrator can design the workflow schema. He/she will then enter it into the Organi-
zational Workflow Repository. The schema will then be transferred into the Schema Handler
via the Schema-Planning Interface Manager, where it will be appropriately versioned and
stored. The appropriate version number is then communicated to the user.

Essentially, the Workflow Design Module is the main module, where the workflow is
defined and adapted by the workflow administrator. This module presents a user interface
through which the workflow administrator can adapt the workflow by specifying the adaptation
as a graph transformation (explained next).

The architecture is depicted in Figure 3.

ADAPTIVE WORKFLOW MECHANISM

Any change to be made on-the-fly to an already executing workflow has to proceed as specified
in the following steps:

� The proposed change has to be specified in terms of a graph transformation (see below for
details).

� The graph transformation is verified using graph queries in the system; if the transformation is
not feasible, the user is notified, and the unsatisfied portions of the query are also transmitted to
the user.

� If the transformation is feasible, the user is informed and the query is executed.

Our algorithms follow.

Graph Transformations

If a change is needed to the workflow definition on the fly, this will have to be specified by the user
to the system via graph transformations. Each graph transformation obeys the following sequence:

Journal of the Association for Information Systems (Volume 3, 2002) 77-111 82

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

Schema - Planning Interface Manager

WF
Design
Module

Goal
Specification

Module WF
Repository

Schema
Migration
Manager

Schema
Handler

Workflow - Schema Interface Manager

Users

PLANNING
LAYER

SCHEMA
LAYER

INSTANCE
LAYER

Workflow
Change
Verifier Basic

Workflow
Model

Workflow
Change
Model

Schema - Planning Interface Manager

WF
Design
Module

Goal
Specification

Module WF
Repository

Schema
Migration
Manager

Schema
Handler

Workflow - Schema Interface Manager

Users

PLANNING
LAYER

SCHEMA
LAYER

INSTANCE
LAYER

Workflow
Change
Verifier Basic

Workflow
Model

Workflow
Change
Model

Figure 3. Three-Tier Adaptive Workflow Architecture

� Specify the sub-graph which needs to be transformed: this will involve isolating that part of the
workflow, by specifying the beginning and ending nodes of the sub-graph

� Specify what the sub-graph will be after the transformation: here, the user will have to specify
the new workflow sub-graph that will substitute for the old sub-graph

� Specify the basic operations needed in terms of node addition/deletion and edge addition/deletion
that define the transformation: in order to get from the old sub-graph to the new sub-graph, the
user will have to specify the order in which the transformation, which is essentially a combination
of node and edge additions/deletions, will have to take place

83 Journal of the Association for Information Systems (Volume 3, 2002) 77-111

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

Graph Queries

The graph transformation provided by the user triggers certain queries within the graph-oriented
internal representation of the workflow model. The queries that are executed by the system are:

� Checking syntactic correctness and consistency of the transformation (using the graph-theoretic
properties of the workflow model), including:
% All input parameters of a node are supplied before the node is executed
% Nodes from different parallel branches of a loop are not allowed write access to the same

data element unless they are synchronized by a sync edge

� Checking semantic correctness and consistency of the transformation using the ECA-type rules
provided in the route nodes

If the queries are executed successfully, the user is notified and the appropriate changes are
made to the workflow definition. If not, the user is informed as to which queries failed.

Changing the Workflow Schema

Changing the workflow instance on the fly naturally raises the question of whether�and if so,
when�to migrate the new instance onto the definition, so that the workflow schema itself changes.
There are two options here:

� Modify the workflow schema as soon as the new workflow instance is created.

� Mark the new workflow instance as a new version of the old workflow schema, thereby creating
version trees of workflow schemas and their associated instances (as described in Kradolfer and
Geppert [1999]).

For example, if a workflow instance I of a schema S is adapted to I', then one of two things can
happen:

� I' is �rolled into� S, thereby changing S; that is, the same changes that change I to I' are also
effected in S, so that S becomes the schema for I'

' I' is stored as an instance of S-version2, where S is stored as S-version1

TYPICAL USAGE SCENARIO

In order to illustrate how our architecture is used, we sketch a typical usage scenario. We do this
by enumerating the possible reasons for a workflow administrator to adapt the workflow.

(a) Changes in goals: the goals underlying the currently existing workflow processes may have
changed, necessitating a major change in the workflow schema (for example, the business has

Journal of the Association for Information Systems (Volume 3, 2002) 77-111 84

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

to be substantially reengineered and repositioned, or the product line itself may undergo a major
change). Perhaps the current workflow schema may have to be discarded and a new one
created, along with its associated workflow instances. This will have to be done at the Planning
Layer.

(b) No changes in goals, but changes in business relationships and environment: this will
necessitate a change in the workflow schema, since the business models governing the workflow
may have to change, although the overall business goals may remain unchanged (for example,
the workflow may need to be implemented in a distributed fashion, by using sub-contractors,
necessitating a change in the workflow schema). This will have to be done at the Schema Layer.

(c) No changes in either goals or business environment, but the need to improve delivery efficiency
or the need to introduce alternative processes (one such example is sometimes referred to in the
literature as "exception handling"): this will necessitate a change in the workflow instances only.
This can be restricted to the Instance Layer itself.

Hence we can look at the following typical scenario:

� The workflow administrator perceives a situation in the organization where there is a need to
change some business processes. He/she then determines which of the situations described
above apply.

� If (c) applies: In this case, only an instance of the workflow schema is being modified. This may
essentially be a one-time exception in order to deal with a special case that was not thought of
earlier. After the workflow process has completed executing, the workflow administrator can then
consider migrating the workflow instance to the new workflow schema version and discard the
old version, should he/she so choose, as described. This can be done following the rules as
described by Kradolfer and Geppert.

� If (b) applies: This could have a serious impact on the business, since business relationships
may themselves have to be rewritten. This will require evolving a new workflow schema, and
ensuring that all future workflow instances are derived from this schema and not the older one.
Again, as described above, migration of the existing workflow instances will have to be decided
as described by Kradolfer and Geppert.

� If (a) applies: Such a situation would arise if the business itself is being reengineered or
repositioned. In such a case, the most likely response would be to complete all of the currently
running workflow instances (depending on whether they can be completed; - this will have to be
a business decision) and starting the workflow design from scratch for future activities to define
new goals, workflow schema, and instances.

FLEXIBLE WORKFLOW

Traditionally, workflow management has been regarded as being centralized, monolithic, rigid,
and not easily amenable to adaptation. Once once a workflow process was defined, it was regarded

85 Journal of the Association for Information Systems (Volume 3, 2002) 77-111

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

as more or less �cast in stone,� to be executed with little change. The advent of adaptive workflow
[Narendra 2001c; Reichert and Dadam 1999] has eased this situation somewhat, but even adaptive
workflow systems are designed with centralized control in mind. However, this does not meet the
needs of most information systems today, where workflow participants need more flexibility in defining
and executing workflows. To that end, we extended the OpenWater idea from Whittingham [1999]
and developed an architecture for what we called �flexible workflow support� [Narendra 2001c],
containing the following ideas:

� Any workflow can be classified to belong to one of the following three �control levels�: loose,
medium or tight.
% Loose workflows can be defined and started by any user (not necessarily the Workflow

Administrator) in collaboration with the other participants in the workflow. Such a workflow
can adapt itself as much as possible, depending on the need and on the participants.

% Medium workflows are also started by any user, but need approval from the Workflow
Administrator in order to ensure that they adhere to a particular workflow schema. This
approval is also needed if either the workflow instance or schema is adapted.

% Tight workflows are the traditional workflows, which are defined and modified centrally by the
Workflow Administrator.

� Our extensions to Figure 3 to accommodate flexible workflow support are the following (see
Figure 4 for the modified architecture of the Planning Layer, which supports flexible workflow):
% Logically separate the Workflow Repository for representing and storing these three types

of workflows.
% Have a Schema Discovery Module as part of the Goal Specification Module, which will assist

the Workflow Administrator in observing the execution of several instances of a loose
workflow and then upgrade it to medium level by designing a schema for it; all future
executions of this process will then have to be at medium level, adhering to the schema.

% Similarly, the Workflow Administrator can, using the Goal Specification Module, also observe
the execution of several instances of medium processes and upgrade them to the tight level;
the assumption being that processes that are executed a sufficient number of times can be
better controlled centrally. Hence the Schema Discovery Module can assist the Workflow
Administrator in developing schemas for loose workflows that are deemed to be critical to the
organization, and hence need to be controlled centrally.

% Synchronization and interaction between different workflow processes can also be at the
three control levels, and would depend on the control levels of the individual workflows (i.e.,
they can be either peer-to-peer or centralized interaction).

� Extending this to the distributed workflow case means that there are two categories of workflows,
which can be at different control levels�the overall workflow and its constituent workflows (which
will be executed at different workflow servers)�resulting in nine different combinations for the
three control levels. Essentially they are the following:
% If the overall workflow process is at the loose level, this means that it is defined among the

workflow servers in a peer-to-peer fashion. However, each constituent sub-workflow can be
at any of the three levels, and managing the constituent workflows becomes an internal
matter for the individual workflow servers (which could belong to different organizations).

Journal of the Association for Information Systems (Volume 3, 2002) 77-111 86

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

Users Schema
Discovery Module

Goal/Policy
Spec

Module

Workflow
Design
Module

Loose
Workflows

Medium
Workflows

Tight
Workflows

Workflow
Repository

To Schema-Planning Interface Manager

Users Schema
Discovery Module

Goal/Policy
Spec

Module

Workflow
Design
Module

Loose
Workflows

Medium
Workflows

Tight
Workflows

Workflow
Repository

To Schema-Planning Interface Manager

Figure 4. Flexible Workflow Architecture�Planning Layer

% If the overall workflow process is at the medium level, this will need a Central Coordinator
(CC) (similar to that of a Workflow Administrator in a single organization; distributed
workflows are discussed in more detail in section III) that will need to approve the workflow
before it is executed. The individual workflow processes can be at any control level; however,
the CC will again ensure�from the viewpoint of the overall workflow process�that the
individual workflow processes are represented as black boxes with predefined inputs and
outputs, which the individual workflow servers will need to satisfy. The individual workflow
process can be at any of the three control levels.

% If the overall workflow process is at the tight level, then the CC itself is in charge of defining
and imposing the overall workflow process on the individual workflow servers. Here also, the
individual workflow processes are specified as black boxes with predefined inputs and
outputs, and it will be the responsibility of the individual workflow servers to design workflow
processes to satisfy the inputs and outputs. The individual workflow process can be at any
of the three control levels.
˜ Please note that the black box approach towards defining sub-workflows serves to

preserve the autonomy of the respective individual organizations so that they can define
their sub-workflows as convenient; however, the sub-workflows need to satisfy the
appropriate �process interfaces,� i.e., the aforementioned inputs and outputs.

There are two other types of distributed workflows [see Hollingsworth 1995]:

� Chained: this type allows a task anywhere in workflow A to connect to another task anywhere
in workflow B. This allows only the transfer of a single item of work between the two workflow
environments, which then operates independently in the second environment with no further
synchronization.

87 Journal of the Association for Information Systems (Volume 3, 2002) 77-111

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

� Parallel synchronized: this allows two workflows in two different workflow servers to operate
independently, but requires that synchronization points exist between them (typically at route
nodes) at prespecified intervals. For example, workflow processes for components of a product
being developed at different organizations may need to be synchronized at regular intervals, so
that the development and delivery of the components can be �in sync� with each other.

Hence the workflows A and B can be treated as two distributed workflows, and the same logic
for distributed workflows (i.e., the nine cases) will apply here.

Hence the CC in this case is also an adaptive workflow system just as the one described in
section II and depicted in Figure 3, with the important difference that it supports and manages the
overall distributed workflow process, with the constituent workflows being managed by (perhaps
separate) individual workflow servers.

Administration of Flexible Workflows

From the description of flexible workflow given above, it is clear that the workflow administrator
(or CC, as the case may be) needs a process lifecycle to manage all of the workflow processes
effectively. This lifecycle needs to take into account workflow processes at the three different control
levels. Hence our process administration lifecycle has the following steps for any workflow process:

(a) Process creation: as described above, depending on the control level:
� Creation of loose workflows�by the user directly, who can define the process, and start

executing it.
� Creation of medium workflows�here, the created process is derived from an already existing

schema and executed. As long as the process conforms to the schema, which needs to be
checked by the administrator�, t can be started and executed by the users.

� Creation of tight workflows�the traditional workflow creation process, performed directly by
the administrator.

(b) Process Synchronization and Interaction: again, as already described, this would depend on the
control levels of the workflows. This is essentially the nine different cases of inter-workflow
interaction already described (see "Flexible Workflow"); chained and parallel synchronized
workflows will also be synchronized here.

(c) Process maintenance: this is an ongoing activity that involves the following:
� For loose processes, this would mean workflow instance monitoring, schema discovery, and

history management
� For medium and tight processes, this would mean schema monitoring, history management,

and adaptivity management as per the three-tier approach

(d) Process completion and archiving: here also, history management is needed for storing the
results of process execution.

(e) Process upgrade: if a loose workflow has been implemented a sufficient number of times (how
much is sufficient is a business decision for the Workflow Administrator), then there may be a

Journal of the Association for Information Systems (Volume 3, 2002) 77-111 88

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

START

Claim
Received

Claim
Logged

Investigator
Prompted

Lawyer
Verification

Police
VerificationProcess

Rest of
Claim

END

Sync
edge

Instance #1

START

Claim
Received

Claim
Logged

Investigator
Prompted

Lawyer
Verification

Police
VerificationProcess

Rest of
Claim

END

Sync
edge

Instance #1

need to upgrade it to medium level by determining its schema from the various process
instances. The Workflow Administrator may decide that this workflow has �matured� sufficiently
enough so that it can be better controlled centrally. For medium level processes, this can also
involve upgrading to tight level by linking the schemas to the process goals. The idea behind this
upgrade is that the workflow is now sufficiently well understood and can be more tightly controlled
by the Workflow Administrator or CC.

ADAPTIVE AND FLEXIBLE WORKFLOW EXAMPLE

In this section, we reproduce the simple yet non-trivial example for flexible workflow described
in Narendra [2001c]. This example will not only illustrate flexible workflow, it will also illustrate how
instance, schema, and (to a limited extent) planning level workflow adaptation can take place.

This example is derived from the personal experiences of the author and his relatives at an
insurance company (specifically in the case of processing motor vehicle accident insurance claims).
Let us assume this insurance company has to process several insurance claims. If the insurance
claims workflow is regarded as a loose workflow, there could be several ways in which it is defined
and executed. Let us assume that four different people in the insurance company define it in the
following four ways, starting with Instance #1:

Figure 5. Instance #1

Instance #1 is, therefore, a simplistic way in which the insurance claim can be processed. This brings
us to Instance #2:

89 Journal of the Association for Information Systems (Volume 3, 2002) 77-111

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

START Claim
Received

Claim
Logged

Investigator
Prompted

Lawyer
Verification

Police
Verification

Process Rest
of Claim

END

Instance #2

START Claim
Received

Claim
Logged

Investigator
Prompted

Lawyer
Verification

Police
Verification

Process Rest
of Claim

END

Instance #2

Instance #3

START
Claim

Received
Claim

Logged
Investigator
Prompted

Lawyer
Verification

Police
VerificationProcess

Rest of
Claim

END

Sync
edge

Customer
Information
Sufficent?

Get More
Information from

Customer

Yes

No

Instance #3

START
Claim

Received
Claim

Logged
Investigator
Prompted

Lawyer
Verification

Police
VerificationProcess

Rest of
Claim

END

Sync
edge

Customer
Information
Sufficent?

Get More
Information from

Customer

Yes

No

Figure 6. Instance #2

In Instance #2, on the other hand, the logging of the claim and the prompting of the insurance
investigator are done in parallel, presumably to save time, whereas Police and Lawyer verification are
done sequentially. We now come to Instance #3:

Figure 7. Instance #3

In Instance #3, the investigator feels the need to check whether the information provided by the
customer is sufficient and accurate, introducing extra processing steps in the workflow.

Journal of the Association for Information Systems (Volume 3, 2002) 77-111 90

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

START

Claim
Received

Claim
Logged

Investigator
Prompted

Lawyer
Verification

Police
Verification

Process
Rest of
Claim

END Customer
Information
Sufficient?

Get More
Information from

Customer

Yes

No

Instance #4

START

Claim
Received

Claim
Logged

Investigator
Prompted

Lawyer
Verification

Police
Verification

Process
Rest of
Claim

END Customer
Information
Sufficient?

Get More
Information from

Customer

Yes

No

Instance #4

Schema

START Claim
Received

Lawyer
Verification

Police
VerificationProcess

Rest of
Claim

END

Sync
edge

Customer
Information
Sufficent?

Get More
Information from

Customer

Yes

No

Investigator
Prompted

Claim
Logged

Schema

START Claim
Received

Lawyer
Verification

Police
VerificationProcess

Rest of
Claim

END

Sync
edge

Customer
Information
Sufficent?

Get More
Information from

Customer

Yes

No

Investigator
Prompted

Claim
Logged

Figure 8. Instance #4

Instance #4 is an improvisation of Instance #3, in that some amount of parallelism is achieved
(as in Instance #2).

Hence, depending on the number and business utility of these disparate workflow executions, the
workflow administrator may decide to upgrade the workflow to medium level by developing the
following schema for it (here, it happens to be the same as Instance #3; in the general case, it could
be a combination of one or more instances):

Figure 9. Schema

91 Journal of the Association for Information Systems (Volume 3, 2002) 77-111

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

The overall structure of this schema could be described as follows:

� The claim should first be logged into the computer before it is sent for police and lawyer
verification.

� The information should be checked for sufficiency before further processing.

� The "Get More Information from Customer" task could be a (probably complex) sub-workflow in
itself, and may need to be outsourced to another organization. If that happens, then our overall
workflow would become a distributed workflow, and the "Get More Information from Customer"
sub-workflow would again have to be defined and executed in a (probably) separate workflow
server in another organization.

� The "Police Verification" and "Lawyer Verification" tasks could also be "bundled" into a separate
sub-workflow, and outsourced to another organization.

Hence, once the workflow is upgraded to medium level, any employee of the insurance company
can define a new instance of this workflow, as long as it adheres to the schema by obeying its overall
structure. The workflow administrator can check whether this adherence is achieved before
approving the workflow instance.

Later on, the workflow administrator can upgrade the workflow to the tight level by imposing the
following constraints on the workflow participants:

� All insurance claims to be completely processed within two weeks.

� Complete information to be provided to the customer about the decision (accept or reject)
regarding the insurance claim.

Sync Edges

This example would not be complete without a short note about the sync edges shown in
Instance #1, Instance #3, and the Schema. The sync edge, which connects the Police Verification
task to the Lawyer Verification task, could be either soft-sync or strict-sync:

� If it is soft-sync, then the Lawyer Verification task is supposed to start only after Police Verification
starts.

� If it is strict-sync, then the Lawyer Verification task is supposed to start only after Police
Verification ends successfully.

Hence the appropriate sync edge would be used, depending on the business need.

Journal of the Association for Information Systems (Volume 3, 2002) 77-111 92

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

RBAC3

RBAC1 RBAC2

RBAC0

RBAC3

RBAC1 RBAC2

RBAC0

SECURITY AND ROLE-BASED ACCESS CONTROL (RBAC) IN WORKFLOW

The most well-known approach to security management has been the Role-Based Access
Control (RBAC) model [Sandhu and Samarati, 1994]. This model allocates access rights to users
based on the roles that they perform in the organization. Roles can also be organized in a hierarchy,
typically a partial order. In this hierarchy, roles at a higher level are assumed to �inherit� the access
rights of roles at lower levels in the hierarchy, in addition to the access rights they already possess.

In addition to this hierarchy, constraints can also be defined on how these access rights are
granted to particular roles. Some of the most common constraints are separation of duty constraints,
which are of two types:

� Static Separation of Duty (SSOD): these constraints impose static restrictions such as �the role
R cannot have access rights A1 and A2 simultaneously.�

� Dynamic Separation of Duty (DSOD): these constraints impose dynamic restrictions such as �if
role R1 is executing a task T1, then R1 cannot execute task T2.�

In other words, SSOD constraints can be evaluated without executing the workflow, whereas
DSOD constraints evaluation can only be performed at run time. Hence, in Sandhu and Samarati, the
RBAC model has itself been modeled as a partial order lattice as depicted in Figure 10.

� RBAC0�the basic RBAC model
� RBAC1�RBAC0 with role hierarchies
� RBAC2�RBAC0 with constraints
� RBAC3�combination of all of the above

Figure 10. RBAC Lattice

An RBAC3-compliant version of RBAC is presented in Nyanchama and Osborn [1999], which also
presents a three-tier security model, consisting of user-group assignments, user-role assignments,
and role-privilege assignments. The unique features of this model are the following:

� The notion of �direct privileges� (privileges that are owned solely by the role) and �inherited
privileges� (privileges owned by roles that are junior to the role in question).

93 Journal of the Association for Information Systems (Volume 3, 2002) 77-111

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

MaxRole

VP1 {9,10} VP2 {11}

L1 {3,4} L2 {4,5} L3 {5,6} L4 {7,8}

Employee1 {1} Employee2 {2}

MinRole

MaxRole

VP1 {9,10} VP2 {11}

L1 {3,4} L2 {4,5} L3 {5,6} L4 {7,8}

Employee1 {1} Employee2 {2}

MinRole

� Algorithms for role management (i.e., role addition and role deletion) and addition/deletion/
modification of privileges associated with a role.

Privileges, which are also synonymous with the term �access rights� in the security literature, are
essentially authorizations or powers given to individuals in organizations based on their role and
position in the organization. For example, a Vice President (VP1 and VP2 in Figure 11) role could be
authorized to approve purchase requests up to $200,000 at a time, whereas a Project Leader (L1
through L4 in Figure 11) could be authorized to approve only up to $10,000 at a time.

Several conflicts can arise in this model:

� Role-role conflicts: assigning two conflicting roles to a user; for example, a person cannot simul-
taneously perform the roles of approving and implementing a payment request process, since this
could potentially cause a �conflict of interest� situation.

� Privilege-privilege conflicts : assigning two conflicting privileges to a role.

� User-role assignment conflicts : assigning a role to a user who is not allowed to play that role.

� Role-privilege assignment conflicts : assigning a privilege to a role which is not allowed to access
that privilege.

A sample Role Graph is presented in Figure 11. Every Role Graph has two "dummy" roles,
MaxRole and MinRole, that are the senior and junior, respectively, of all roles. The numbers next to
each role are the direct privileges of that role. For example, for VP1, the direct privileges are {9,10},
whereas the inherited privileges are {1,2,3,4,5,6}, which consists of the direct privileges of all roles
reporting (directly or indirectly) to VP1.

Figure 11. Role Graph

Journal of the Association for Information Systems (Volume 3, 2002) 77-111 94

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

The following algorithms for Role management are provided in Nyanchama and Osborn:

� Role Addition with only direct privileges: a role is added to the Role Graph along with only its
direct privileges.

� Role Addition with inherited privileges: a role is added to the Role Graph along with its direct and
inherited privileges.

� Role Deletion: a role is deleted from the Role Graph; this would also involve either deletion or
re-allocation of the direct privileges associated with the Role.

� Privilege Addition: a privilege is added to a Role.

� Privilege Deletion: a privilege is deleted from a Role.

� Edge Insertion: a new reporting relationship between a Role and one of its Senior Roles is added
(i.e., a person playing the Role is made to report to a person playing the Senior Role in the
organization). Hence the Senior person will inherit all the privileges available to the Junior person.

� Edge Deletion: a reporting relationship between a Role and one of its Senior Roles is deleted
(i.e., a person playing the Role no longer reports to any person playing the Senior Role in the
organization).

All Addition algorithms also contain steps for checking for the four types of conflicts described
above, and abort with an error message when a conflict is detected. The algorithms also incorporate
mechanisms for detecting cycles in the Role Graph, in which case they abort with an error message.

Thomas and Sanders [1997] present a security model for workflow called Task Based Authori-
zation Control (TBAC). This model specifies, in a manner similar to that of RBAC, the tasks that each
role is authorized to perform. A lattice structure similar to that of RBAC (i.e., TBAC0 through TBAC3)
is also presented. This is taken further by Cholewka et al. [2000], who present a mapping between
RBAC and a similar TBAC-like model. In essence, TBAC works by setting users� access rights either
at workflow definition time, or at workflow execution time before the workflow task is executed.

SECURITY IN ADAPTIVE WORKFLOW

As we have seen above, most of the existing secure workflow models do not take into account
the fact that workflow can be adaptive. Since all workflows are assumed to be highly adaptive, we
have developed a three-tier RBAC-based security infrastructure [Narendra 2001d] that mirrors our
three-tier adaptive workflow architecture. Thus:

� At instance level, role-task assignments will be modified.

� At schema level, user-role assignments will be modified.

� At planning level, global SSOD and DSOD constraints will be modified.

95 Journal of the Association for Information Systems (Volume 3, 2002) 77-111

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

The assumption behind this infrastructure is that, in most organizations, user-role allocation is
considered to have more impact on the organization than role-task allocation. For example, making
a person a Vice President could significantly enhance his/her payment approval privilege and
subsequently impact on the organization, whereas adding a task to a role would only enhance the
significance of that one role. Of course, this may be an over-simplification in many cases, but this
model provides one way to effectively manage security-related inconsistencies that could arise due
to workflow changes.

A brief sketch of the algorithm follows [the algorithm is given in detail in Narendra 2001d]:

� Assume an initial role-task and user-role allocation in a workflow, and the existence of a Role
Graph for the workflow as depicted in Figure 11.

� At the most elementary level, any workflow adaptation is a combination of either a task deletion
or a task addition:
% If a task is deleted, and if other tasks are �brought forward� in order to take advantage of the

task deletion, then all of these tasks belong to the Modification Region (MR) (i.e., those tasks
that are affected by the workflow change).

% If a task is added, this could affect the tasks following the added task. Also, any other tasks
that have to be performed in parallel with the added task may be affected if these tasks have
to be executed by the same user(s) who are authorized (as per the Role Graph) to execute
the added task. Hence these tasks also become part of the MR.

� For each task in the MR, the following steps are executed:
% If the task can be done by the currently assigned user, then the search ends, and we move

on to the next task in the MR.
% If not, then we move up the Role Graph, and check whether any senior of the assigned user

can execute the task. If so, the search ends and we move on to the next task in the MR. If
not, then we check among the juniors of each of the already checked seniors of the user in
question. This continues recursively upward in the Role Graph, starting at each of the seniors
of the user in question, until the MaxRole role is reached. Of course, any time an available
user is found, the search ends.

% If still not, then we check among the juniors of the user in the Role Graph. This is basically
a �mirror image� of the search among the seniors, thus: at each junior, the seniors of the
junior are also checked, and this also proceeds recursively down the Role Graph, until the
MinRole role is reached.

% Also note the following:
1. At every step of both the senior and junior searches, we pay attention to the SSOD and

DSOD constraints. If a suitable candidate is found such that no global SSOD or DSOD
constraint is violated, then that candidate is assigned to the task. If, after the entire
search has been completed and no suitable candidate is found, then the algorithm aborts
with an error message to the Workflow Administrator.

2. Whenever a potential user is checked and rejected, that user is automatically flagged.
Later in the search, when searching among either juniors of seniors, or seniors of juniors,
this flag helps in eliminating the need to search the same user again.

If the workflow change is supposed to be at schema level, then the modified allocation is made
permanent. For a workflow change at instance level, this modification is temporary and applies only
to that particular instance.

Journal of the Association for Information Systems (Volume 3, 2002) 77-111 96

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

AGENTS

Currently, there is not much consensus on what an agent is, and many definitions abound. For
our purposes, we will combine the following definitions:

� MASIF [1998]: "An agent is a computer program that acts autonomously on behalf of a person
or organization."

� Griss [2000]: "an autonomous software component that interacts with its environment and with
other agents."

Hence we define an agent as "a software component that acts autonomously on behalf of a
person or organization, and is also able to interact with its environment and with other agents."

Agents can be characterized as "weak" or "strong" agents [Wooldridge and Jennings 1995].
Weak agents possess the following characteristics: autonomous (having goals and plans for
achieving them), social (can interact with other agents and their environment), reactive (can perceive
their environment and respond to changes that occur), and pro-active (affect their environment rather
than passively allowing their environment to affect them). In addition to the above characteristics,
strong agents also possess the following characteristics: mentalistic notions (have beliefs, desires,
and intentions), rationality (can reason about their actions and perform actions which further their
goals in line with their beliefs, desires and intentions), learning (have the ability to learn from their
actions and their environment and other agents). In this paper, we restrict our attention to weak
agents, since it is sufficient for our FAS that the agents be autonomous, social, pro-active, and
reactive.

A seven-axis characterization of agents can be found in Griss and has the following dimensions:
adaptability, autonomy, collaboration, intelligence, mobility, persistence, and personality/sociability.
For our purposes, we require our agents to have high adaptability, autonomy, collaboration and
persistence, since these are essential requirements for agents in our FAS. The other three axes, i.e.,
intelligence, mobility, and personality/sociability, are not applicable for us, since we are concerned
with weak agents.

The Foundation for Intelligent Physical Agents (FIPA) has been developing standards for agents
and multi-agent systems. Their reference architecture for agent platforms is accessible from
http://www.fipa.org/specifications/index.html.

There are many interesting linkages between workflow and agents, which we will be exploiting
in this paper [Griss 2000]:

� Agents can collaborate to perform a workflow, e.g., telecom provisioning, service provisioning,
scheduling.

� Agents can be used to make workflow more intelligent, e.g., by adding negotiation, reasoning, or
decision points.

� Workflow can be used to coordinate a set of agents, e.g., application management.

� Workflow can be used to coordinate interaction between people and agents, having agents
delegate to people or other agents, e.g., a telecom management system alerting a human
operator, or assigning a repair or provisioning engineer.

http://www.fipa.org/specifications/index.html

97 Journal of the Association for Information Systems (Volume 3, 2002) 77-111

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

For our purposes, we recognize that the first two linkages represent agent-enhanced workflow
(using agents to enhance workflow systems, i.e., agents representing workflow systems) and the last
two represent agent conversations (i.e., using workflow concepts to model agent interactions in multi-
agent systems). Agent-enhanced workflow will be used to define what we will call "macro-workflow"
and agent conversations will be used to model what will be termed micro-workflow. Hence macro-
workflow will model adaptive workflows, whereas micro-workflow will model multi-agent interactions.

MULTI-AGENT INTERACTIONS

Distributed Flexible Workflow and Multi-Agent Interactions were integrated into our three-tier in
earlier work [Narendra 2001a], called AdaptAgent. Its its salient features are:

� Distributed flexible workflow is used for executing the distributed business processes.

� Agent technology is used to provide the necessary automation of decision-making tasks that
influence the execution of the business processes.

� The multi-agent interactions/conversations (i.e., micro-workflows) are modeled as single tasks
within the flexible workflows (i.e., macro-workflows) with predefined entry and exit criteria. Within
a micro-workflow, its related macro-workflows are represented within these entry and exit criteria.
Hence AdaptAgent supports two types of distributed workflows, with the following characteristics:
% A micro-workflow is defined after its respective macro-workflow has been created. As

explained above, the micro-workflow is a conversation conducted by the agent executing the
macro-workflow jointly with the other agents involved in the conversation. The conversation
is started after the predecessor of the task representing the micro-workflow has successfully
completed. After the conversation is completed, the agent will then resume its macro-
workflow execution from the successor of the task representing the micro-workflow. This will
be the same for every other agent participating in the conversation. Naturally, the outcome
of the conversation could determine the course of the future macro-workflow executions of
the agents, as per the macro-workflow definitions.

% Hence, macro- and micro-workflow processes can be adapted relatively independently of
each other; however, when a macro- (resp. micro-) workflow is adapted, the effect of the
adaptation on its related micro- (resp. macro-) workflows will need to be considered before
going ahead with the change. This is done as follows:
˜ If the change is to a macro-workflow instance or schema, then the affected micro-

workflow instance or schema will be syntactically and semantically checked. If, as a
result of this, a change in the micro-workflow schema is needed, then it must also be
adapted as per the procedures described earlier.

For example, a change in the manufacturing workflow (which is a macro-workflow)
of an automobile component among a prime contractor and its sub-contractors could
trigger changes in the multi-agent negotiations (i.e., micro-workflow) needed for the
procurement process.

˜ If the change is to the micro-workflow instance or schema, then if there is a
corresponding change in its input or output to any of its related macro-workflows, the
macro-workflow may also need to be modified as per the procedures described earlier.

For example, a change in the multi-agent negotiations (micro-workflow) among the
aforementioned prime contractor and its sub-contractors could alter the schedules of the

Journal of the Association for Information Systems (Volume 3, 2002) 77-111 98

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

START
Multi-agent negotiation
with sub-contractors

(micro-workflow)

Obtain
components from
sub-contractors

END

Final Assembly

Design
automobile

Manufacture
Engine

START
Multi-agent negotiation
with sub-contractors

(micro-workflow)

Obtain
components from
sub-contractors

END

Final Assembly

Design
automobile

Manufacture
Engine

associated manufacturing workflow (macro-workflow), resulting in the manufacturing
workflow itself having to be adapted in order to meet stringent delivery deadlines.

% Macro- and micro-workflows can be at different control levels; however, this should not
cause any issues, due to the highly modular way in which the micro-workflows have been
modeled as black boxes within macro-workflows. Hence, both the macro-workflow and
micro-workflow are created, and their adaptivity managed, just like the overall distributed
workflow process and its constituent workflow processes as described earlier. This is
because both types of workflows will have components that are executed by different
agents representing individual workflow servers. The only major difference is that the
micro-workflow is created after the macro-workflow is created.

% Agent Communication Languages (ACLs) such as KQML [Finin et al. 1997] can be used
for implementing the multi-agent conversations. Each edge in the multi-graph represents
a performative sent by an agent to its recipients, which would either be a broadcast
message to the recipients, request for information, reply to an earlier message, etc.

Figure 12 presents a graphical depiction of macro- and micro-workflow using a (highly simplified)
example. As per our definitions, the multi-agent negotiation (depicted in italics) with the sub-
contractors will determine which sub-contractor will develop which component. The outcome of this
negotiation will have an impact on the subsequent macro-workflow processes �Obtain components
from sub-contractors� and �Final Assembly.�

Figure 12. Micro- and Macro-Workflow Example

III. FLEXIBLE AGENT SOCIETIES

In this section, we describe our understanding of a Flexible Agent Society and how it would
function using the basic concepts described in section II.

99 Journal of the Association for Information Systems (Volume 3, 2002) 77-111

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

INTRODUCTION

A Flexible Agent Society (FAS) is envisioned as a collection of agents, collaborating with each
other in order to execute common business processes that meet certain business goals. It could also
be described as a virtual organization or an e-services ecosystem. The FAS is an extension of the
Contractual Agent Society idea [Dellarocas 2000; Dellarocas and Klein 1999]. The main difference
is that, in an FAS, agents are free to form collaborations/associations with each other and define and
execute common workflows.

Hence the FAS provides the following functions (the appropriate services provided by the FAS
Administrator, who plays a role similar to that of the Central Coordinator described in section II, is
given in italics):

� There is a facility for admitting members into the society in an orderly fashion, i.e., there are rules
and procedures for this (registration, reputation [Dellarocas 2000; Dellarocas and Klein 1999])
so that only the �right� members are admitted and in the �proper� manner.

� Members of a society can �discover� each other in case they want to transact business with each
other (matchmaker [Dellarocas 2000]).

� Once discovered, the FAS Administrator facilitates negotiations among the members in order to
reach an agreement about how to interact, and at what cost to each society member (negotiation,
loose workflows, and multi-agent conversations). Sometimes, the society itself may
recommend/mandate certain procedures to be used (medium and tight agent-oriented adaptive
workflow).

For example, the FAS Administrator can mandate a certain shipping workflow to be used for
transportation of products between members who decide to form a collaboration under the
auspices of the FAS. The FAS Administrator can also mandate only a certain type of auction (say,
English Auction) as the micro-workflow to be used by all FAS members.

� Collaborations between the society members can also be defined in terms of a common goal that
needs to be met, and also in terms of �contracts� [Dellarocas 2000], which are essentially
commitments that each agent makes toward the Society (planning layer of Figure 3, goal and
risk-based planning [Narendra 1999]).

� The FAS Administrator also monitors interactions between the members, measures their
effectiveness based on certain predetermined parameters, and uses this information as historical
data for simulation and planning and for scheduling of future collaborations (Admin Module,
Simulation and Modeling [Minar et al. 2001]; planning layer of Figure 4).

The conceptual architecture of our FAS is presented in Figure 13 (the red colored arrows depict
the usage scenario described below):

Journal of the Association for Information Systems (Volume 3, 2002) 77-111 100

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

Society Members

Goals &
Contracts

Planning &
Scheduling

Monitoring &
Simulation

Interaction Layer

Agent-oriented Workflow Layer

Schema Sub-
Layer

Instance Sub-
Layer

Repository

Matchmaker ReputationRegistration

Admin Module

Society Members

Goals &
Contracts

Planning &
Scheduling

Monitoring &
Simulation

Interaction Layer

Agent-oriented Workflow Layer

Schema Sub-
Layer

Instance Sub-
Layer

Repository

Matchmaker ReputationRegistration

Admin Module

Figure 13. Flexible Agent Society: Conceptual Architecture

The registration (not needed for members already registered), matchmaker, and reputation services
as described in Dellarocas are useful for our FAS, and we will incorporate them into the Interaction
Layer. The matchmaker service will, upon request from a client agent, find the appropriate agents
meeting the client agent's requirements. The reputation service basically monitors the extent to which
the member agents have fulfilled their goals and contracts, and assigns "trustworthiness values"
(based on Quality of Service parameters, security constraints, etc.) to the member agents. This
service can also implement Role-Based Access Control (RBAC) mechanisms, such as ensuring that
participating agents meet certain necessary security constraints for the needed collaboration. In other
words, the Interaction layer will be used by the society members (i.e., participating agents) to get
admission into the society, discover each other, and form collaborations. As part of the collaboration
process and based on the goals, the agents create the following:

� Contracts, which are commitments made by the agent toward the society and the collaboration.

� The workflows�both macro and micro�that they will follow as part of the collaboration. This can
be at either loose (peer-to-peer defined), medium (peer-to-peer but with approval from the FAS
Administrator) or tight (defined by the FAS Administrator). The inputs for this will come from the
Reputation service, via the Planning & Scheduling and the Goals & Contracts modules.

101 Journal of the Association for Information Systems (Volume 3, 2002) 77-111

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

Once this is done, the agents start executing their workflows and conversations, with the help of
the Agent-oriented Workflow Layer. The Schema and Instance modules are functionally the same
as the Schema and Instance layers of our three-tier architecture described in section II (the
functionality of the Planning layer will be subsumed by the Admin module in Figure 13), hence
adaptivity can also be managed in the same way. The results of the workflow executions are sent to
the Monitoring & Simulation module, which uses it for monitoring the workflow execution and alerting
the agents and the FAS Administrator in case of problems. This data is stored in the Repository, and
the Monitoring & Simulation module also uses this data for building simulation models of the
workflows and conversations. These simulation models can be used by the Planning & Scheduling
module for planning and scheduling similar workflows and agent conversations in the future.

The flexibility in our FAS architecture arises from the fact that sufficient social control (as
described in section 1 of Dellarocas) is addressed by imposing basic requirements via the Reputation
service, such as Quality of Service (QoS), security constraints, etc. However, the participating agents
are free to choose with whom they will collaborate, and also the manner of their collaboration. Even
for those workflows at tight level, the choice of handing over control to the FAS Administrator can be
made freely by the agents themselves. Hence our approach provides a sound architectural foundation
for building an FAS and realizing the CAS vision of Dellarocas.

In the remainder of this paper, we focus on two of the essential aspects of an FAS: RBAC and
Transactionality of Distributed Adaptive Workflows. In section IV, we describe our distributed RBAC
mechanism, and in section V we describe how transactional aspects of distributed adaptive workflows
are managed in our FAS.

DISTRIBUTED WORKFLOW MANAGEMENT IN FAS

Distributed workflow management in our FAS is performed at the Agent-oriented Workflow layer,
thus:

� The mechanism for managing distributed workflows among the different hierarchical levels is
essentially the same as described in section II. Typically, the overall workflow would be defined
by a global FAS administrator (or any workflow starter, if the workflow is at loose or medium
control level�this could be one of the participating organizations, which is one of the FAS
members), who would then "delegate" sub-workflows to other participating organizations for
execution. (Henceforth, we refer to the individual defining the workflow�either the workflow
starter or workflow administrator�as "workflow definer".) This way, we could have a delegation
hierarchy of organizations, where a delegating organization Od is defined to be superior (i.e., at
a higher level in the hierarchy) of the organizations to which Od does the delegation.

� As described in section II, we restrict the role of the overall workflow definer to defining only the
overall workflow in detail; individual sub-workflows are merely specified as black boxes with
prespecified inputs and outputs, and it is left to the respective organization to define the sub-
workflow satisfying the inputs and outputs.

� However, care should be taken to ensure that an organization at a lower hierarchical level does
not delegate a sub-workflow to an organization that is either at the same level or is its superior
in the hierarchy. This will prevent "circularity" in distributed workflow definition.

Journal of the Association for Information Systems (Volume 3, 2002) 77-111 102

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

� We accommodate chained and parallel synchronized workflows in the following manner:
% A workflow can be "chained" or "parallel synchronized" only with a workflow that is not at a

higher level in its hierarchy
% The workflow definers of the respective organizations that are executing the chained or

parallel synchronized workflows, will need to define and manage them together

IV. DISTRIBUTED SECURITY AND RBAC IN FAS

RBAC FOR FLEXIBLE WORKFLOW

The RBAC and Role Graph models introduced in section II need to be enhanced for Flexible
Workflow (i.e., where the person who creates and starts a workflow is not the workflow administrator).
Hence, for a loose level workflow, a different Role Graph may need to be maintained. The MaxRole
for this Role Graph will be the workflow definer. For a medium level workflow, the MaxRole will be
shared by the workflow administrator and workflow definer, with the workflow administrator being able
to override the decisions of the workflow definer. For a tight level workflow, the model will be the same
as in section II.

Hence for loose level workflows, our RBAC model will operate more like a discretionary access
control (DAC) model, where the workflow definer is given discretionary administrative privileges for
his/her workflow [Osborn et al. 2000].

RBAC FOR FAS

Here, we will essentially have several agents (belonging to different organizations) collaborating
with each other to execute a distributed workflow. Hence we will need to extend the RBAC and Role
Graph models thus:

� At the global level (i.e., the overall workflow), there will be an Overall Role Graph, with each
organization possessing a role (with its associated direct and inherited privileges). The workflow
definer will, by definition, possess the MaxRole role.

� Each role in the overall Role Graph will map to a role in an Organizational Role Graph, where the
equivalent organizational role (for the sub-workflow assigned to the organization) will be stored
in the Organizational Role Graph. The Organizational Role Graph will be maintained by the
respective organization.

� In the case of distributed workflows at several hierarchical levels, i.e., if the organization itself
subcontracts its assigned workflow tasks to other organizations, the Organizational Role Graphs
are recursively created and maintained down to the �leaf� level in the hierarchy.

� If the overall workflow is at the loose level, then the workflow definer can assign specific
organizations to the tasks or sub-workflows that make up the overall workflow (i.e., role-task
assignment at the global organizational level). If the overall workflow is at medium control level,
then these assignments need to be approved by the FAS Administrator before they become valid.

103 Journal of the Association for Information Systems (Volume 3, 2002) 77-111

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

If the overall workflow is at the tight level, then the assignments can only be done by the FAS
Administrator. Of course, within an organization, the authority for user/role and role/task
assignment will rest on the workflow definer of the sub-workflow (the workflow definer in cases
of loose or medium workflow, and the organization�s workflow administrator in cases of tight
workflow).

� For chained workflows, the respective participating organizations would need to communicate
to each other the tasks at which the chaining will take place, along with names of the appropriate
users executing the tasks, so that they can be managed together.

� For parallel synchronized workflows, the synchronization points have to be defined by the
respective workflow definers of each organization while defining their respective sub-workflows,
so that they can be managed together.

� Separation of duty constraints, whether SSOD or DSOD, can be specified as global policies and
constraints at the overall workflow level; at any hierarchical level, each organization would also
have its own SSOD & DSOD constraints

We are, therefore, logically extending the ideas from section II for implementing distributed
RBAC. One point to note is that our approach, as recommended in Kang et al. [2001], achieves the
important separation of the workflow-specific and organization-specific security infrastructures.

In the next section, we will describe how distributed RBAC is managed in the presence of
adaptivity.

V. DISTRIBUTED WORKFLOW ADAPTIVITY AND TRANSACTIONALITY IN FAS

In the previous section, we defined RBAC implementation for flexible workflows in our FAS.
However, since flexible workflows are expected to be highly adaptive, we need to consider how best
to incorporate adaptivity�and by extension, transactionality�into our model.

At the most elementary level, any workflow change�either at schema or instance level�involves
a combination of the following atomic operations:

� Deletion of a task
� Addition of a task

For either schema or instance level adaptivity, there are essentially two ways in which a workflow
instance can be modified:

� On-the-fly, i.e., while the workflow is running

� At entry time, i.e., when the new workflow instance begins executing

If the workflow change is at entry time, then transactionality considerations will not arise, since
the new workflow instance is simply executed. Hence we only consider the case of on-the-fly workflow
change.

Journal of the Association for Information Systems (Volume 3, 2002) 77-111 104

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

PROTOCOL FOR WORKFLOW ADAPTATION

Since a typical workflow in our FAS involves multiple agents/organizations interacting among
each other, adapting the workflow�either on-the-fly or at entry time�requires a well-defined protocol.
This will itself become a kind of "meta-workflow" that will be executed and monitored by the workflow
definer. Therefore our generic protocol is as follows:

� One of the participating agents feels the need for the workflow to be modified and informs the
workflow definer. Alternatively, this need could emerge directly from the workflow definer.

� The workflow definer initiates a multi-party negotiation among the participating agents. The
outcome of the negotiation is the new workflow, along with the modifications�task deletions and
task additions�needed for adapting the workflow.
% If the overall workflow is at the loose level, then the workflow definer will him/herself modify

the workflow via appropriate task aborts and roll-backs (discussed in detail below).
% If the overall workflow is at the medium level, then the FAS Administrator will have to approve

the modification before it can be implemented.
% For a sub-workflow at the loose level, the same task abort-and-rollback procedure will be

followed by the respective sub-workflow definer.
% Similarly, if any sub-workflow is at the medium level, then the respective sub-workflow

administrator will have to approve the modification. It is assumed that this will be part of the
multi-party negotiation process.

% This process is repeated for the sub-workflows of the sub-workflows and so on, recursively.

� The actual workflow adaptation is now ready to be implemented.

TASK ABORTS AND ROLL-BACKS

When a workflow has to be adapted mid-stream, several existing tasks may need to be aborted
or rolled back so that �replacement� tasks can be introduced. Given the distributed nature of
workflows in our FAS, this will need to be implemented in a cross-organizational manner. Hence we
extend the work of Vonk et al. [2000a, 2000b] and implement roll-backs in the following way:

� Only tasks that are in the ACTIVATED, SUSPENDED, DONE, or FAILED state (see section II)
can be rolled back. It is assumed that the rolling back activity is carried out by a compensating
task, which is also assumed to be defined along with every task. This compensating task can be
either fully or partially executed. (For example, a compensating task for a payment fulfillment
task, could be to reverse the payment by returning the money.)
% Hence we introduce two additional sub-states of the ACTIVATED state to denote a task that

is being rolled back:
T PARTIAL-ROLL, to denote a task that is partially rolling back (i.e., compensating)
T FULL-ROLL, to denote a task that is fully rolling back

� A task that has finished rolling back fully is deemed to be in the NOT-ACTIVATED state; i.e., it
is as if the task has not been executed at all.

105 Journal of the Association for Information Systems (Volume 3, 2002) 77-111

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

� Some tasks cannot be rolled back. For example, items that have been downloaded via the
Internet (such as music, documents in electronic format, software deliverables, etc.) cannot be
returned. In the physical world, industrial components that have been imperfectly manufactured
cannot be rolled back. In such situations, since compensating tasks cannot be defined, the
respective workflows will have to be adapted taking into account the change of state of the
repositories of the FAS and the participating agents in the workflow. This is, of course, a business
decision, and out of the scope of this paper, since it requires detailed research into workflow
semantics [Singh 1996].

Likewise, we implement aborts in the following way:

� Only tasks that are in the NOT-ACTIVATED, ACTIVATED, or SUSPENDED state can be aborted,
provided this abortion does not permanently alter the states of the repositories of the FAS and
the participating agents in the workflow. For example, a payment fulfillment task cannot be
aborted if it has been successfully completed, since the repositories would already have recorded
the payment information; hence such a task needs to be rolled back by a compensating task,
which will reverse the payment and restore the original state of the Repository. As in the case of
task roll-backs, this is also a business decision, and out of the scope of this paper, requiring
detailed research into workflow semantics [Singh 1996]. Hence if a task abort does change the
states of the aforementioned repositories, then the respective workflows will need to be adapted
taking into account the changed repository states. How this will be done, however, is a business
decision depending on the individual workflows, and is out of the scope of this paper.

� An important point to note is that a task that is in either PARTIAL-ROLL or FULL-ROLL state
cannot be aborted.

� Let a task T need to be aborted (rolled back) in a workflow W. If, as a result of T aborting (resp.
rolling back), a sub-workflow of W is affected, then all tasks in the sub-workflow that are in NOT-
ACTIVATED, ACTIVATED, or SUSPENDED (resp. ACTIVATED, SUSPENDED, DONE, or
FAILED) states will also need to be aborted (resp. rolled back).

For example, in the Adaptive & Flexible Workflow Example in section II, let us assume that
the Police Verification and Lawyer Verification tasks are performed as a separate sub-workflow
and that they are represented as a single task (let us call it �Overall Verification�) in the main
workflow. If this task is aborted, then, depending on the state of the Police Verification and
Lawyer Verification tasks, these tasks will have to be either aborted or rolled back.
% If a task T' in the sub-workflow of W is in the DONE or FAILED state, and W is affected by

T aborting, then T' will need to be rolled back.
In our example, if the Police Verification task is in the DONE or FAILED state, and the

parent workflow is affected by the Overall Verification task aborting, then the Police
Verification task will need to be rolled back.

% If T' is in the NOT-ACTIVATED, ACTIVATED, or SUSPENDED state, and W is affected by
T rolling back, then T� will need to be aborted.

That is, if the Police Verification task is in the NOT-ACTIVATED, ACTIVATED, or
SUSPENDED state, then it will need to be aborted.

% If W is itself a sub-workflow of a workflow Y, then the tasks in Y that map to the sub-workflow
W will need to be aborted (resp. rolled back), subject to the same caveats described above
for the task T'.

Journal of the Association for Information Systems (Volume 3, 2002) 77-111 106

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

For chained workflows, we will have a task in one workflow A accessing another task in a
workflow B. For the purposes of aborts and roll-backs, we will consider B as the sub-workflow of A,
and the same arguments described above will apply here.

For a pair of parallel synchronized workflows A and B, we will have the case where A and B will
�meet� at a synchronization point (typically, a route node). In this case, either workflow can play the
part of the sub-workflow. Typically, the workflow where the change is occurring first will be considered
the �parent� workflow; this change will trigger task aborts and roll-backs in the other sub-workflow.

ADMINISTRATION OF WORKFLOWS IN FAS

For the FAS Administrator, workflow administration (both macro and micro) is done in a manner
similar to that described in section II. The additional task in the administration lifecycle, is that of
maintenance (essentially, Role Management) of the Overall Role Graph of the FAS. This task is
carried out during Process Creation and Process Upgrade.

For each individual administrator, the administration lifecycle is the same as that of the FAS
Administrator. The only difference is that the individual administrator maintains his/her individual
Organizational Role Graph. This maintenance will need to be done in sync with the Role Graphs of
organizations above in the hierarchy, and also with the Overall Role Graph.

Since our distributed workflow infrastructure has been designed to preserve the autonomy of
each organization, the individual administrator can upgrade his/her respective sub-workflows
independent of the other sub-workflows, as long as the upgrade information is propagated to the FAS
Administrator.

SECURITY CONSIDERATIONS

In this section, we extend the ideas presented in section II for adaptivity of workflows in our FAS,
i.e., workflows that are distributed and flexible, in the following way:

� At any level, the respective workflow definer is authorized to create/modify user/role and role/task
assignments, since he will always occupy the MaxRole role. However, if the (sub-)workflow is at
the medium level, this will require the approval of the respective workflow administrator.

� Since the workflow is distributed, we could have organizations as users executing certain tasks
and sub-workflows, instead of individual users (since the individual users will be directly assigned
by the organizations themselves).

� If we are to extend the algorithm of section II for distributed workflow, then the following steps
should be executed in order:
% Modifications in role/task assignments should be made starting at the global level (i.e., at the

Overall Role Graph), as per the algorithm of section II, and working downward to the
individual Organizational Role Graphs. Note that since some users could be organizations
instead of individuals, this would involve reallocating organizations to tasks and sub-
workflows.

107 Journal of the Association for Information Systems (Volume 3, 2002) 77-111

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

% This reallocation may necessitate reallocation of users within the individual organizations
executing their respective sub-workflows. Hence, based on this reallocation, the algorithm
of section II is again applied to all of the Organizational Role Graphs down the hierarchy, until
all of the Role Graphs up to and including all the leaf levels are covered.

% If there is a SSOD or DSOD constraint violation at any level in this hierarchy, all reallocations
up to and including this level are aborted, and an error message is signaled to the following:
˜ The workflow definer and workflow administrator at that level, and
˜ All workflow definers and workflow administrators at parent levels, all the way up to the

global workflow definer and the FAS Administrator.

VI. CONCLUSIONS AND FUTURE WORK

We have described our idea of a Flexible Agent Society (FAS), an extension of the Contractual
Agent Society (CAS) work [Dellarocas 2000; Dellarocas and Klein 1999] and our earlier work on
agent-oriented adaptive workflow [Narendra 1999, 2000, 2001a, 2001b, 2001c, 2001d]. We have also
shown how adaptive workflows and multi-agent interactions can be seamlessly integrated and
modeled in the FAS. The major contributions are incorporation of security (specifically, role-based
access control) and transactional aspects of adaptive and distributed workflows into the FAS.

There are several opportunities for future work:

� Implementation and experimentation: The FAS needs to be implemented and tested on various
usage scenarios. An evaluation should be conducted of the need for enhancements to the
workflow model depicted in Figures 1 and 2 to include additional states for handling errors/
exceptions and other types of conditional branches as described in van der Aalst et al. [2000]
(e.g., XOR branches, M-out-of-N branches, etc.).

The other important research issue is task aborts and roll-backs. As explained in section V,
certain tasks cannot be rolled back (resp. aborted) and their execution (resp. abortion) could
permanently alter the state of the repositories of the FAS and the individual agents. For such a
problem, research needs to be done on how to "recover" the repository states so that the
workflow can be adapted successfully. This is a problem that requires more investigation into
workflow semantics [Singh 1996].

� Policies and Trust Management: The functionality of the Reputation service should be extended
to more fully implement trust management [Herzberg et al. 2000]. A related and very important
research area is that of Policies. Our architecture needs to be enhanced to include support for
specifying, executing and checking the RBAC policies for flexible workflows, borrowing ideas from
[Damianou et al. 2001].

� Distributed Service Management: The functionality of the Monitoring & Simulation module needs
to be extended, especially developing techniques for distributed service management [Sahai et
al. 2000].

� Distributed Workflow Administration: We have briefly described the administration lifecycle for
the individual workflow administrators and the FAS Administrator. This functionality needs to be
specified in more detail. This will also need to be integrated with Distributed Service
Management.

Journal of the Association for Information Systems (Volume 3, 2002) 77-111 108

1Editor�s Note: The following reference list contains the addresses of World Wide Web pages.
Readers who have the ability to access the Web directly from their computer or are reading the paper
on the Web can gain direct access to these references. Readers are warned, however, that

1. These links existed as of the date of publication but are not guaranteed to be working
thereafter.

2. The contents of Web pages may change over time. Where version information is provided
in the References, different versions may not contain the information or the conclusions references.

3. The authors of the Web pages, not JAIS, are responsible for the accuracy of their content.
4. The author of this article, not JAIS, is responsible for the accuracy of the URL and version

information.

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

� Multi-Agent Conversations: We touched upon multi-agent conversations in an FAS, preferring
instead to investigate the architectural underpinnings of workflow definition and execution, while
classifying multi-agent conversations as micro-workflows. However, multi-agent conversations
being much more dynamic than workflows, they need to be modeled in a different way. We are
currently working on developing an appropriate modeling mechanism for multi-agent
conversations�with special emphasis on adaptivity and transactionality (similar to that described
in section V for macro-workflows)�that is consistent with our FAS approach [Narendra 2002].
We also intend to use this approach in defining appropriate protocols for automating Distributed
Workflow Administration, with emphasis on process upgrade.

� Contract Specification Languages: As described in Dellarocas [2000], there is a need to develop
appropriate contract specification languages that can be used in matchmaking and to link them
to the goals to be met by the collaboration.

VII. ACKNOWLEDGMENTS

The author wishes to thank his manager, Srivatsa Krishnaswamy, and the ESC Center Manager,
Padma Ravichander, for supporting his work. The author also thanks Bernard Burg of HP Labs, for
his useful review comments on an earlier paper [Narendra 2001b], on which this paper is based.
Special thanks are also due to the Editor of JAIS and the anonymous reviewers, whose feedback
significantly improved the quality of the paper.

Editor�s Note: This paper was first received on August 30, 2001, and was with the author one
month for two revisions. Phillip Ein-Dor was the editor.

VIII. REFERENCES1

Cholewka, D. G., R. A., Botha, and J. H. P. Eloff. "A Context-Sensitive Access Control Model and
Prototype Implementation," in Proceedings of the 15th International Information Security
Conference (IFIP/SEC 2000), Beijing, China, August 2000 (available from
http://www.petech.ac.za/secwflow/images/papers/SEC2000Cholewka.pdf).

Cook, J. M. "Discovering Models of Software Processes from Event-Based Data," ACM Transactions
on Software Engineering and Methodology (7:3), July 1998, pp. 215-249.

http://www.petech.ac.za/secwflow/images/papers/SEC2000Cholewka.pdf

109 Journal of the Association for Information Systems (Volume 3, 2002) 77-111

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

Damianou, N., N. Dulay, E. Lupu, and M. Sloman. "The Ponder Specification Language," Workshop
on Policies for Distributed Systems and Networks (Policy2001), Hewlett-Packard Labs Bristol,
January 29-31, 2001 (available from http://www.doc.ic.ac.uk/~mss/Papers/Ponder-
Policy01V5.pdf).

Dellarocas, C. �Contractual Agent Societies: Negotiated Shared Context and Social Control in Open
Multi-Agent Systems,� Workshop on Norms and Institutions in Multi-Agent Systems, Fourth
International Conference on Multi-Agent Systems (Agents-2000), Barcelona, Spain, June 2000
(available from http://ccs.mit.edu/dell/aa2000/paper13.pdf).

Dellarocas, C., and M. Klein. "Civil Agent Societies: Tools for Inventing Open Agent-Mediated
Electronic Marketplaces," Proceedings of the Workshop in Agent-Mediated Electronic Commerce
(co-located with IJCAI'99), Stockholm, Sweden, July 199 (available from
http://ccs.mit.edu/dell/civilagentsocieties.pdf).

Finin, T., Y. Labrou, and J. Mayfield. "KQML as an Agent Communication Language," in Software
Agents, Jeffrey Bradshaw (ed.), Cambridge, MA: AAAI/MIT Press, 1997 (available from
http://www.csee.umbc.edu/~jklabrou/publications/mitpress96.pdf).

Griss, M. L. ""My Agent Will Call Your Agent � But Will It Respond?," Software Development
Magazine, 2000.

Herzberg, A., Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid. �Access Control Meets Public Key
Infrastructure, Or: Assigning Roles to Strangers,� December 2001, http://www.haifa.il.ibm.com/
projects/software/e-Business/papers/Paper_Trust.pdf.

Hollingsworth, D. Workflow Management Coalition: The Reference Model, Workflow Management
Coalition, January 1995, available from http://www.wfmc.org/standards/docs/tc003v11.pdf.

Kang, M. N., J. S. Park, and J. N. Froscher. �Access Control Mechanisms for Inter-organizational
Workflow,� Proceedings of the Sixth ACM Symposium on Access Control Models and
Technologies (SACMAT), New York: ACM Press, May 2001, pp. 66-74.

Kappel, G., S. Rausch-Schott, and W. Retschitzegger. Coordination in Workflow Management
Systems: A Rule-Based Approach, Heidelberg, Germany: Springer, 1998.

Kradolfer, M., and A. Geppert. �Dynamic Workflow Schema Evolution based on Workflow Type
Versioning and Workflow Migration,� in Proceedings of the Fourth IFCIS International Conference
on Cooperative Information Systems, Edinburgh, Scotland, September 1999, pp. 104-114
(available through http://www.ifi.unizh.ch/dbtg/Projects/TRAMs/trams.html).

MASIF (Mobile Agent System Interoperability Facilities) specification, 1998 (available from
ftp://ftp.omg.org/pub/docs/orbos/98-03-09.pdf).

Minar, N., R. Burkhardt, C. Langton, and M. Askenazi. "The Swarm Simulation System: A Toolkit
for Building Multi-Agent Simulations," 2001, available from http://www.swarm.org/index.html.

Narendra, N. C. �AdaptAgent: Integrating Adaptive Workflows and Multi-Agent Conversations for
B2B E-Commerce,� manuscript in progress, 2002.

Narendra, N. C. "AdaptAgent: Integrated Architecture for Adaptive Workflow and Agents,"
Proceedings of International Conference on Artificial Intelligence, Special Session on Agent-
oriented Software Architectures for B2B, H. Arabnia (ed.), Las Vegas, NV, June 2001a.

Narendra, N. C. "Adaptive Workflow Management: An Integrated Approach and System Archi-
tecture," ACM Symposium on Applied Computing, New York: ACM Press, 2000, pp. 858-866.

Narendra, N. C. "Flexible Agent Societies: Flexible Workflow Support for Agent Societies,"
Proceedings of International Conference on Computational Intelligence for Modeling, Control, and
Automation - CIMA 2001, Las Vegas, July 2001b.

Narendra, N. C. �Flexible Support and Management of Adaptive Workflow Processes,� under review,
2001c.

http://www.doc.ic.ac.uk/~mss/Papers/Ponder-Policy01V5.pdf
http://www.doc.ic.ac.uk/~mss/Papers/Ponder-Policy01V5.pdf
http://ccs.mit.edu/dell/aa2000/paper13.pdf
http://ccs.mit.edu/dell/civilagentsocieties.pdf
http://www.csee.umbc.edu/~jklabrou/publications/mitpress96.pdf
http://www.haifa.il.ibm.com/projects/software/e-Business/papers/Paper_Trust.pdf
http://www.haifa.il.ibm.com/projects/software/e-Business/papers/Paper_Trust.pdf
http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.ifi.unizh.ch/dbtg/Projects/TRAMs/trams.html
ftp://ftp.omg.org/pub/docs/orbos/98-03-09.pdf
http://www.swarm.org/index.html

Journal of the Association for Information Systems (Volume 3, 2002) 77-111 110

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

Narendra, N. C. �Goal-based and Risk-based Creation of Adaptive Workflow Processes,� American
Association for Artificial Intelligence (AAAI) Spring Symposium, Stanford University, Palo Alto,
CA, 1999; also available from http://aifbhermes.aifb.uni-karlsruhe.de/AAAI2000/
CameraReady/NNarendra00.pdf.

Narendra, N. C. �An Integrated Security Infrastructure for Adaptive Workflow,� under review, 2001d.
Nyanchama, M., and S. Osborn. "The Role Graph Model and Conflict of Interest," ACM Transactions

on Information and Systems Security (2:1), February 1999, pp. 3-33 (available from
http://www.csd.uwo.ca/faculty/sylvia/conflict.ps).

Osborn, S., R. S. Sandhu, and Q. Munawer. "Configuring Role-Based Access Control to Enforce
Mandatory and Discretionary Access Control Policies," ACM Transactions on Information and
Systems Security (3:2), 2000 (available from http://www.csd.uwo.ca/faculty/sylvia/models.ps).

Reichert, M., and P. Dadam. �ADEPTflex: Supporting Dynamic Changes of Workflows Without
Loosing Control,� Journal of Intelligent Information Systems, Special Issue on Workflow
Management Systems (10:2), 1999, pp. 93-129. (available from http://www.informatik.uni-
ulm.de/dbis/papers/1997/ReDa97c.ps).

Sahai, A., J. Ouyang, V. Machiraju, and K. Wurster. �End-to-End E-service Transaction and
Conversation Management through Distributed Correlation,� Hewlett-Packard Labs Technical
Report HPL-2000-145, 2000 (available from http://hpl.hp.com/techreports/2000/HPL-2000-
145.pdf).

Sandhu, R. S., and P. Samarati. "Access Control: Principles and Practice," IEEE Communications
(32:9), September 1994 (available from http://www.list.gmu.edu/journals/commun/
pdf_ver/i94ac.pdf).

Shan, M-C., J. Davis, W. Du, and Y. Huang. �HP Workflow Research: Past, Present, and Future,�
Hewlett-Packard Labs Technical Report HPL-97-105, August 1997 (available from
http://www.hpl.hp.com/techreports/97/HPL-97-105.html).

Singh, M. P. "Formal Semantics of Workflow Computations," Technical Report TR-96-08,
Department of Computer Science, North Carolina State University, January 1996 (available from
http://www.csc.ncsu.edu/faculty/mpsingh/papers/databases/wf_semantics.pdf).

Thomas, R., and R. S. Sandhu. " Task-based Authorization Controls (TBAC): A Family of Models
for Active and Enterprise-oriented Authorization Management," in Proceedings of the IFIP WG
11.3 Workshop on Database Security, Lake Tahoe, CA, August 11-13, 1997, London: Chapman
& Hall (available from http://www.list.gmu.edu/confrnc/ifip/pdf_ver/i97tbac.pdf).

van der Aalst, W. M. P, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros. "Workflow
Patterns," BETA Working Paper Series, WP 47, Eindhoven University of Technology, Eindhoven,
2000 (available from http://tmitwww.tm.tue.nl/staff/wvdaalst/Publications/p108.pdf).

Vonk, J., W. Derks, P. Grefen, and M. Koetsier. �Model, Architecture and System for Cross-
Organizational Transaction Support in Virtual Enterprises,� 2001a (available from
http://www.ub.utwente.nl/webdocs/ctit/1/00000031.pdf).

Vonk, J., P. Grefen, E. Boertjes, and P. and Apers. �Distributed Global Transaction Support for
Workflow Management Applications,� 2001b (available from http://www.ub.utwente.nl/
webdocs/ctit/1/0000000e.pdf).

Whittingham, K. "OpenWater - White Paper", IBM Research Division, Zurich Research Laboratory,
1999.

Wooldridge, M., and N. R. Jennings. "Intelligent Agents: Theory and Practice," Knowledge
Engineering Review(10:2), 1995 (available from http://www.csc.liv.ac.uk/~mjw/pubs/
ker95.ps.gz).

http://aifbhermes.aifb.uni-karlsruhe.de/AAAI2000/CameraReady/NNarendra00.pdf
http://aifbhermes.aifb.uni-karlsruhe.de/AAAI2000/CameraReady/NNarendra00.pdf
http://www.csd.uwo.ca/faculty/sylvia/conflict.ps
http://www.csd.uwo.ca/faculty/sylvia/models.ps
http://www.informatik.uni-ulm.de/dbis/papers/1997/ReDa97c.ps
http://www.informatik.uni-ulm.de/dbis/papers/1997/ReDa97c.ps
http://hpl.hp.com/techreports/2000/HPL-2000-145.pdf
http://hpl.hp.com/techreports/2000/HPL-2000-145.pdf
http://www.list.gmu.edu/journals/commun/pdf_ver/i94ac.pdf
http://www.list.gmu.edu/journals/commun/pdf_ver/i94ac.pdf
http://www.hpl.hp.com/techreports/97/HPL-97-105.html
http://www.csc.ncsu.edu/faculty/mpsingh/papers/databases/wf_semantics.pdf
http://www.list.gmu.edu/confrnc/ifip/pdf_ver/i97tbac.pdf
http://tmitwww.tm.tue.nl/staff/wvdaalst/Publications/p108.pdf
http://www.ub.utwente.nl/webdocs/ctit/1/00000031.pdf
http://www.ub.utwente.nl/webdocs/ctit/1/0000000e.pdf
http://www.ub.utwente.nl/webdocs/ctit/1/0000000e.pdf
http://www.csc.liv.ac.uk/~mjw/pubs/ker95.ps.gz
http://www.csc.liv.ac.uk/~mjw/pubs/ker95.ps.gz

111 Journal of the Association for Information Systems (Volume 3, 2002) 77-111

Flexible Workflow and Multi-Agent Interactions
by N. C. Narendra

IX. ABOUT THE AUTHOR

N. C. Narendra is a Software Architect at Hewlett-Packard India Software Operations Ltd., in
Bangalore, India. He is the author of over 20 papers and technical articles. His research interests
are in the areas of information systems, workflow, agent technology, security, and e-service
management. He is a reviewer for IEEE Internet Computing and has been a reviewer for ACM
Symposium on Applied Computing.

Copyright © 2002, by the Association for Information Systems. Permission to make digital or hard copies
of all or part of this work for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this notice and full citation on the first
page. Copyright for components of this work owned by others than the Association for Information Systems
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or
to redistribute to lists requires prior specific permission and/or fee. Request permission to publish from: AIS
Administrative Office, PO Box 2712 Atlanta, GA, 30301-2712, Attn: Reprints, or via e-mail from ais@aisnet.org.

http://www.aisnet.org
mailto:ais@aisnet.org

ISSN: 1536-9323

EDITOR
Phillip Ein-Dor

Tel Aviv University

AIS SENIOR EDITORIAL BOARD
Henry C. Lucas. Jr.
Editor-in-Chief
University of Maryland, USA

Paul Gray
Eitor, CAIS
Claremont Graduate
University, USA

Phillip Ein-Dor
Editor, JAIS
Tel-Aviv University, Israel

Edward A. Stohr
Editor-at-Large
Stevens Institute of
Technology, USA

Blake Ives
Editor, Electronic Publications
University of Houston, USA

Reagan Ramsower
Editor, ISWorld Net
Baylor University, USA

JAIS ADVISORY BOARD
Izak Benbasat
University of British Columbia,
Canada

Niels Bjørn-Andersen
Copenhagen Business School,
Denmark

Gerardine DeSanctis
Duke University, USA

Robert Galliers
London School of Economics,
UK

Sirkka Jarvenpaa
University of Texas at Austin,
USA

John L. King
University of Michigan,
USA

Edgar Sibley
George Mason University, USA

Ron Weber
University of Queensland,
Australia

Vladimir Zwass
Fairleigh-Dickinson
University, USA

JAIS EDITORIAL BOARD
Paul Alpar
Phillipps University, Germany

Richard J. Boland Jr.
Case Western Reserve
University, USA

Claudio Ciborra
University of Bologna, Italy

Roger Clarke
Australian National University,
Australia

Joyce Elam
Florida International University,
USA

Henrique Freitas
Universidade Federal do Rio
Grande do Sul, Brazil

John Henderson
Boston University, USA

Rudy Hirschheim
University of Houston, USA

Sid Huff
Victoria University of
Wellington, New Zealand

Magid Igbaria
Tel-Aviv University, Israel

Mathias Jarke
University of Aachen,
Germany

Rob Kauffman
University of Minnesota, USA

Julie Kendall
Rutgers University, USA

Rob Kling
University of Indiana, USA

Claudia Loebbecke
University of Cologne,
Germany

Stuart Madnick
Massachusetts Institute of
Technology, USA

Ryutaro Manabe
Byunkyo University, Japan

Tridas Mukhopadhyay
Carnegie-Mellon University,
USA

Mike Newman
University of Manchester, UK

Ojelanki K. Ngwenyama
Virginia Commonwealth
University, USA

Markku Saaksjarvi
Helsinki School of Economics
and Business Administration,
Finland

Christina Soh
Nanyang Technological
University, Singapore

Kar Tan Tam
Hong Kong University of
Science and Technology,
Hong Kong

Alex Tuzihlin
New York University, USA

Rick Watson
University of Georgia, USA

Peter Weill
Massachusetts Institute of
Technology, USA

Leslie Willcocks
Oxford University, UK

ADMINISTRATIVE PERSONNEL
Eph McLean
AIS, Executive Director
Georgia State University

Samantha Spears
Subscriptions Manager
Georgia State University

Reagan Ramsower
Publisher, JAIS
Baylor University

