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In the traditional systems modeling approach, the modeler is required to capture a user’s view of some domain in a formal 
conceptual schema. The designer’s conceptualization may or may not match with the user’s conceptualization. One of the 
reasons for these conflicts is the lack of an initial agreement among users and modelers concerning the concepts belonging 
to the domain. Such an agreement could be facilitated by means of an ontology. If the ontology is previously constructed 
and formalized so that it can be shared by the modeler and the user in the development process, such conflicts would be 
less likely to happen. Following up on that, a number of investigators have suggested that those working on information 
systems should make use of commonly held, formally defined ontologies that would constrain and direct the design, 
development, and use of information systems – thus avoiding the above mentioned difficulties. Whether ontologies 
represent a significant advance from the more traditional conceptual schemas has been challenged by some researchers. 
 
We review and summarize some major themes of this complex discussion. While recognizing the commonalities and 
historical continuities between conceptual schemas and ontologies, we think that there is an important emerging distinction 
that should not be obscured and should guide future developments. In particular, we propose that the notions of 
conceptual schemas and ontologies be distinguished so as to play essentially different roles for the developers and users of 
information systems. We first suggest that ontologies and conceptual schemas belong to two different epistemic levels. They 
have different objects and are created with different objectives. Our proposal is that ontologies should deal with general 
assumptions concerning the explanatory invariants of a domain – those that provide a framework enabling understanding 
and explanation of data across all domains inviting explanation and understanding.  
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 Conceptual schemas, on the other hand, should address the relation between such general explanatory categories and the 
facts that exemplify them in a particular domain (e.g., the contents of the database). In contrast to ontologies, conceptual 
schemas would involve specification of the meaning of the explanatory categories for a particular domain as well as the 
consequent dimensions of possible variation among the relevant data of a given domain. Accordingly, the conceptual 
schema makes possible both the intelligibility and the measurement of those facts of a particular domain. The proposed 
distinction between ontologies and conceptual schemas makes possible a natural decomposition of information systems in 
terms of two necessary but complementary epistemic functions: identification of an invariant background and measurement 
of the object along dimensions of possible variation. Recognition of the suggested distinction represents, we think, a natural 
evolution in the field of modeling, and significant principled guidance for developers and users of information systems. 
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I. Introduction 
In the conventional conceptual modeling activity, ontologies are either bypassed or lack a formal specification [Frank, 
1997]. Guarino [1998] considers that every IS has an ontology that often is not explicit but obscurely embedded in parts of 
the system. Hirschheim et al. [1995] make a similar point for IS, saying that all data modeling “presumes either implicitly or 
explicitly some form of modeling of data meaning.” And beyond that, the designer’s conceptualization may or may not 
match with the user’s conceptualization. One of the reasons for these conflicts is the lack of an initial agreement between 
users and modelers concerning the concepts belonging to the domain. Such an agreement could be facilitated by means of 
an ontology. If the ontology is previously constructed and formalized so that it can be shared by the modeler and the user in 
the development process, such conflicts would be less likely to happen. 

Guarino [1998] coined the term ontology-driven information systems for systems that make use of formally defined 
ontologies. According to him, an explicit ontology plays a central role in this kind of system, thus driving all of its aspects 
and components. Guarino also discussed the prevalent use of the term ontology in Artificial Intelligence. He says, “An 
ontology refers to an engineering artifact, constituted by a specific vocabulary used to describe a certain reality, plus a set of 
explicit assumptions regarding the intended meaning of the vocabulary words. This set of assumptions has usually the form 
of a first-order logical theory, where vocabulary words appear as unary or binary predicate names, respectively called 
concepts and relations. In the simplest case, an ontology describes a hierarchy of concepts related by subsumption 
relationships; in more sophisticated cases, suitable axioms are added in order to express other relationships between 
concepts and to constrain their intended interpretation” [1998 p.4]. 

Nevertheless some authors consider that the idea of using ontologies as the foundation for IS development is an old idea. 
Sowa [2000] points out that the problem has been studied since the 1970s. Sowa uses the work of Tsichritzis and Klug 
[1978] for the American National Standards Institute (ANSI) to demonstrate his point. Tsichritzis and Klug propose the use 
of conceptual schemas as a way to represent and store knowledge about an application domain. According to Sowa, in 
Tsichritzis and Klug’s approach, a conceptual schema would also be central to the development of information systems in a 
fashion similar to what is being proposed for ontology-driven IS.  

We argue that there is a natural distinction between ontologies and conceptual schemas that arises from the differing roles 
those models play in the epistemic functioning of the developers and users of the information systems incorporating them. 
By explicating an epistemological basis for the terminological distinction and proposing that usage follow the epistemic 
distinction, we hope to clarify and contribute to the field of information systems analysis and design (ISAD). 

Using an example from Hirschheim et al. [1995], we can see that a conceptual schema would have propositions such as “a 
car is of a particular model” and “a car is owned by a person.” Note that such propositions invite specification (e.g., which 
model or person) and, thus, direct measurement. Currently, we might find similar propositions in an ontology, too. That is 
one of the reasons why they are often treated as equivalent in the literature. But we want to show how they should be 
different and, thus, reflective of differing epistemic motives. In this example, we would expect an ontology not to specify the 
dimensions of measurement. Instead, an ontology would provide a basis for causally based understanding and explanation 
and, thus, inference to causally based predictions. For instance, you should expect that people buy their cars according to 
some rules such as economic constraints, environmental concerns, or purposes of use. By providing a general framework 
for causal inference, an ontology should enable the conceptual schema to express the rules and expectations unique to this 
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domain. As a consequence, one might expect the conceptual schema to enable an inference such as the kind of person 
buying this kind of car has access to its purchase price. In this way, the conceptual schema would specify relevant 
dimensions of measurement (e.g., cost of purchase and available financial resources). Thus, the database could have a 
relevant fact such as John Doe, 50, owns a 2005 Cadillac XLR that costs over $75,000. From this it could be inferred that 
John has access to over $75,000. In general, John's patterns of economic behavior allow us to measure something about 
his wealth. Thus, the conceptual schema tells us what to measure and what the relevant dimensions of the database must 
be. In this way, operating in conjunction with the ontology, the conceptual schema allows a principled distinction between 
intelligible (i.e., theory relevant) information, and an almost unlimited mass of irrelevant facts. 

It needs to be pointed out that it is precisely the capacity of the information system to integrate information in a causally 
relevant way that would enable the understanding of what we call the functional significance of information. In our example, 
assuming the intention of purchasing a car, the functional significance for John of having over $75,000 in his bank account 
might be that he can purchase a new Cadillac. But that significance can best become apparent in a context where causal 
integration of a domain of information is inherent in its organization. Accordingly, if one were interested in IS that enable 
practice, then the sort of causally relevant integration we have indicated above would be crucial. 

In this paper we will argue that ontologies and conceptual schemas should be conceived to operate at two distinct epistemic 
levels. Furthermore, they have different objects and are created with different objectives. Nevertheless it is important to note 
that there is an interaction between the two and that this interaction may be beneficial to the development of both as we are 
going to show in section V. The relative independence between the measurement function of conceptual schemas, on the 
one hand, and the presumptive and explanatory functions of ontologies, on the other, enables a potential clash between 
these two components of an IS. As the above example shows, it is possible to record data in an information system that is 
inconsistent with the ontology but consistent with the conceptual schema – indicating the possible need to change the 
ontology. On the other hand, an inconsistency between the ontology and the IS might indicate that the IS should be 
checked for errors, or even that the conceptual schema should be revised. A degree of independence between ontologies 
and conceptual schemas creates the potential for the system to record the need for its revision. In this case, the system will 
promote the possibility of learning by the user and the developer – certainly a benefit of accepting the distinction we are 
proposing. 

II. Different Scopes For Ontologies And Conceptual Schemas  
There is a continuum from the developer/user conceptualizations, later expressed in informal and formal languages, to the 
creation of conceptual schemas and the subsequent representation of facts in a database. However, in order to achieve our 
objectives with IS, we need to separate things in clearly defined levels. We propose that computational ontologies and 
conceptual schemas definitely should belong to two different epistemic levels. The search for data independence and the 
creation of more generic and abstract models that started with two-level architecture continued with the three-level 
architecture in the ANSI/X3/SPARC proposal [Hirschheim et al., 1995]. Techniques and tools for information systems design 
and analysis are always in constant evolution. Automatic generation of conceptual schemas from ontologies [Fonseca et 
al.; 2003, Shanks et al.; 2003, Sugumaran and Storey, 2002; Wand and Weber, 2002] and the creation of conceptual 
schemas that are more independent from the implementations [Caruso and Umar, 2004; Parsons and Wand, 2000; 
Scheer, 2003; Zdonik and Maier, 1990] are examples of cases in which the borders of these two epistemic levels 
sometimes are blurred. 

At the same time that the research in conceptual modeling argues for the creation of more generic models, the research on 
ontologies sometimes (wrongly in our point of view) goes into specifics such as having instances of classes within ontologies. 
As McGuinness [2003] points out, “some classification schemes only include class names while others include ground 
individual content.” Bodenreider et al. [2004] points to a similar problem. They say that in some medical ontologies names 
represent classes or universals, while in other ontologies names convey how reality is perceived, measured, and understood. 
We argue that the recording of instances or ground content should be done by the IS itself under the guidance of the 
conceptual schema. In general, ontologies should not include instances of its concepts. The recording of facts belongs to 
the domain of measurement (i.e., the level of conceptual schemas).  

Regarding the scope of ontologies and conceptual schemas, some researchers suggest that ontological research is the study 
of instrumentally useful formal models, not of the formal properties of reality. For instance, Smith [2003] argues against 
what he calls ‘instrumental ontologies’. Such ontologies may be interpreted in terms of the ‘closed world assumption’. In 
such cases, what Gruber [1995] asserts for AI will be true of ontologies: “what ‘exists’ is that which can be represented” (p. 
907). Milton distinguishes between ontologies that are theory-focused and those that are pragmatically-oriented [1998]. 
For Milton, theory-focused ontologies are the ones created using philosophical theory. Pragmatically-oriented ontologies 
are very common in the practice of information systems and are targeted to specific domains such as banking or taxation. 
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Ontologies often combine a philosophical approach with pragmatic purposes. This odd combination may result in 
incompatible philosophical underpinnings being used in the same pragmatically-oriented ontology. The pragmatic 
approach allows the investigator to deftly avoid a user’s objection that a given ontology does not coincide with his or her 
view of reality. The developer of ontologies can reply that what is at issue is not whether the ontology is correct, but whether 
the models it defines are useful, or adequate, for some (limited) purposes. In this case, an ontology may have relevance to 
a narrow range of problems without being correct. We strongly disagree with this strategy [Fonseca and Martin, 2005]. 
Adjustment of an IS to local conditions is the role to be fulfilled by conceptual schemas. An excessively narrow view of 
ontologies will lead to the same problems in modeling that led to the very emergence of ontologies in ISAD research in the 
first place. These were the problems uncovered by Guarino [1998] in his introduction of Ontology-driven Information 
Systems. 

From the discussion above, we can begin to understand why it is implicit in Sowa’s argument that a conceptual schema (the 
result of the modeling process) is essentially the same as a computational ontology (the result of the ontology engineering 
process). Other researchers have asked themselves whether ontologies were actually the well-known conceptual data 
modeling techniques in disguise [Winter, 2001]. But Guarino [1998] himself advised against using ontology as just a “fancy 
name denoting the result of familiar activities like conceptual analysis and domain modeling” (p. 3). The origin of the 
confusion lies not only in the similarity of the two concepts but also in the fact that research on the use of ontologies in 
information systems is a relatively recent effort. Green and Rosemann [2004] say that not only “the type of research work 
that is conducted under the umbrella term, ‘ontologies’, varies significantly,” but the “understanding of an ontology in terms 
of its scope, details and purpose varies significantly” (p. i).  

The distinction between the two terms that we propose here is needed because a misuse or misunderstanding of the terms 
will hinder progress both in the research and in the practice of ISAD. Ontologies actually reflect the result of the evolution of 
research in modeling. For instance, we can trace the origins of the idea of using ontologies for ISAD to the early work of 
Wand & Weber [1989, 1990]. They introduced the idea that a modeling method could be reality or information-system 
driven. In our argument, we make a similar comparison of the scope of ontologies (reality driven) and conceptual schemas 
(IS and measurement driven) to highlight the differences between them. Our position in this paper is to argue for a more 
restricted view of conceptual schemas in which they would be closer to what is called a logical data model. We propose 
that the broader versions of conceptual schemas should often be designated as ontologies. Next we follow on with a review 
of the ontologies and conceptual schemas in the literature.  

III. Ontologies and Conceptual Modeling in the Literature 

Guarino’s Concept of Ontology-Driven Information Systems 
Guarino [1998] uses a broad definition of information systems to analyze the importance of ontologies for IS. He includes 
applications such as “enterprise integration, natural language translation, medicine, mechanical engineering, 
standardization of product knowledge, electronic commerce, geographic information systems, legal information systems, 
biological information systems” [Guarino, 1998 p.3]. Guarino and Giaretta [1995] favor the meaning of the term ontology 
as being a theory instead of a simple specification of particular epistemic states. They say that “an ontological theory differs 
from an arbitrary logical theory (or knowledge base) by its semantics, since all its axioms must be true in every possible 
world of the underlying conceptualization” (p. 31). 

Guarino sees two important categories in the use of ontologies. First, he sees a methodological one, characterized by 
highly interdisciplinary approaches using philosophy and linguistics to build the ontologies. Second, he envisions the 
architectural category in which we are interested here. In this category, an ontology plays a central role in IS, driving all of 
its aspects. Guarino proposes that those working on information systems should make use of commonly held, formally 
defined ontologies in the design, development, and use of information systems. He named such systems ontology-driven 
information systems (ODIS). Next, we summarize the mains aspects of an ODIS as seen by Guarino [1998]. 

First, Guarino considers that “every (symbolic) information system (IS) has its own ontology, since it ascribes meaning to the 
symbols used according to a particular view of the world.” The difference in an ODIS is that the ontology should be made 
explicit before the IS is even designed. Then, Guarino discusses a temporal and a structural dimension of the use of 
ontologies in IS. In the temporal dimension, an ontology can be used at the development time or at the run time. He says, 
“An important benefit of using an ontology at development time is that it enables the developer to practice a ’higher’ level 
of reuse than is usually the case in software engineering (i.e. knowledge reuse instead of software reuse). Moreover, it 
enables the developer to reuse and share application domain knowledge using a common vocabulary across 
heterogeneous software platforms. It also enables the developer to concentrate on the structure on the domain and the task 



 

Issue 2 Volume 8 Article 3 
133 

at hand and protects him from being bothered too much by implementation details” (p.12). At run time an ontology may 
enable, for instance, the communication between software agents.  

In the structural dimension, Guarino considers that an ontology can help build more consistent user interfaces or support 
the creation of software components. In the conceptual modeling phase, an ontology is used to link informal specifications 
to formal specifications. At run time, ontologies can be used to support information integration. A longer review of 
Guarino’s ODIS concept can be found in Kishore et al. [2004]. 

But before we start our discussion on the differences between ontologies and conceptual schemas, there is some 
terminology that needs to be clarified. We need to explain how the term ontology is used in a philosophic sense. In 
philosophy, ontology is the “branch of metaphysics that concerns itself with what exists” [Blackburn, 1996 p.269]. 
Philosophers have been studying ontology since Aristotle’s time, and by harkening back to the ancient philosophers, we may 
find an answer for how to build good ontologies. But philosophy itself has different branches that have different assumptions 
about the world and how we may understand it. Although the basic assumptions behind the theories that are used in 
creating ontologies are an important subject of study, these are not our main concern here. Other works in the literature 
discuss the subject at length. For instance, Wand and Weber [2004] and Milton and Kazmierczak [Milton, 1998; Milton 
and Kazmierczak, 1999] look at which kind of philosophical work should become the foundation for the ontologies of IS. 
How the term ontology is used in philosophy and how it is used in information and computer sciences are discussed in other 
works [Smith, 2003; Wyssusek, 2004; Zuniga, 2001]. The different philosophic positions behind the different modeling 
tools and techniques are extensively analyzed in Hirschheim et al. [1995].  

Next, we will clarify meanings of the terms computational ontology and conceptual schema that will be used in the 
remainder of the paper. We will also make a distinction between a conceptual model and a conceptual schema. 

Computational Ontologies 
From Gruber’s [1992] definition that “an ontology is an explicit specification of a conceptualization,” Guarino [1998] 
created a refined distinction between an ontology and a conceptualization. Guarino starts the discussion saying that a 
conceptualization is “a set of conceptual relations defined on a domain space” and that it is important to “focus on the 
meaning of these relations, independently of a state of affairs” [Guarino, 1998 p.3]. He says that in a conceptualization we 
are interested, for instance, in the meaning of the relation ‘above’ instead of being concerned that in this particular state of 
affairs object A is above object B. After clarifying what a conceptualization is, he says, “An ontology is a logical theory 
accounting for the intended meaning of a formal vocabulary, i.e. its ontological commitment to a particular 
conceptualization of the world. The intended models of a logical language using such a vocabulary are constrained by its 
ontological commitment. An ontology indirectly reflects this commitment (and the underlying conceptualization) by 
approximating these intended models.” Smith [2003] says that in the current context of research on information sharing, an 
ontology is seen as a dictionary of terms expressed in a canonical syntax. In this use, it is implied that ontology is a common 
vocabulary shared by different information systems communities. Smith then gives a definition of an IS ontology: “An 
ontology is a formal theory within which not only definitions but also a supporting framework of axioms is included (perhaps 
the axioms themselves provide implicit definitions of the terms involved)” [Smith, 2003]. 

We are interested here in computational ontologies, ontologies that are used to build IS as Guarino [1998] suggested in his 
concept of ontology-driven IS. From this point on in the paper, we use the term computational ontologies as it is suggested 
in Kishore et al. [2004]. It has the same meaning as IS ontologies as used by Smith [2003] and by Fonseca and Martin 
[2005]. Guarino [1998] means the same thing when he uses the term ontologies in the plural. 

Conceptual Modeling in IS 
Another topic we need to address is the difference between conceptual model and conceptual schema. As Hirschheim et al. 
[1995] mention, citing Schmid [1983], there is some confusion about the terms model and schema in the field. A model is 
“a set of conceptual and notational conventions which help to perceive, organize and specify some data” [Hirschheim et 
al., 1995 p.26]. Entity-Relationship (ER) [Chen, 1976], Object Modeling Technique (OMT) [Rumbaugh et al., 1991], and 
Unified Modeling Language (UML) [Rational Software Corporation, 1997] are examples of conceptual models. Conceptual 
schemas, on the other hand, refer to the result of the modeling, namely a set of diagrams that use a given conceptual 
model as a language to express the specific data structures for an application that is going to be developed. Wand and 
Weber [2002] take further the distinction between model and schema. They propose a framework set in what they call a 
conceptual-modeling context. In this context we use a conceptual-modeling method that applies a conceptual-modeling 
grammar to model real-world phenomena and create a conceptual-modeling script. In this paper, we use the term 
conceptual schema to denote what Wand and Weber are calling conceptual-modeling scripts. 
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In figure 1 we make a parallel between the creation of computational ontologies and conceptual schemas. Observing a 
universe of discourse (UoD) we use methods to apply languages or grammars in order to create models of the UoD. We 
can observe that the processes of construction of both computational ontologies and conceptual schemas are similar. 
Further in the paper we will notice that one of the main differences should be on the scope of the UoD. 
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Figure 1 - A parallel between the creation of computational ontologies and conceptual schemas 

 
Hirschheim et al. [1995] define data modeling as “a change process taken with respect to object systems consisting of data 
and its uses in a set of environments by a development group using a representational form to achieve some objectives” 
(p.27). They consider it a change process because if the model is accepted by the organization it triggers changes in the 
knowledge base of the organization. To complement this definition, we need to know that object systems “consist of 
phenomena ‘perceived’ by members of the development group. What is ‘perceived’ is either given as a reality independent 
of the observer, or socially constructed through sense-making and institutionalised conventions” (p.27). Klein and Lyytinen 
[1992] consider that data modeling is “the activity of constructing a data specification by applying the generic abstraction 
concepts of a data model (language) to a particular application domain” (p.204). 

We can see an information system as being constituted by an information processor and a Universe of Discourse 
description (UoDD). The Universe of Discourse (UoD) “is a selected portion of the world and it constitutes the universe 
made known to the IS and thus to the IS users by the IS” [Hirschheim et al., 1995 p.179]. The UoDD is a formal 
representation of the UoD. It has two parts, the conceptual schema and the information base. The conceptual schema 
contains sentences representing general facts, facts that hold for all entities in a UoD. These facts define which entities can 
exist and also some entities that must exist in the UoD [Hirschheim et al., 1995]. 

How Good Can Our Models Be? 
There is a deeper question that, albeit not thoroughly discussed here, needs to be mentioned. The question is: “What is our 
universe of discourse and how can we know about it? Wand and Weber [2004] point to the quality of our knowledge as a 
potential problem, saying that some ontologies created by information systems scholars “are not always rooted in a sound 
foundation of more fundamental constructs like things and properties.” Smith [2003] speaks of good and bad ontologies 
and how science can help us build the former. He says that “our best candidates for good conceptualizations will, however, 
remain those of the natural sciences – so that we are, in a sense, brought back to Quine, for whom the job of the ontologist 
coincides with the task of establishing the ontological commitments of scientists, and of scientists alone” (p.163). Milton’s 
[1998] main question is related to top-level ontologies, which may be “used to provide theoretical underpinning for 
representation and modeling in information systems” [Milton, 1998 p.85]. Top-level ontologies are created from a 
philosophical perspective and are suggested as a basis for domain ontologies. The idea is that if we follow the rigid 
methods of philosophy, we will come up with good top-level ontologies. All other ontologies, including computational 
ontologies, should be derived from the top-level ontologies. Milton [1998] distinguishes between ontologies that are theory 
focused and those that are pragmatically oriented. For Milton, theory focused ontologies are the ones created using the 
philosophical theory. The other type of ontologies, according to Milton, are very common in the practice of IS and are 
targeted to specific domains such as banking or taxation. According to him, computational ontologies often use a mix of 
(philosophical) ontological tools and pragmatic purposes. This odd combination may result in incompatible philosophical 
underpinnings being used in the same pragmatically oriented ontology. Both Milton and Wand and Weber are looking at 
which kind of philosophical work should become the foundation for the ontologies of IS, while the main focus of this paper 
is to distinguish between computational ontologies and conceptual schemas. Thus, although recognizing the importance of 
their research question, we leave it out of this work. 
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Computational ontologies and conceptual schemas have some similarities as well as some differences. Consider, for 
instance, an ontology of banking and the conceptual schema of Citibank’s information system. Are those two the same 
thing? How similar and different are they? Which criteria can we use to investigate the differences and similarities between 
the two? In the next section, we propose a framework to understand better the differences and similarities between 
computational ontologies and conceptual schemas. 

IV. Similarities and Differences between Ontologies and Conceptual Schemas 
We propose to study the differences and similarities between computational ontologies and conceptual schemas under the 
light of two concepts: objectives and object. First, we are interested in knowing the objectives of creating computational 
ontologies or conceptual schemas. Are we trying to explain a domain? Are we trying to integrate information? Are we trying 
to represent reality? Or in opposition to those, are we trying build a tool that will help us to measure specific features of 
reality, following Quine [1953], as cited by Smith [2003], “to be is to be the value of a bound variable”? Second, 
concerning the objects of computational ontologies and conceptual schemas, what are they designed to describe, to 
represent? Is it the real world, reality? Or is it a specific conceptualization of a specific domain as perceived by the users of 
the IS? 

By focusing on objectives and object, we hope to contribute to a better understanding of the differences between ontologies 
and conceptual schemas. The literature that deals with the problem usually makes the comparison without a clear criterion 
and also without a clear terminology. By establishing the terminology and looking into the problem using our proposed 
framework of objectives and object (Figure 2) we will be able to make clear what the differences between computational 
ontologies and conceptual schemas are. 

In this section we are going to argue that regarding the objectives: 

• Computational ontologies should focus on explanation and information integration grounded in assumptions 
about invariant conditions that define the domain of interest; 

• Conceptual schemas should focus on linking the general ontological categories with particular observations to be 
classified in IS. Thus the objective of conceptual schemas should be to enable the measurement and classification 
of the observed facts. 

And regarding the object:  

• Computational ontologies should focus on the real world, on the reality, instead of focusing on what can be 
represented. The object of computational ontologies should be the system representing the invariant conditions of 
the domain of interest – the general, and assumed, categories that are taken to define a domain; 

• Conceptual schemas should act as links, connecting the ontologies with the data, or “facts.” Accordingly, the 
object of a conceptual schema should be the relationship between ontological categories and the permissible 
range of variation among the facts that must be brought into relation with those categories. Conceptual schemas 
have a two-sided aspect. On the one hand, they are defined in relation to categories that may be contained in the 
ontologies (e.g., “automobile”), and on the other hand, they provide machinery for linking the general class of 
automobiles with a particular auto owned by a particular person of a particular age. In this way, measurement – 
the appropriate linking of general categories with particulars – is made possible. 

- Real world
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- Link between 
ontologies and 
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Object
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Figure 2 - Differences between the objectives and the object of computational ontologies and 
conceptual schemas 
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The Objectives 
What are the objectives that ontology engineers and conceptual modelers have in mind when they are building their 
artifacts? We think that when we look at this question we will be able to establish a difference between computational 
ontologies and conceptual schemas. 

Wand and Weber [2002] remind us, drawing from Kung and Solvberg [1986], that the purposes of a conceptual schema 
are “(1) supporting communication between developers and users, (2) helping analysts understand a domain, (3) providing 
input for the design process, and (4) documenting the original requirements for future reference” (p. 363). It is important to 
notice here the mention of original requirements. Then the question is: How much do the IS requirements drive the 
construction of a conceptual schema? 

Hirschheim et al. [1995] point to a possible answer describing what is in a universe of discourse (UoD) from the point of 
view of what they call the fact-based school: “The entities (the basic entities of the UoD) have several characteristics. First, 
they can be separately distinguished, they have independent existence, and they are selected based on how interesting they 
are for IS users. Thus, prominent criteria for something to be counted as an entity are: it has a unique identifier, its existence 
does not depend on the existence of other entities (its existence is caused by a specific event that creates the entity), and 
there is a need to know what facts are associated with the entity (i.e. what IS users want to know about the UoD)” (p. 180). 
They also state that the target of modeling is data, i.e., “all invariances that are stored and manipulated in the computer 
system and their potential meanings for different users of the IS” (p.27).  

Uschold and Gruninger [2004] also write that purposes are the difference. They consider that computational ontologies 
have multiple purposes including interoperability, search, and software specification. They think that the most common use 
of a schema is to structure a set of instances for querying an IS. Their emphasis on software specification highlights one of 
the proposed aspects of ontology-driven information systems, the automatic generation of software components.  

Computational ontologies enable explanation and information integration. They achieve this by linking the users of the IS 
with a common background of assumptions concerning the whole, within which the facts recorded within the IS arise. 
Fundamental to these computational ontologies is a common perspective that makes communication via the IS a 
meaningful enterprise. Thus, the computational ontologies contain some of what is taken to be invariant for a domain. On 
the other hand, conceptual schemas provide a framework for measurement within the context of assumptions described in 
their corresponding computational ontologies. Thus, conceptual schemas define the dimensions in question and the range 
of those questions. In contrast with the computational ontologies’ specification of what is assumed to be invariant, 
conceptual schemas specify what is taken to vary and the range of possibilities in view. 

We argue that the main objectives of creating computational ontologies and conceptual schemas are different. Conceptual 
schemas are built with a specific information system in mind. They have the practical purpose of defining, constraining, and 
limiting what is going to be registered and manipulated by the information system. This fact shapes the objectives of a 
conceptual schema. Ontologies are theories that explain a domain by revealing it as a coherent whole. They make 
predictions and they bring expectations. They give meaning to terms by defining the explicit relationships between concepts. 
Although ontologies may be used by an IS and also used to support the development of an IS they are not intrinsically tied 
to a specific IS as conceptual schemas are. It should also be clear that we are not claiming that ontologies are more or less 
than conceptual schemas. They are different in nature and should be built with different purposes in mind. This leads us to 
our next discussion on the difference between them: the object, what is being modeled. 

The Object 
Much of the literature focuses in one way or another on the object of computational ontologies and conceptual schemas. 
Usually it is accepted that the process of creating both of them is similar, but most work points out a variation in their scope. 
For instance, Kishore et al. [2004] consider that the process of creating an ontology is similar to the process of creating a 
conceptual schema. They point out that the main difference is that “the domains of analysis can be very large and the 
knowledge capture and representation mechanisms can be quite varied” (p. 168). Olivé [2004] also thinks that the process 
of conceptual modeling is similar to ontology engineering. He says that “given that a CS (conceptual schema) is knowledge, 
conceptual modelling can be considered as a specialization of the field of Knowledge Representation to information 
systems” (p. 20). Regarding the object, Olivé stresses that a model has to incorporate knowledge not only about the 
domain but, most important, also about the functions the IS has to perform. Olivé then proposes a division of the traditional 
conceptual schema. He says that one component of a schema, the Domain Conceptual Schema (DCS), defines the 
knowledge about the domain - facts that are true of the domain and independent of the IS. The second component, the 
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Functionality Specification, defines “the entity and relationship types of the Domain Conceptual Schema that are 
represented in the IS, the types of query events the IS has to respond to, and the generating condition of the generated 
query events” (p. 21). Seen this way, the problem of the difference between the ontology and schema becomes only a 
question of terminology. We argue that the problem is deeper than that. Computational ontologies and conceptual 
schemas are not only different, they need to be different. Both of them are needed in order to address problems in 
modeling. What Olivé is calling Domain Conceptual Schema should be called a computational ontology. What he calls 
Functionality Specification should be called a conceptual schema. Using Olivé’s terminology (with which we do not agree), 
some of the differences reviewed here would disappear. Actually, Olivé explicitly states, “In the information systems field, an 
ontology corresponds closely to a DCS. The main difference may be that DCSs include also the concept of domain event 
(and their effects), while most current ontologies are restricted to the structural part of schemas” (p.24). In a similar fashion, 
the ANSI/SPARC architecture (the three-level architecture) states that the conceptual level, which has as its output a 
conceptual schema, has an emphasis on the data or in the description of the database structure as viewed by the 
community of users. However, if we look at the external level of the ANSI/SPARC architecture and see the definition of an 
external view, we can find more similarities to an ontology than we find in the previous level. This is part of our argument. 
The emergence of ontologies in IS research is in fact the result of the development of the field. Computational ontologies 
are needed as well as conceptual schemas, but this need comes at different levels. 

The issue of the differences between computational ontologies and conceptual schemas became a recent topic of interest in 
the SIGMOD Record. First, Cui et al. [2002] consider that there are many similarities between them, but there is one main 
difference in what is being modeled. Spyns et al. [2002] contend that a conceptual schema focuses on a single specific 
enterprise application, while computational ontologies model a domain explicitly intended to be shared by multiple 
applications. Finally, Uschold and Gruninger [2004] give a definition of computational ontology that encompasses much 
more than what a conceptual schema. They say that “an ontology is used by an agent, application, or other information 
resource, to declare what terms the agent uses, and what the terms mean. By making this information publicly available, it 
becomes possible for high-fidelity semantic communication to take place -- agents can communicate and share meaning 
with other agents, and agents can understand the meaning of applications, databases and other information resources on 
the Web” (p. 60). Their discussion of constraints hints at the object topic. They write that constraints in a conceptual schema 
exist to ensure the integrity of data, while in computational ontologies, constraints would have a more encompassing object, 
the logical consistency of the theory that the ontology expresses. 

It is our position here that computational ontologies have a broader scope than conceptual schemas. Ontologies aim to 
explain a world that, although limited, is not as limited as the specific world modeled by a conceptual schema. Ontology 
engineers are free to include extra information in their models, information that will help to establish the meaning of other 
concepts in the ontology. On the other hand, conceptual modelers are limited to describing concepts and terms that will be 
in the information system. For a matter of practicality as well as of feasibility, they have to constrain themselves to the main 
entities and relationships that will be ultimately recorded by the IS.  

Computational ontologies as an evolution of the field 
We can see that the implicit notion of the concept ontology was present early in the literature. One of our arguments here is 
that computational ontologies represent an evolution in the field of modeling. They are a needed concept that evolved 
through the work of the many researchers in the field. Even before Guarino [1998] argued for ontologies as the main 
component of an IS, Wand and Weber [1989] proposed the use of philosophical ontology in order to achieve a better 
understanding of what an IS is. Computational ontologies represent a step beyond conceptual schemas. The two are 
different in their objectives and in their object but they are linked to each other as models with different scopes. Both are 
necessary for modeling and for the advance of the research in the field. We will see in the next section that ontologies and 
conceptual schemas are linked and are complementary to each other. 

In summary, as sophistication with the modeling aspects of IS design has grown, the objectives and object of the older 
conceptual schemas have been decomposed into two sets of objectives and objects. This has motivated a distinction 
between two categories of IS modeling – computational ontologies and conceptual schemas. In this section, we have been 
concerned with the distinction between the respective objects of ontologies and conceptual schemas. We have argued that 
the object of computational ontologies is the interlocking set of invariant structures of a domain enable explanation, 
prediction, and communication to take place. On the other hand, we have argued that the object of conceptual schemas is 
the conceptual relationships between general categories, such as those that populate ontologies, and the individual events 
that fall, or might fall, under those categories. It is the specification of these relationships that enables the measurement and 
classification of such events. 
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V. Measurement as the Key to Disentangle the Meaning of Computational Ontologies and Conceptual 
Schemas 
In the following, we will show how ontologies and conceptual systems may interact with a database to make possible an 
intelligible source of information about a domain. This tripartite scheme -– ontology, conceptual schema, database -– 
follows the spirit, if not the letter of Kant's analysis of scientific understanding (i.e, The Critique of Pure Reason) [Kant and 
Smith, 2003]. In the first place, we propose that an ontology should provide a general framework for explanation. This 
framework is required if the IS is to do more than record correlations among events; if it is to provide a basis for intelligible 
integration of the facts, as well as for significant practice in light of those facts. In the second place, we propose that 
conceptual schemas interpret the categories of the ontology in ways that are relevant to a particular view of a particular 
domain. In this way, the conceptual schema makes possible the specification of a set of causal constraints specific to the 
domain in question (as seen in light of a particular conceptualization, theory or paradigm). This allows an IS to inform 
explanation, prediction and practice. It also makes possible the specification of a set of dimensions that must characterize 
the relevant facts of that domain. In this way, the conceptual schema provides guidance for structuring the database. 
Designed in this way, the IS is not merely a passive repository of information but, given the fundamental explanatory 
categories derived from the ontology, it actively constrains the organization and interpretation of data. 

The Role of Epistemic Constraints in Defining the Distinction Between Ontologies and Conceptual Schemas 
Drawing from our previous work [Fonseca and Martin, 2004], we here argue that the above mentioned distinction between 
computational ontologies and conceptual schemas is grounded in two necessary and complementary epistemic objectives, 
which any adequate IS must facilitate. In Fonseca and Martin [2004], we identified two fundamental and complementary 
epistemic functions: identification of an invariant background and measurement of the object along dimensions of possible 
variation. Here we wish to exemplify this claim in light of the differences we see between ontologies and conceptual 
schemas. 

Measurement, then, involves two aspects. First, it presupposes a background of invariants that constitute the context of 
interaction between the knower and the to-be-known. These assumptions include what Kant would have called a priori 
categories. They provide a basis for the interpretation of input data. As invariants, they permit the generation of hypotheses 
to explain observations of input data in terms of causes of those data in the domain of interest. These causes are thus 
recognized (abductively inferred) through the information classified in the IS, or they are, after their recognition, directly 
recorded in the IS. In either case, the presupposition of a background of invariants is necessary in order for the user of the 
data to assume that the differences in the data are a function of causally significant differences in the domain of interest and 
not simply accidentally related to it. The set of assumed invariants constitutes a kind of conceptual ground in the context of 
which the objects in the domain of interest emerge in intelligible form. We will attempt to clarify by working through two 
examples. 

For example, suppose one were to attempt to infer (indirectly measure) the weight of smoke produced from burning a piece 
of wood by subtracting the weight of the remaining ash from the weight of the original wood. In this case, one would have 
assumed the conservation of mass – that the amount of mass remains invariant under conditions of burning (i.e., under the 
transformation from the state of wood to the state of smoke). On the basis of this presupposition one could assume that 
measured differences between the weights of wood and ash would correspond to a difference in the domain of interest – a 
difference equivalent to the weight of the smoke. But it is important to recognize that the principle of conservation is not 
amenable to strictly empirical demonstration. It is an a priori presupposition that enables such inferences as well as 
explanations of the data on which such inferences are based.  

Consider another example based on Kant's proposals – one derived from the history of physics: Galileo's discovery, or 
invention, of the Law of Inertia. In our view, the ontology of classical explanatory science contains the presupposition that 
'every change of state is caused'. This category of causation is not limited to physics but extends to all causally integrated 
domains of inquiry. But the concept of inertia in the form Galileo gave is specific to classical physics. In this context, we view 
Galileo's creative achievement to be the stipulation (at the level of a conceptual schema) that for the domain of mechanics, 
the relevant states are states of motion, and the relevant causes are forces. In this context, one derives the Law of Inertia: 
Every change of state (motion) is caused (by the application of a force).  

Notice, moreover, that at this point one is given direction concerning the process of measurement. One might indirectly 
measure a gravitational force by observing changes in motion – as was done in the discovery of Uranus. In describing 
astronomical events so as to give an intelligible picture of the solar system, one would want to record both the states of 
motion of observable objects and the forces applied to them. This would constrain the dimensions that define the database 
in ways specified in the conceptual schema. At the same time, by linking the facts in the database to a general scientific 
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ontology, the conceptual schema would render at least some of the regularities in the data causally intelligible, enable 
predictions, and thus provide a basis for various forms of practice (e.g., traveling to the moon centuries later). 

To summarize: with respect to the distinction between computational ontologies and conceptual schemas, we suggest that 
computational ontologies should be constructed so as to specify a priori assumptions concerning invariance that underlie 
the measurement and explanatory process, while conceptual schemas should relate those categories to dimensions of 
measurable variation in the domain of interest. A priori categories are thus central to both the explanation and specification 
of data. But the specification and explanation of data are distinct, if complementary, functions. An information system is a 
tool through which an experienced user is enabled to measure crucial features of a domain of interest. As such it must 
support the dual epistemic functions that enable specification and explanation.  

The Complementarity of Theory and Data in ISAD 
As discussed in section IV, we consider that ontologies are theories that explain a domain by revealing it as a coherent 
whole. They enable an ample understanding of the context in which the IS is used. In analyzing the difficulties of capturing, 
in an information system, the complete context in which the system will be used, Naur [1992] says, “The dependence of a 
theory on a grasp of certain kinds of similarity between situations and events of the real world gives the reason why the 
knowledge held by someone who has the theory could not, in principle, be expressed in terms of rules. In fact, the 
similarities in question are not, and cannot be, expressed in terms of criteria, no more than the similarities of many other 
kinds of objects, such as human faces, tunes, or tastes of wine, can be thus expressed” (p. 40). Guarino [1998] is more 
explicit when he argues, “Application programs are still an important part of many ISs. They usually contain a lot of domain 
knowledge, which, for various reasons, is not explicitly stored in the database. Some parts of this knowledge are encoded in 
the static part of the program in the form of type or class declarations, other parts (like for example business rules) are 
implicitly stored in the (sometimes obscure) procedural part of the program” (p.13). Sowa [2000] considers that a 
programmer trying to solve a problem has the knowledge to implement a solution, but the way of encoding this knowledge 
can vary from one individual to another. Both the programmer and the modeler have their own ontologies, and they can be 
either implicit or explicit. This variation is one of the reasons for creating ontology-driven information systems, to build the 
theories of programs before the system is created [Guarino, 1998]. 

The use of ontologies as the driver of conceptual schemas has been suggested before in the literature. Wand and Weber 
[1989] suggested some of the differences between an ontology and a conceptual schema. They did not compare 
ontologies with conceptual schemas, but instead, highlighted how ontologies can improve the process of conceptual 
modeling from which conceptual schemas result.  

It is important to notice that some work is underway in trying to establish mappings or a derivation between ontologies and 
conceptual schemas. El-Ghalayini et al. [2006] create a Transformation Engine with a mapping algorithm to generate a 
conceptual schema from a given domain ontology. Hess and Schliedera [2006] suggest a model to verify whether a 
conceptual schema conforms to an ontology. They do this through the validation of the mappings between the two. Jarrar 
et al. [2003] study the differences between specific ontologies and conceptual schemas. They show examples of the 
possible mappings between ontologies and conceptual schemas and introduce DOGMA, an  ontology engineering 
framework, which enables the use of conceptual modeling methods for modeling and representing ontologies. Conesa et 
al. [2003] suggest that conceptual schemas can be created through a refinement of ontologies or that ontologies may play 
a supporting role for the designer of conceptual schemas. Fonseca et al. [2003] also suggest a way to establish mappings 
between ontologies and conceptual schemas in geographic information systems. 

In summary, we have pointed to the intimate interaction between the specification of the data and the ontological 
assumptions to be encoded in the computational ontology. The relation we have noted between the complementary roles of 
computational ontologies and conceptual schemas is not merely a function of information systems in the modern sense, but 
is a consequence of the nature of fundamental epistemic constraints on the process of knowing. The reciprocal relation 
between computational ontologies and conceptual schemas is precisely what is necessary for the experience and 
measurement of the domain of interest to take place. 

VI. Conclusions 
Guarino [1998] coined the term ontology-driven information system for a kind of IS in which an explicit ontology plays a 
central role driving all of the system aspects and components. Nevertheless some authors consider that the idea of using 
ontologies as the foundation for IS development is not new. They argue that the early proposal of using conceptual 
schemas as a way to represent and store knowledge about an application domain [Tsichritzis and Klug, 1978] represents 
the same idea for which Guarino is arguing. It was implicit in their argument that a conceptual schema (the result of the 
modeling process) is essentially the same as a computational ontology (the result of the ontology engineering process). 
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We do not agree that computational ontologies and conceptual schemas are the same. In this paper we have argued that 
there are differences between ontologies and conceptual schemas. They belong to two different epistemic levels. They have 
different objects and are created with different objectives. While computational ontologies focus on explanation and 
information integration grounded in assumptions about invariant conditions that define the domain of interest, conceptual 
schemas focus on linking the general ontological categories with particular observations to be classified in IS. 

We have argued that the use of the term ontology, or computational ontology, appeared as a result of the evolution of the 
field. For instance, we can look at the shaping of the idea of computational ontology as early as 1989 when Wand and 
Weber introduced the idea that a modeling method could be reality or information-system driven. This kind of principle-
based separation that later appeared in the work of others is what led, and is still leading to a progressive and necessary 
distinction of the two terms, as our work shows.  

We have pointed to epistemic principles that support a natural distinction between computational ontologies and 
conceptual schemas. The distinction we made is grounded in a prior separation between complementary epistemic 
principles that must be satisfied by IS design.  

Our discussion led to a prescription. We argued for the separation of the two terms as part of a principle-based policy for 
guiding modeling practice. Although they have a common origin in referring to the results of modeling activity, growing 
insight into the distinct epistemic principles that underlie them shows that they represent distinct and complementary aspects 
of the modeling process. The clear distinction we tried to show here was intended to clarify issues of information system 
design and thus to promote effective design practices promised by ontology-driven IS. If we hope for a continuing evolution 
of modeling, it is necessary to emphasize the distinction between computational ontologies and conceptual schemas. Our 
argument is that the field needs the two distinct concepts, and by using both, IS research will be moved forward. 

Much work still needs to be done in elucidating the links between ontologies and conceptual schemas. How they can 
support, validate, and complement each other still remains to be completely clarified.  
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