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Abstroct-

This paper focuses on the development of a naming convention and the use of abbreviated names and a related ontology
for science work and distant robotic action that comprise requests for a robotic rover during the NASA Mars Exploration
Rover (MER) mission, run by the Jet Propulsion Laboratory (JPL). We demonstrate how abbreviated names and an
associated ontology support sharing and identifying information among teams and software tools. An ontology of distant
action must take info account a dynamic environment, changing in response to physical events and intentional actions, and
reflect the influence of context on the meaning of action. The nascent domain of Martian tele-robotic science, in which
specialists request work from a rover moving through a distant landscape, as well as the need to consider the
interdisciplinary teams involved in completing that work, required an empirical approach. The formulation of this ontology
used ethnographic methods and grounded theory to study human behavior and work practice with software tools.
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Requesting Distant Robotic Action: An Ontology for Naming and Action Identification for
Planning on the Mars Exploration Rover Mission.

Introduction

People frequently ask other people to do tasks that appear simple, yet, when analyzed, can be quite complex. A colleague
says: “We need four copies of this,” and typically, other colleagues produce four copies of the document, because they
understand the steps involved in copy-making. The success rate may change if the requests become more complex, e.g.
asking for copies of multiple originals or making multiple requests concerning the same original. However, an abbreviated
name will identify the task successfully, even though the execution is invariably more intricate than a simple one- sentence
request implies.

The success of such communication depends on the speaker and recipient having a set of shared concepts and concept
labels. They must agree on the meaning of the relationship between copies and an original document as well as the word
that labels this relation. Arriving at an agreement on the types of objects, atftributes, and relations in a domain is
challenging for a number of reasons. First, cooperating disciplines may define object classes differently. For example
Bowker and Star (1999) describe differences in the taxonomy for diseases for early 20™ century immigration officers and
medical doctors, and even differences in the taxonomies across international immigration agencies. A second challenge
lies in the evolution of domain knowledge, which at minimum will add distinctions over time. For instance, the numerous B
vitamins started out as a single undifferentiated class until scientific work established specific functions and chemical
structures for the various enumerated co-enzymes.

The present paper concerns the relationship between domain models for humans and technology. In particular, we
examine the models of geologists and their distant robotic extensions (rovers) operating on the surface of Mars during the
2003-2004 NASA Mars Exploration Rover (MER) mission, run by the Jet Propulsion Laboratory (JPL).  Designers of
technology recognize the domain model as a critical variable in software development, and the source of variability across
programmers (Hadar and Soffer, 2006). Human Factors specialists know that the types of entities that technology
incorporates can influence human comprehension of that technology. For example, in modern trajectory planning software
for commercial aviation, discrepancies between a pilot’s stair-step model of descent including specific ground locations and
a programmer’s curved model of descent challenges the pilot’s ability to understand and use this software (Degani and
Weiner, 1997). We add the topic of ontology to the classification scheme for research on human interaction with
information systems (Zhang and Li, 2005).

Opportunities for mismatch between technology and human users are increasing as product lifecycle management and
ubiquitous computing concerns rise.  This paper focuses on the development of a naming convention that helped
interdisciplinary teams identify tasks and collaborate on the development of science plans for MER rovers, i.e., computers
that execute action in a physical environment. This domain involves high uncertainty, high variability, and time criticality,
which correlate with the need for great flexibility (Gebauer and Schober, 2006). The naming convention is composed of
two related constructs:

e Abbreviated names represented the natural language referents used by scientists and engineers as they requested
robotic action in the exploration of Mars.

e An emerging onfology for science work and distant robotic action created structure for the abbreviated names and
carried information across different tools in the mission uplink process, ultimately mapping to the instrumentation
system of the rovers.

We present a case study on the development of a naming convention for requesting rover action on Mars. In devising a
solution to a practical problem relative to the interaction between humans and technology, we encounter several domain
properties that make our solution of theoretical relevance to the development of ontologies for computationally intensive
work systems:

e The target user community had a high degree of participation in the design and testing of the rover technology.

However, substantial engineering safety considerations dominated commanding, introducing the potential for
discrepancy between the scientists” and the rover’s models of action.
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e Robotic planetary surface exploration was a relatively nascent domain, lacking an established work practice to
guide design and testing or initial execution. This required a flexible approach to constructing an ontology related
to commanding.

e Scientists and engineers needed semantics and labels not just for objects but also for higher-order work actions.
This challenged the sufficiency of state changes alone to communicate the semantics of action (Georgeff and
Lansky, 1986). It also required a representation of action at multiple levels of analysis (Sacerdoti, 1977).

e The rover operated in and moved through a physical environment. This required external (extensional) semantics
for action, more than the internal consistency and coherence that characterizes most attempts at ontology
development.

While much contemporary work on ontologies focuses on computational search and pattern matching in a limited, symbolic
domain (McGuinness, 2001), the role of context and human intention is critical for commanding robots in a dynamic world.
Critics of computational linguistics (and computational models of mind) specifically note that natural language is
contextualized (Dreyfus, 1979) and intentional (Searle, 2002), rather than an unambiguous, stand-alone construct for
computational manipulation. In our case, the Martian environment provided this context, and the successful execution of
intended action in that environment reflected the extensional semantics that grounds our ontology.

Consistent with the work of Carnap (1947) and Quine (1963), our use of the term “ontology” refers to the types of entities
that exist, with a metaphysics (or explanation) of those entities in this domain emerging from the manner in which these
entities map to the physical environment. A primary contribution of this paper lies in the ontology of action. Brachman
(1979) identifies this sort of contribution as epistemological, as it offers examples of the types of entities involved. We make
no claim to a complete inventory. While an inventory of individual primitives would provide a conceptual contribution, in the
open-ended, context-dependent Martian domain, such an effort may be unattainable.

Because actions change the state of the world, differently ordered sequences of identically parameterized action can have
different meanings. For example, moving the rover and then requesting a picture focused on a particular target results in a
different image than does requesting a picture before driving. The mere passage of time also results in environmental
changes (lighting), so that requesting a picture of a target at one time of day does not have the same outcome as an
identical request at a different time of day. In this sense understanding/meaning equates to knowing how to perform an
action that is dependent upon the context, with successful execution providing the ultimate evaluation. This feature of our
domain distinguishes it from other domains with semantics based on symbolic relations. According to some philosophers
(Dreyfus, 1979), the context sensitivity of named action, a characteristic of natural language, will not be explained solely by
inter-relationships between symbols.

In established work domains, knowledge acquisition experts typically work with domain experts to translate existing
knowledge into an ontology (Forsythe and Buchannan, 1989; Meyer, 1992; Noy and McGuiness).  While the task of
eliciting and formalizing important domain constructs and distinctions to create an ontology is never trivial, our research
required another order of ontology development to accommodate the evolving expertise and the interdisciplinary nature of
the work across both engineering and science.

This paper presents the empirical work supporting a grounded theory understanding of remote science work on Mars.
Research to develop the naming convention took place over a three and a half year period covering the design and
operations phases of the mission. The research resulted in five organizing principles for tele-science (e.g. remote planetary
work or tele-medicine) or other remote, team-based work in dynamic environments. These principles can give structure to
the development of a supporting ontology for the work.

1. Ontologies of work in information systems must contain both actions and objects to identify and represent all aspects of
the work involved. The communication of work activities can be organized around a part-whole hierarchy, specifying high-
and low-level action and high- and low-level objects.

2. Requests for science work are organized around higher order descriptors (what we call observations) that refer to and
group the steps of the work. Identifiers for the work, consisting of abbreviated names and based on natural language, can
facilitate information-sharing across teams.

3. An ontology of action must take into account a dynamic environment and reflect multiple concepts: changes in response

to natural physical events, interactions with objects with their own changing state conditions, as well as constraints. It must
reflect the influence of context on the meaning of intentional action.
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4. In a dynamic environment, teams require semantics that are not just internally consistent within the software and can
support action in a dynamic external environment, but can also adjust to users who are themselves changing, that is,
learning, over time.

5. A set of formal, intentional, conceptual primitives is less relevant in our ontology because meaning goes beyond the
intentional when executing action in a physical environment.

Similar to Schank (1975), our ontology distinguishes between objects (features and targets), actions (instrument and rover
actions), and science work (observations and activities). The justification for these distinctions is the topic of this paper. In
contrast to Schank, however, we elevate an essential part-whole relationship between types of objects. Rover objects
(targets) become explicitly related to human scientists” objects (features). We only examine one facet of science work, called
the observation, but elevate an essential part-whole relationship between observations and subordinate activities, which are
more directly related to the rover’s primitive actions. We also identify an entity called the plan, consisting of multiple
observations. Figure 1 illustrates the resulting higher order components of the naming convention and the supporting
ontology for MER science planning.

Science Activity Planning
Science Activity Plan
part of
o
part of
Observations
Features
part of
part o
Activities
partof  payiof Instrument
Targets barto
part o
Distinguishing
Method parameter
arf of
parf of
part of

Other Identifiers Activity
/Constraints Dictionary type

Figure 1. The higher order components of the naming convention and supporting ontology for distant robotic

action for MER.

We begin the paper with a description of our research method based on ethnography and grounded theory. The case study
describes the MER mission planning and execution process; the analysis of the mission training and testing from which we
derived a theoretical foundation for the naming convention and supporting ontology; and the results of the application of
our theories drawn from the 2004 mission data itself.
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The Research Method

Consistent with the psychological literature (Behrend, 1995; Merriman and Tomasello, 1995), it was apparent that a
standard, stable taxonomy would not address the need for an ontology of action, which requires a dynamic, flexible
organization scheme. Only a participative and observational study in the domain could identify such a scheme. We
participated in the formulation of the scheme in several ways. As researchers, we had to understand the work as it evolved
from the earliest test and training exercises through surface operations on Mars. As mission participants, we had to identify,
reflect on, and provide feedback on emerging constructs to the domain to support developing work and meet the demands
of the mission timeline. The nascent domain and interdisciplinary nature of the work resulted in an empirical approach
grounded in human behavior.

In the next section, we describe how we used ethnography and grounded theory to construct the emerging components of
the naming convention.

Ethnography and Human Centered Computing (HCC) at NASA

Ethnographic methods provide a number of data collection techniques that allow researchers to focus their attentions on a
variety of social, cognitive, and technical perspectives that mirror the complexity of a domain (Bloomberg et al., 1993;
Forsythe, 1999; Jordan, 1996; Nardi, 1996). Past ethnographic research has also focused on the elicitation of knowledge
from existing situations of use (Forsythe and Buchannan, 1989; Meyer, 1992). NASA Ames researchers have used
ethnographic methods since 1998 to understand scientific and technical work and do empirical requirements analysis for
the development of new technology (Clancey, 2001, 2004; O'Neill and Wales, 1999; Shalin and McCraw, 2003; Shalin,
2005; Wales et al., 2001). Like action researchers (Lewin, 1946), Human Centered Computing (HCC) researchers work
collaboratively with practitioners to solve problems through an iterative process including stages of in-situ data collection,
analysis, and design. HCC research (including the present paper) assumes that all human activity is situated in a context
(Suchman, 1987) and focuses on the cognitive and social systems, work practices, and technologies used in these activities.
Our research followed the classic iterative cycles for qualitative research found in Spradley’s (1980) ethnography -
collecting data, creating an ethnographic record, analyzing and asking new questions - and in Lewin’s (1946) action
research - planning, acting, observing, and evaluating.

We came to call our work “mission ethnography,” because ethnographic data collection, analysis, assessment, and HCC
recommendations had to be completed in time for tests and training sessions, software freeze dates, and landing dates
without exception. Like the mission, we were on a timeline. Decisions would be made whether our recommendations were
ready or not.

Participant Observation and Development of a Grounded Theory

One of the authors was the MER Science Operations Systems Engineer and later the MER Deputy Science Team Chief. She
had daily access and input to on-going mission design work. The other authors provided HCC work systems design
recommendations and spent extended periods at JPL. We supported the design of science processes and trainings. Our
tasks allowed us to act on our developing theories, feeding our findings into software design and processes in the years
leading up to mission. Our team brought a cross-disciplinary perspective to the research, drawing on backgrounds in
geology, systems engineering, cognitive science, and cultural psychology/anthropology.

Our recommendations were based on extensive observation and interaction with the target community during pre-mission
events, tests, team meetings, and tele-cons. Our documentation included field notes and video-recordings. As badged
members of the mission, we were able to move with flexibility, attending meetings and working with software designers. We
presented and iterated on the developing naming convention, abbreviated names, and ontology with the science team. We
helped train the team in the use of the ontological convention during the science team training “flight schools.”

Our analysis reflects a grounded theory approach. Grounded theory is “the discovery of theory from data systematically
obtained from social research” (Glaser and Strauss, 1967, p.2) in which “the emerging theory points to the next steps” in
the research as the work attempts to fill gaps in the theory and “answer research questions suggested by previous answers”
(p.47). Our goal was to identify consistent conceptual and software representations that would support mission personnel
in referencing and identifying distant robotic work.

To develop the grounded theory for the naming convention, we analyzed field notes, mission design documentation, and
data from the science planning tool (SAP). We analyzed scholarly articles, communication exchanges, scientists” work
practices and their scientific reasoning. We also assessed the software requirements and interfaces among mission
technologies to address software needs, while supporting the work of the science team. After each test, we analyzed the
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data from the science planning tool (SAP) as well as from field notes, seeking cognitive, linguistic, and referential patterns to
inform the theory.

During the mission, we took field notes, made video tapes of meetings and collected copies of planning print outs. Further,
the mission planning and commanding process resulted in an accessible electronic record of work. This paper provides a
qualitative analysis of those data.

The Case Study

The Case Study contains three major subsections:

e The first section describes MER mission work in general and the use of a naming convention that is, in part, the
product of our recommendations.

e The second section describes the pre-mission collaborative research period (2001 -2003) during which we
participated and worked with scientists and engineers in designing a surface operations process. In this period, we
applied grounded theory to the problem of defining a naming convention and developing abbreviated names, and
the related ontology.

e The third section describes results from a period of mission surface operations (2004) as the scientists used the
abbreviated names and ontology.

MER Mission: Work Systems for the Tele-Robotic Exploration of Mars

This section covers the work of the mission participants during surface operations on Mars, including preliminary planning,
planning tools, science plan integration, and the associated planning software in the ground data system. This post hoc
description provides an implicit declaration of the ontology we articulate later in this paper. Several contextual factors
influenced the MER work system. Unlike most space exploration missions, the sequence of actions to be executed
depended on the results of immediately prior action, and therefore could not be specified in advance. This feature alone
suggested the need for a highly flexible commanding process. In addition, scientists largely designed the instruments that
the rover carried, based on bench-top instrumentation and previous space craft experience. However, the complete suite of
tools does not exist in a single laboratory, so these scientists had little experience in the coordinated use of these
instruments. In addition, there were limited opportunities to use the instrument suite outside the laboratory in field science.
The result was limited understanding of how to guide the intended tele-robotic work practice for Martian science,
emphasizing the need for flexibility.

While MER was a science-motivated mission, spacecraft health and safety were always a primary constraint in commanding.
All conditional reasoning and decision making remained in the hands of human controllers, who translated requests for
rover, action into a command language based on rover internal states. After controllers assessed the current state of the
rover, commands operated rover devices or moved the rover but could not reference rover states in relation to the external
environment. However, science focuses on the environment being explored as well as on the orientation and use of a
device (e.g., that the robotic arm is touching a rock). One advantage of low level rover-state command language is that it
provides maximal flexibility to construct virtually any unanticipated sequence of activities for orientation and rover use. Our
ontology for tele-robotic action, however, bridges the external environment and the command-level internal states of the
rover. This allows the rover to behave in a manner consistent with the external ontology even though that ontology is never
represented in the rover itself. It compensates for the absence of an internal rover ontology for environmental objects, such
as a rock. Further, because engineers, not scientists, are ultimately responsible for commanding the rover, the ontology
allows scientists to articulate their requests to them in a consistent fashion including information about both the internal
world of the rover (instrument, calibrations) and external objects (rocks).

The section below describes the MER mission process for developing science activity plans, which are requests for robotic
action and are made up of lower level observations that contain subsets of activities. We suggest that the abbreviated
names for these observations provide coherence across all planning phases.

MER Science Planning Process

Each operational Martian day, called a “sol” (approximately 24 hrs and 39 min), the Science Team convenes in specialty-
based Theme Groups to discuss the newly arriving data and decide what to plan for the next sol. Planning was complicated

by thirteen available instruments located on three different parts of the rover: the rover’s body, mast, and robotic arm. [See
Table Al. in the Appendix].
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In the first meeting of the sol, called the Science Context Meeting, scientists rough out a plan for the work of the rover based
on the previous sol’s rover work and updated information. Theme Groups then suggest and receive assignments for
observation development. For example, the Soils and Physical Properties Group might develop an observation to examine
the detailed morphology of a particular patch of soil. Later, the science team re-convenes to make adjustments to the plan,
and then groups and individuals rework observations considering:

The type of sol being planned (e.g., traverse, approach towards a rock).

The available resources (e.g., power, operating time)

Possible timing restrictions on when observations can take place.

Related events that will influence the observation (e.g., a communication event for data transmission)
Engineering restrictions on the upcoming sol that will impact observations.

e  Options for reducing resource use by a particular observation (e.g., specifying adjustable parameter values)

Scientists use a naming convention and ontology to name the observation and convey appropriate information to other
scientists as well as to other teams in the downstream planning process. For example, the science team might generate an
observation to examine changes in the amount of registered sunlight over the course of a Martian sol. To accomplish this,
the Pancam cameras will image the sun using solar filters at various times of day, o examine trends in atmospheric dust
loading. The group names this observation Pancam Tau Anytime. “Pancam” refers to the instrument; “Tau” refers to the
method of data collection and the analysis that will follow. “Anytime” indicates when the observation can be conducted.

As scientists used the instruments, it was clear that different kinds of use required different naming requirements, and the
work itself suggested the names. Remote sensing instruments on the mast (those that gather images, spectroscopy data, etc.
from locations distant from the rover) might specify work in a direction relative to the rover. An observation name such as
Post-drive Navcam 360 names a request for rover action using the nav (navigation) camera in a 360-degree circle around
the rover at the end of a drive. Such an action does not require a feature as a focal point. Alternatively, an in-situ
measurement (data collected by direct or close contact with a rover arm instrument on an object) might specify work on a
particular object. For example, an in-sitv measurement might be named Post-MB_MI_5position_ElCapitan, requesting the
use of the Ml (Microscopic Imager) camera to acquire five pictures on the rock El Capitan after the MB (M&ssbauer)
instrument has completed its measurement. As these examples illustrate, the classification of instruments determines the
parameters that an action request requires. Elevating such classifications to standardize work practice was a major part of
our contribution.

MER Tools for Creating Science Observations

The science and engineering mission team was also responsible for translating observations into a language for
programming the rover, with all of the correct parameterizations. Time was a precious resource in the mission. Failure to
approve and command an activity plan in time to meet the Deep Space Network’s transmission window meant the loss of a
day’s science. The need for agreed upon meanings in names and for the salient and consistent specifications of information
as it flowed through different software applications was essential to mission success.

To facilitate the translation of purposeful action into rover language, the mission team used a series of software tools that

translated the requests into several different representations. At the front end of the process, the science team used the
Science Activity Planner (SAP) (Norris et al., 2005) software (Figure 2. and 3.)
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The Science Plan: Integration, Planning, and Prioritization

After defining their observations in SAP, members of the Science Team meet again to discuss and finalize the Science
Activity Plan, which is the complete set of requested observations and rover actions for the next sol.

The scientists:
e Consider each science observation and its related activities in relation to the available rover resources
e Moaoke choices between possible plans, considering whether a certain observation must be completed prior to the
execution of a second observation, or whether a given observation might have time-of-day constraints for
temperatures or lighting.
e Prioritize according to importance and ensure that the plan achieves the objectives for the sol.
e Identify a rough planning timeline, and check the plan against a model that predicts the resources that will be
consumed.
The observation name improves the efficiency of this work because it highlights important identifiers (such as instrument,
method, and constraints) that inform decision making, planning and scheduling. Engineers would have preferred numeric
identifiers; however, the ontology provides human-understandable, meaningful, concise and consistent information within
the mission information system.

Scheduling and Sequencing

Next, the engineering team works with MAPGEN software (Ai-Chang et al., 2004) that uses a spatial representation to
schedule the labeled observations in relation to fixed events in the day (i.e. rover wake up time and communication
windows). Labels identify the contents of observation and must fit within the scope and resolution of this display. (Figure 4).
This scheduling process involves a somewhat higher fidelity resource model, resulting in the removal of low priority
observations when they do not fit in the available time and power envelope.
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Figure 4. Activity Plan Generator (MAPGEN/APGEN): Screen shots and magnified view of the inferface that

shows observations as they are “planned” into a timeline for execution. Colors indicate the priority level that
scientists have assigned to each observation.
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After generating the scheduled plan, an engineering and science team creates “sequences”, i.e., instructions in computer
code that the rover can understand. Because the rover only understands its own states, human “translators” tell the rover
precisely what to do. This special group of scientist-engineers, called PULs (Payload Uplink Leads), translates desired action
into rover states. For example: a description to “Acquire Ml image #1 of 7 @ 35mm” translates to “move the robotic arm
to acquire the first of a stack of 7 microscopic imager images holding the Ml on the IDD 35mm away from the rock or soil
target.” This description gives enough information so that the PUL can instantiate a sequence template with 47 different
parameters.

Each set of instructions uplinked to the rover and successfully executed by the spacecraft on Mars results in sets of data that
require a filename. Engineers must monitor returned data in order to manage limited on board memory. They require
unigue names.

The current work system and the use of the naming convention described above evolved over a period of three years —
perhaps a relatively long time for an engineering effort, but a rather short time for the evolution of a domain of work. In the
following section, we relate how we arrived at the naming convention just described.

Mission Ethnography, Pre-Mission Training Sessions and the Use of Grounded Theory in Developing a Naming
Convention and an Ontology for Science Work and Distant Robotic Action

“Naming,” a conglomeration of related issues, was the underlying issue in our grounded theory research, in part because
the mission did not initially recognize naming as key to the efficient planning and execution of science requests. We started
with an initial identification of the problem: the absence of a meaningful naming convention. In the first test session, we
worked through the deconstruction of that problem, and in later field tests identified categories (Strauss and Corbin, 1990)
and a taxonomy (Spradley, 1980) that contributed to an emergent grounded theory relevant to a naming convention. We
determined that we needed a naming convention that could work as natural language during the collaborative human
process (abbreviated names) and one that could transition into an ontology for the identification of relatively precise and
consistent identifiers in software and tools. The need was to support science requests, moving from science to engineering
teams and eventually translating them into commands for the rover.

Below we describe some of the work of scientists and engineers during mission sponsored FIDO (Field Integrated Design
and Operations) rover field tests in 2001 and 2002 and in later (2003) pre-mission operations readiness tests (ORTs) that
contributed to the grounded theory development. These were tests prescribed by the mission to design and train mission
participants in the work of Martian surface operations.

During these tests the grounded theory process involved repeated cycles in which we:

e Gathered data relevant to what we saw as an emerging need for the mission - the ability to name and identify the
parts of remote robotic work in making science requests;

e Analyzed the data to contribute to the emerging grounded theory;

e Made recommendations to the mission for abbreviated names and an ontology with a flexible syntax, semantics,
and a description of the relationships between the categories of identifiers for referencing and naming science
work;

e Analyzed the resultant work practice during tests and training after our recommendations had been implemented;
and

e Developed new parts of the theory and made iterative recommendations over the pre-mission time period.

2001 Test: Identification of a Naming Problem

These early tests revealed the previously unrecognized need for a standardized, consistent naming convention that: was
based in the elements of natural language discussion; was complex enough to identify parts of the work; and could
represent scientific requests to downstream engineering teams and software tools. The absence of such a scheme made it
difficult to trace the history of work, caused ambiguity in referencing, and excluded necessary information to support group
understanding.

The major insight from the 2001 test data was that much of the naming confusion resulted from the use of a single target
name to represent both the objects in the domain and the action on those objects. The target name was the single tag for
work that was being done, yet that work involved pointing, referencing, and identifying action of the rover, and situating the
work in the remote environment. The need to incorporate the instrument in the written/software name was not at first
obvious, because scientists and engineers were using the instrument name in conversation, and the conversation was
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conveying information to a small group of participants in a confined space and time. Unlike transient military target points,
the targets of scientific inferest persist in the Martian environment and are relevant to later work. Request names must
therefore distinguish state changes for those targets from the targets themselves and carry information for additional work or
related work.

The science team created a variety of naming conventions. The problems they encountered motivated the research
reported here. Table 1 incorporates issues identified during the early tests as well as the emergent theories that were
grounded in analysis of that in-situ data.

2001 Findings

Based on the above realizations, we identified a premise in our theory that the naming convention and its related ontology
must identify and convey information about both objects and action in the domain. Once we stated this premise, we also
saw that there were different categories of objects (ex: features and targets) and different categories of action (ex. drive and
instrument work) and that action categories implied the need for other identifiers. Names had to be unique and consistent,
yet complex enough to support cross-referencing to more than one activity on an object.

Cumulative Findings: Grounded Theory and Ontology Development

2001: Obiject-action distinction; feature-target distinction, categories of action distinction; whole-part relationships; names
must be unique, consistent and human centered; group similar types of work
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2002 Test Findings and Ontology Development

Based on our findings in 2001, we began our grounded theory development for testing in 2002. We constructed a first
taxonomy consisting of instruments, features, targets, observations, and activities; provided definitions for the constructs;
and began to establish relationships between the parts of the taxonomy that included:

e Separating objects from actions by including instruments in the name as the representative of action.
e Providing a way to differentiate between features and targets when referencing work.
e  Creating higher-level observations (to group individual activities with a common purpose).

We recommended that:
Target names:

o Reflect a whole-part relationship with a feature, if possible, such that the feature represents the whole and the
target represents the part (i.e., Feature=Shoe; Target=Heel). The expectation was that whole-part names establish
relationships between target points as well as identify the relationship between multiple targets and a common
feature.

Observation names:

e Identify the instrument as well as the feature name and a target.

e Have a consistent syntax. Instrument should be identified first as the most consistent reference, then feature and
then target. Instrument_Feature Target. Example: Pancam_Shoe Heel, identifying first the panorama camera
instrument, pointing at the feature shoe, with the center image point on the target heel.

e Indicate basic relationships between objects and actions, such as which instrument was used on which feature and
target.

To reflect the way that scientists often described the work, we recommended that observation names could also indicate
pointing fo remote objects and pointing to more than one object. We recommended the use of “Survey,” drawn from
science field use, for indicating such relationships.

As we analyzed the work of the science team from FIDO 2002, we understood that our research and recommendations had
changed the developing work practice of the scientists. These appear in Table 2 under Implications on Work Practice. We
recognized the need to identify features in the environment, reference rover instrumentation in the names, and develop
systematic methods for tele-robotic exploration. As a result of our work on FIDO 2002 results, we expanded the parts of
the ontology to include identifiers related to methods and constraints, helping to make intent visible in uplink tools and
integral to later engineering decision making.

Cumulative Findings: Grounded theory and Ontology Development

2001: Obiject-action distinction; feature-target distinction, categories of action distinction; names must be unique,
consistent and human centered; group similar types of work

2002: Observation-activity distinction; whole-part relationships; include reference to rover instrumentation; development of
systematic methods and constraints

2003 Pre-Mission Tests and Training Sessions

As we expanded the official taxonomy and continued our grounded theory analysis for testing in 2003, we defined
increasingly complex relationships between observation, activity, feature, target, and instrument use.

Tables 3 and 4 give an overview of the developing theory and the findings we tested. They describe the parts of the
ontology, their inter-relationships and the related scientific work practice implications. Some additional examples of the
developing complexity in naming include:

e A convention that differentiated between the use of a single instrument and multiple instruments in an observation
[Table A 3]

e The implications for work and naming when doing in-sifu work with the rover’s arm placed on rock or soil and for
remofte-sensing work, in which instruments were used to take measurements or images at a distance from the rover.
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Additional 2003 Findings Related to Ontology Development

Differentiating Between Activities

The initial mission design called for the scientists to simply choose activity types from a dictionary in the science planning
software and populate their observations with formalized sets of information. The 2003 tests showed us that activities
required additional differentiation for downstream teams to use in planning and commanding. '

The syntax for naming an activity became

Distinguishing parameter_Target

At the observation level, the syntax represented the relationships between instrument, method, feature, and other identifiers.
The first identifier was instrument and the last was feature.

Differentiating Between Observations
The syntax for naming an observation became
Instrument_Method_Other Identifier Feature
Multiple instrument observations had the following syntax
PMA_Method_Other Identifiers_Feature

IDD_Method_Other Identifiers_Feature

! The activity dictionary was developed by JPL colleagues and was not part of our research. We simply incorporated the use of the existing dictionary into
the work practice and into the developing ontology.
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Table 5. Examples of Observation and Activity Naming

Observation Names: Examples Meaning of the name

MI post rat Buffalo Take a Microscopic Image of Buffalo, after using
the Rock Abrasion tool

Mini-TES Movie 30deg_Sky Take several consecutive MiniTES measurements
of the sky at a 30 degree elevation

IDD_Post Scratch_Plymouth Rock Take several different kinds of in-situ

measurements of Plymouth Rock, after scratching
the rock with the RAT

Activity Names: Examples Meaning of the name

Red single Pilgrim Take a single frame image of the target pilgrim,
using the red filter of the Pancam

5 filter vent_center Take a Pancam image of the target vent center

using five filters.
As the science team worked, we began to see additional differentiations develop. Remote sensing observations, those that
require pointing to and work on objects in the distance required separate referencing from In-situ observations, those that
place the rover's instrument arm on a rock or soil patch.2 The cognitive differences between these two types of
observation, as well as associated planning difficulties and the different configurations of the rover, made them separate
types of science requests. These differences also led us to believe that the designations, “remote sensing” and “in-situ”
(terms already used by the science team) should be the observation name identifiers for work using more than one
instrument. The science team asked to use “IDD” and “PMA” as shorthand identifiers in the software for these two types of
work. Those names referenced instruments located on the robotic arm Instrument Deployment Device (IDD) or on the
Pancam Mast Assembly (PMA) (see Table 6). Method as an overall category became an increasingly important identifier at
the observation level for the emergent ontology.

Requirement for Flexibility

By the end of the training sessions, and based on our understanding of the increasing complexity needed to identify the
work, we determined that a completely fixed naming convention would not support the multiple types of observations or
define the complexity of the tele-robotic work. Nor would it accommodate learning and changes that we could already see
taking place as the team discovered new ways to use the rover, created more sophisticated and new scientific methods, and
dealt with changes in the environment and mission context, such as variations in the Deep Space Network communication
cycles. Our final recommendation for the convention was an open invitation to scientists to enter what we came to call
“other identifiers,” typically temporal or spatial constraints and pointing (e. g. 30 degrees).

While we had based our recommendations on grounded theory and had worked with the science team to develop the
naming convention, the abbreviated names, and the ontology, we also knew that workers in a domain will often find work-
arounds to tools and procedures that are inefficient. The test of the effectiveness of the naming convention and related
ontology would be in the mission itself.

Cumulative Findings: Grounded Theory and Ontology Development

2001: Obiject-action distinction; feature-target distinction, categories of action distinction; names must be unique,
consistent and human centered; group similar types of work

2002: Observation-activity distinction; whole-part relationships; include reference to rover instrumentation; development of
systematic methods and constraints

2003: Concept of “other identifiers for flexibility; classification of instrument types (remote sensing and in-situ).

2 This is true in every day situations as well, when the distance to an object and the accuracy of both correctly identifying and carrying out an activity on an
object are correlated. For instance, the instruction to “place a penny on that flat rock in front of you” is a lot easier to follow than “take a picture of the
dark area on the middle ridge on the second hill to the left.”
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Table 6: Remote Sensing Instruments and relationships between Instruments, Features and Targets

# of Instruments

One Feature

Multiple Features

One Instrument
(Use instrument
or

Include feature name
Pancam_ShipsProw

Include one or two features and relation identifier or
method for grouping features
Pancam Surveyaround ShipsProw

instrument class
name)

shorthand name) | Include feature name and relation Include one or two features and relation identifier or
identifier or method for grouping method for grouping associated targets with features
associated targets with feature MiniTES_Surveyaround_ShipsProw
MiniTES ShipsProw

Multiple Include feature name Include one or two features and relation identifier or

Instruments PMA postScratchSniff ShipsProw method for grouping features with target name

(Use PMA PMA Surveyaround ShipsProw

Include feature name and relation
identifier or method for grouping

Include one or two features and relation identifier or
method for grouping associated targets with features

associated targets with feature PMA Surveyfrom_ShipsProw to Boulder

PMA Surveyon ShipsProw

2004 Mars Exploration Rover Mission: Work Practice, Naming and the Use of the Ontology

This section describes the results of a qualitative analysis of the science plan data and the work practice during the mission
that began in January of 2004. It describes the use of constraints, the development of method, observations and activities,
and the use of feature and targets within the actual mission context.

Work Practice and Naming Development

Scientists adapted the naming convention as they gained experience with the operational environment and developed new
methods of tele-robotic exploration. The basic ontology held through the mission, but some of the individual elements
continued to develop. Specific examples of observation name development from mid mission to end of nominal mission in
April of 2004 appear in Table 7 below and will be discussed here in the order of their appearance in the table.

Temporal Constraints and Other Identifiers

The category of temporal constraints expanded dramatically, with the addition of a number of different subcategories.
Specific (numeric) and general timing constraints appeared as proxies for changing temperature and lighting. The need also
arose to indicate the absence of a temporal constraint (anytime). Temporal constraints also expressed synchronization with
rover events to ensure that the data from two observations reflected the same underlying conditions (e.g., Post MB). While
commanding respected these constraints, nowhere in the rover language were there pre-requisites for temperature, lighting
or synchronous events. The ontology allowed scientists to express such relationships.

The science team adapted the syntax to the engineering context. Our formal ontology called for feature to always be
identified at the end of the name. As time went on, however, scientists began to locate temporal constraints, not feature, at
the end of the name. For example, scientists doing remote sensing (PMA) work placed temporal constraints at the end of
the name in the early part of the mission: Pancam Tau Anytime. However, when the mission moved into an extended
operations phase, the planning process became more standardized, and engineers began to use templates for pre-planning
activity requests. Because the temporal constraints were key in this template planning, engineers requested that the science
team place temporal constraints first in the observation name. So instead of Pancam_Tau_Anytime they wrote Anytime
Pancam Tau,
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Table 7. Observation Name Highlights from the Mission

Mid Mission End of Nominal Mission
Temporal 13:30 LST Before 14:30
Constraints Midday Post backup

Anytime Plan A, IF Dist GT .085m

Post MB Overnight science

Prebrush Pre or Post ODY

Sol 46

PreMGS

Ultimate/penultimate/
Antepenultimate

Methods Traverse clast survey Super clast survey
Mini-MiniTES Ground Stare
Stutter step 3x1x255 Stares
Purposes Recon Dust Devil Finder
Transient Temperature Doc Phobos Set
Features Trex cheek Crater floor
Soil Heatshield

Ejecta blanket
IDD work volume

Method Development

Experience with the specific tool suite lead to the development of numerous specific methods of rover activity such as a scuff
and go, brushing, mini-Mini-TES, and stutter step. The science team also named different ways to plan rover mobility, or
“drive” as the table indicates. New method names were still appearing after 45 sols of operations. The ability to name
clusters of activities with a single label lends support to the idea that observations were containers that rendered the work
coherent and that the ontology helped frame the tele-robotic work of the science team. As we first saw during the field tests
(Table 3), purpose continued to emerge in the observation names. Some of the purposes were primarily operations-
relevant, such as reconnaissance or turning for communication. However, some of the purposes were scientific, such as
documenting transient temperature.

Feature Name Development

The use of features in the observation name also evolved with the mission. We had recommended that scientists use a
whole/part relationship when identifying features and targets to help with information and knowledge management during
Uplink discussions and in finding information in returned data. Whole/part relationships were used more consistently with
the in-situ IDD instruments. We discuss this further when we turn to activity names and the use of targets. Here we note that
target name, which was supposed to be an activity identifier, was sometimes elevated to the observation name to create
specificity and distinctiveness.

Activity Name Development

While mission activity names included temporal constraints (such as pre and post), constraints were not included with the
regularity we observed in observation names. Activity names also acquired some method names, generally referring to
parameter settings (i.e., cal for calibration). Purpose also crept in to activity names, to capture both operational and
scientific rationale. The most prevalent descriptor on an activity functioned as both a method and a target. For example,
when doing remote sensing pointing, as we had anticipated during earlier field trials, scientists increasingly used the FOV
perspective, relying on azimuth and elevation numbers. Further, as we indicated earlier, features were less important in
remote sensing, because the product of remote sensing is typically a region rather than a particular spot. Table 8 describes
some of the additions to activity names that appeared during the mission.
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Table 8. Activity Name Highlights

Mid Mission End of Nominal Mission
Temporal 16:10 Daytime
Constraints Nighttime Postgrind
MI preMB
Post Drive
Ultimate/penultimate
Methods Cal target filters Cal plus sweep magnet
Triple Play 1x1x50 Block
Color stereo
Purposes For MTES overlay Document placement
Verify placement Verify position
Mineralogy
Layer Study
Features and Cherry center Target 1
Targets Below Sun Placement 1
Rear view tracks Drive direction
Filter magnets

We also saw the occasional use of numbers to identify targets. Over time, numbers are not always meaningful or unique,
but within the context of a particular static situation, their use can seem an acceptable practice. Another variation in target
naming work practice was of particular interest, however. Scientists sometimes had to identify several target points in the
software before finding the exact spot for the placement of the RAT on a rock, because the placement on the rock had to be
optimal for surface abrasion and yet within the reach of the rover arm. In this case, the team sometimes used numbers to
identify various candidate targets. They might also use the feature name with the number to help keep the number in
context, such as McKittrick 1, MicKittrick 2. We suggest here that the science team found this the most expedient way to
target a number of points at once, knowing that they would use only one in the end. Cumulative knowledge management
of these two variations was not as serious an issue as it would have been if every target in the mission had been identified
only by a number.

Ontology and Observation Name Development

As the mission went on, observation names got longer. We believe this tendency correlated with the increased use and
standardization of methods (Shalin V., in prep) and the indicated desire of the science team to make sure that important
relevant information was obvious in the software at both the observation and activity levels. For example, in situations where
scientists were requesting re-work on the same feature, they sometimes elevated the new target name to the observation
level to make sure that others understood this was a request for new target work. Important parameters were also elevated
to the observation level on occasion.

Examples of a longer name from later mission work are:

- MTES Elevation Sky AND Ground ODY PM

- Pancam Midway 1 4Fs (Four Filters on Sail)

- PM ODY mini TES Elevation Sky AND Ground Beta Pancam Photometry Photometric Equator3

The naming convention for MER contained abbreviated names and an ontology for distant robotic action. Figure 5
represents the parts of the ontology that supported the work of creating and instantiating observations with specific
examples from the MER mission. Figures 5 and Figure 1 together identify the high-level relationships between the parts of
the ontology as they were used across teams for decision making, in uplink software tools for planning, and then honed into
more explicit identifiers for commanding the rover.

In summary, by developing a grounded theory over several iterative cycles of mission testing, science work practice evolved.
We came to understand the work of participating scientists and engineers, resulting in a naming convention of abbreviated
names as well as a related ontology for scientific work. While developing the underlying theory, we were less concerned
about the effect of our interventions from a research perspective than we were eager to improve the effectiveness of the
mission itself. However, our positions did not allow us to enforce any recommendations if they had not solved existing
problems. We suggest that the recommended ontology was adopted because it emerged through grounded theory

3 This is a multispectral Pancam along the photometric equator. The Beta Pancam Photometry was an addition to the name to group four coordinated
observations together.
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analysis, was relevant to the work being done, and served the needs of the mission. Hadar and Soffer (2006, p. 586)
suggest that the creation of useful tools to support practical tasks is key to the empirical evaluation of an ontology.

The “naming problem” first identified in early field tests was related both to the need to reference rover capabilities and the
need for extended planning work across multiple tools that required multidisciplinary communication among human
participants. All scientists, whether as individuals, small groups, or a whole team, used the emergent ontology to plan and
coordinate work. The engineering team used the ontology to structure planning and trim scheduling to meet available
resources.

Cumulative Findings: Grounded Theory and Ontology Development

2001: Obiject-action distinction; feature-target distinction, categories of action distinction; names must be unique,
consistent and human centered; group similar types of work

2002: Observation-activity distinction; whole-part relationships; include reference to rover instrumentation; development of
systematic methods and constraints

2003: Concept of “other identifiers for flexibility; classification of instrument types (remote sensing and in-situ)

2004 Mission: Explosion of use of temporal constraints; syntax reconfigured to incorporate meaning for engineering feam

Observation
Part of \F“\"‘;
Mhaihods Other |dentifiers
Blind Kind of
Instrumenis Comparison - Kind of
Drive Constraints
Remote Sensing Camera use while driving arrernoon
morning
Kindef | Mavcam quick look morning arer
Kind of AM, PM
Haozcam rubber neck : fir
Pancom systematic overnig
MiniTES sashay b
post
EH.DVIE Kind of
raf
Scraich Distance
In-\ﬁnu Sniff /Spatial
. Surveys Long
Kind of ; survey around Sheat
survey between
M SUIvEY Covering Part of
b o f i
MB survey from . To JE—
APXS survey including Fegture Siakial
RAT pon
oz. el.
T8 M5, E, W
rus
Tau

Figure 5. The refined Observation branch of the ontology
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Conclusions

We believe the definition of the emerging ontology in this domain served several purposes. It provided procedural and work
practice support and a shared language for interdisciplinary exchange. It established consistency for software
representations. It incorporated referents to scientific work and allowed for the unique specification of requests for both the
science and downstream engineering teams. Finally, the ontology captured shared conceptualizations and representations
for the historical record. While we were working to support the remote work of the MER mission, similar ontological
constructs could support other remote work such as tele-medicine.

Regarding ontology development we found:

1. Ontologies of work in information systems must contain both actions and objects to identify and represent all aspects of
the work involved. These must represent the basic units of the action in the work system (e. g. method, instrument) in
relation to the objects (e. g. features and targets) on which the work will be done.

2. Requests for science work are organized around higher order descriptors (what we call observations) that refer to and
group the steps of the work. The lower order descriptors of the work (what we call activities) depend on the instrumentation,
in this case of the rover. The observation and activity work descriptors were not explicit in the rover command language.
The decoupling of these descriptors from rover code, however, allowed for flexibility in naming and the evolution of
scientific work based on pervasive and continual learning.

When developing associated software in emerging domains, it is important to limit restrictions as much as possible until the
nature of the work can be better understood. Eventually software fields can reflect pre-set taxonomies (such as instruments,
constraints, and methods) that offer participants (in our case both scientists and engineers) the ability to view and flexibly re-
configure information most salient to their work. Increased formality can then capture and present information consistently
across the various tools within a system.

3. An ontology of action must take into account a dynamic environment and reflect multiple concepts: changes in response
to natural physical events, interactions with objects that have their own changing state conditions (terrain changes and
moving robotic satellites), and consfraints (time, before and after). It must reflect the influence of context on the meaning of
intentional action. The appearance over time of temporal constraints in the expert work on MER acknowledges that names
for action must be able to reflect a changing environment.

4. In a dynamic environment, teams require semantics that are not just internally consistent within the software and
supportive of action in a dynamic external environment, but can also adjust to users who are themselves changing, that is
learning, over time. When constructing an ontology for an emerging domain of action, the ontologist should expect
dramatic, frequent revisions and have the capability to capture and support both incremental and revolutionary revisions
over time. The addition of the open concept of “other identifier” in our naming convention helped the ontology adapt and
support learning and change, even while the robotic technology remained stable.

This finding is consistent with past work in cognitive theory that acknowledges the role of new conceptualizations as a result
of learning (Greeno, 1983): As leaning takes place, new conceptualizations will develop. It is also consistent with the
understanding in current ontology development (McGuinness, 2001) that ontologies require extensibility, or the ability to
adapt to user needs and projects.

5. A set of formal, intentional, conceptual primitives is less relevant in our ontology because meaning goes beyond the
intentional when executing action in a physical environment. Additionally, in this environment human actors helped bridge
the gaps between the external ontology, the internal rover command language, and the environmental context.

Context sensitivity and the absence of an intentional analysis challenges formal approaches to the construction and
evaluation of an ontology typically applied to objects such as that developed by Zhang, Cao, Gu and Si (2004). Our
novel problem domain demanded methods that fell outside the traditional ontologist’s tool kit. We expect that our
contribution, founded on less traditional methods, will extend the scholarly dialogue on ontology development in action
domains.

Nevertheless, the motivation for ontology development is the need to share structured information [Musen, 1992; Gruber,
1993] that represents agreements about shared conceptualizations [Gruber, 1994]. The main driver behind our research
and ontology development was the need to define, frame, and standardize shared conceptualizations (abstract models) of
the work of Martian tele-robotic science in unambiguous representations.
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The MER ontology and the associated abbreviated names exemplify the definitions for an ontology referred to by Gruber
(1994) and Guarino and Giaretta (1995). That is, it is not so much a complete specification of shared conceptualizations
as it is an incomplete or partial agreement or account of those conceptualizations. The fact that identifiers in this ontology
changed as the work developed, responding to changes in the Martian environment as well as in the planning and uplink
process, suggests that such an ontology in a dynamic environment can only be a partial account of shared
conceptualizations.

While extensibility is crucial for any information technology, especially those concering long term product lifecycle
management and ubiquitous computing, we believe this research demonstrates that an ontology for executed action in a
dynamic environment demands the greatest flexibility. More generally, we claim that ontological change is a key property
of knowledge creation, crucial to the enduring usability of workplace technology (e.g., Li and Kettinger, 2006).

Regarding the use of abbreviated names for referencing work, we found:

1. Abbreviated names can be successful identifiers along with an associated ontology, as long as they contain consistent
and systematic representations of the work to be done and draw on pre-identified parts of the ontology to create
descriptions of the work being done.

2. Abbreviated names allow for natural language referencing and knowledge and information sharing during collaboration
in a domain as well as for the translation of work from one set of experts to another across domains and software tools.

Regarding the relationship between work practice and an ontology for scientific work, we found:

As we used “mission” ethnography to understand work practice and gather data for our grounded theory research, we
realized that we were not just identifying and formalizing shared conceptualizations salient to organizing and planning tele-
robotic work. We were also identifying and describing the work of the scientists themselves. The higher order abstractions in
the ontology (observation, activity, feature, target, method, etc.) used for referencing robotic work also represented steps in
the scientific work process (defining and instantiating scientific observation, defining parameters and constraints, and using
methods) on the objects necessary to scientific work (features). Thus, they specify the inter-relationship between work
practice and the categories of an ontology.

Regarding research in knowledge elicitation, we found:

The methodological focus of the work in ontology formation has been on the formalization of the relationships between
objects. While we agree that object relations are important, we found that a greater focus on work process and work
practice and consideration of how they are related to shared conceptualizations and expert knowledge enabled us to
identify relevant ontological categories.
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Appendix: Tables

Table A1 Instrument Locations on the Rover

Type of Instrument Name Definition
and Location
Engineering instruments on
Rover body Navcam Navigational cameras
Hazcam Hazard Avoidance cameras
[ | Remote Sensing Instruments | Pancam High Resolution Panorama Cameras
on Rover Mast
MiniTES Mini Thermal Emission Spectrometer
Instruments for Gathering Ml Microscopic Imager camera
In-situ Data on Instrument
Deployment Device (IDD)
APXS Alpha Particle Xray Spectrometer
MB Méssbauer
RAT Rock Abrasion Tool

Table A2. Single and Multiple Instrument Observations

Observation Type Name (shorthand)

Single Instrument APXS, Hazcam (Haz), Méssbauer (MB),
Microscopic Imager (Ml), MiniTES, Navcam
(Nav), Pancam, RAT, Rover

Instrument Deploy Device (IDD) [in-situ]
Pancam Mast Assembly (PMA) [remote
sensing]

Table A3. In-situ Instruments and relationship between Instruments, Features and Targets

Multiple Instrument
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# of Inst. One Feature Multiple Features
One Inst. Include feature name (Not Possible)
(Use MB Boulder
instrument or | Include feature name and relation or Include one or two feature names and relation or
shorthand method for grouping unmentioned targets | method for grouping unmentioned targets with
name) with feature features
MB_Sniff Boulder APXS comparison Boulder ShipsProw
Multiple Include feature name (Not Possible)
Inst. IDD_Boulder
(Use IDD Include feature name and relation or (Separate Observations)
instrument method for grouping unmentioned targets
class name) | with feature
IDD Survey Boulder
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Appendix A: List of Acronyms

APXS

FIDO

Hazcam

IDD

JPL

MB

MER

Ml

Mini-TES

MTES

Navcam

Pancam

PMA

PUL

RAT

SAP

SOWG

Alpha Particle X-ray Spectrometer

Field Integrated Design and Operations
Hazard Avoidance Camera

Instrument Deployment Device

Jet Propulsion Laboratory

Méssbauer Spectrometer

Mars Exploration Rover

Microscopic Imager

Miniature Thermal Emission Spectrometer
Miniature Thermal Emission Spectrometer
Navigational Camera

Panoramic Camera

Pancam Mast Assembly

Payload Uplink Lead

Rock Abrasion Tool

Science Activity Planner

Science Operations Working Group
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