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Technology adoption often occurs sequentially, so that later potential adopters can see the decisions (adopt or not adopt) of 
earlier potential adopters.  In this paper we review the literature on observational learning, in which people use information 
gained by observing the behavior of others to inform their decisions, and note that little prior research has used an observational 
learning perspective to understand the adoption of information technology.  Based on theory and previous literature, we suggest 
that observational learning is likely to be common in adoption decisions.  We develop a model that extends existing observational 
learning models and use simulation to test the model. The results suggest that following the behavior of other similarly-situated 
decision makers can be a very useful strategy in adoption situations in which there is a great deal of uncertainty.  Implications for 
research and practice are discussed. 
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Sequential Adoption Theory: A Theory for 
Understanding Herding Behavior in Early Adoption of 
Novel Technologies  

1. Introduction 
Sequential decisions under conditions of uncertainty are made in a variety of business and personal 
domains.  People often observe the behaviors of similarly-situated others to aid them in choosing 
whether to pursue a course of action.   One decision of this type that is of particular importance in the 
information systems (IS) area is technology adoption.  In the present research we use theories of 
observational learning and sequential decision making to develop a new model that extends existing 
theory and aids in understanding technology adoption decisions. 
 
Observational learning is one of the most ubiquitous and useful means of decision making available 
to humans.  Observational learning occurs when one person observes the behavior of another person 
and infers something about the usefulness of the behavior based on that observation.  A significant 
body of research has developed in the area of observational learning, including models and empirical 
findings.  Research has shown that people use their observations of others to update their own 
private beliefs and to take actions (Bandura, 1977), that bandwagon or herding effects occur 
(sometimes inappropriately) (Abrahamson, 1991, Abrahamson and Rosenkopf, 1997, Oh and Jeon, 
2007), that such effects often occur rapidly (Gale and Kariv, 2003), and that such effects are often 
fleeting and can be reversed fairly quickly and easily (Bernardo and Welch, 2001).   
 
Decisions involving technology are especially prone to observational learning because they are 
fraught with complexity and uncertainty.  Software and other technological components are among 
the most complex artifacts humans build (Brooks, 1975).  Moreover, the impacts of technologies can 
take years to be realized (Brynjolfsson and Hitt, 1996), so the benefits of adoption decisions are often 
uncertain.  It is precisely this complexity and uncertainty that make observational learning so 
appealing.  Because IT adoption does not usually occur by accident, all of the information an 
individual has about the adoption decision is consolidated and expressed in his or her behavior.  Even 
if the individual has very little information or is simply jumping on a bandwagon, his behavior still 
consolidates and expresses what little information he has available. Therefore, learners can save a 
great deal of cognitive effort by inferring that if an individual adopts a technology, then his personal 
information must have suggested that the technology was worth adopting. Thus, technology decisions, 
because of their complexity and uncertainty, can be made much easier by observing and utilizing the 
behavior of others. 
 
There is evidence that observational learning influences technology adoption both in the laboratory 
(Song and Walden, 2003) and in real world financial markets (Walden and Browne, 2008).   Song and 
Walden (2003) found that subjects’ willingness to adopt a technology was significantly related to 
others’ decisions.  Walden and Browne (2008) found that stock market reactions to electronic 
commerce announcements by firm X on day t were strongly predicted by electronic commerce 
announcements by firm Y on day t-1.  In both cases, decision makers showed behavior that 
suggested they were incorporating the behavior of others into their decision making. 
 
Thus, it is worthwhile to develop a rigorous model of how observational learning impacts technology 
adoption and to apply this model to develop insights into observational learning issues.  In the present 
research, we develop a theoretical extension of the observational learning model of Bikhchandani et 
al. (1992).  Our extension is particularly useful in technology adoption situations because of (1) the 
significant uncertainty surrounding emerging technologies, (2) the increasing emphasis on quick 
technology choices, (3) the path dependency of many technology adoption decisions, and (4) the long 
lag times between adoption and financial return on a technology.  We use the model to develop new 
insights into situations in which observational learning is a key component of technology adoption 
decisions.  Specifically, we make predictions about the impact of observational learning on the 
accuracy of adoption decisions, on the relative market share of different technologies, and on the 
market share of technologies when those technologies are aimed at different sizes of groups. 
 
We address four research questions in this area.  First, do adoption decisions converge?  That is, if 
there is little information in the environment, do people simply follow one another and essentially 
ignore the small amount of information they personally have?  Second, we examine the convergence 



 

 
33 Journal of the Association for Information Systems       Vol. 10 Issue 1 pp. 31-62 January 2009 

Walden & Browne/Sequential Adoption Theory 

path.  How quickly, if at all, do potential adopters start following the decisions of others?  Third, we 
examine what happens when there are decisions that reverse prior strings of identical decisions.  
Fourth, we examine what happens when decision makers are put into groups of different sizes and 
allowed to observe the behavior only of those decision makers within the group. 
 
The paper is organized as follows.  First, we present background material on technology adoption 
and important theories explaining imitative behavior.  We then develop our model of sequential 
adoption theory and present our research questions.  We then describe our research design, followed 
by the findings from a simulation study.  We conclude with discussion and directions for future 
research. 

2. Background 
There are numerous situations in IS research and practice in which members of a community make 
sequential decisions and can observe the decisions (but not the reasoning) of others. As noted, 
research has documented observational learning in IT adoption decisions. For example, when asked 
to evaluate peer-to-peer file sharing technologies, people indicate a higher intention to adopt the 
technologies if they observe others adopting them even after controlling for network size (Song and 
Walden, 2003).  Research has also shown that observational learning is even more important than 
professional product reviews for explaining online software downloading (Duan et al., 2009).  In the 
domain of online auctions, individuals place bids in time order and can observe the bids of others but 
not the reasons for the bids.  Research shows that bidders make use of observational learning in this 
situation, so that in two identical auctions (same product, same seller, and same time), people prefer 
to bid for the product for which others are bidding (Dholakia and Soltysinski, 2004).  Purchasing 
decisions for e-commerce initiatives in financial markets represent another example in which 
individuals can see bids (and offers) over time, but not the reasons for those bids and offers.  There is 
evidence that the prices investors are willing to pay for firms pursuing electronic commerce initiatives 
depend heavily on the willingness of others to pay for prior electronic commerce initiatives (Walden 
and Browne, 2008). 
 
One of the findings of IT adoption research is that adopters often adopt a technology en masse (Li, 
2004).  A variety of reasons exist for why many people might make the same decision.  First, it might 
simply be an obviously good decision; for example, adopting the telephone was superior to traveling 
long distances to communicate a message or sending it via the pony express (at least for many 
messages).  Similarly, computers are both faster and more accurate (and currently less expensive) 
than human payroll calculators, so many firms use computers to calculate payroll.  If a clearly good 
technology choice presents itself, then we would expect it to be adopted.  In such cases, the good 
choice explanation focuses on the relative value of choices to individuals, and may or may not make 
reference to the behavior of others.  Sometimes this explanation is satisfactory, but other times the 
behavior of others is particularly salient. 
 
The behavior of others is relevant when acting similarly to others offers some type of benefit.  Thus, a 
second reason that people may make the same decision is that firms may gain social benefits from 
following the behaviors of other firms. The notion is that a firm that is like other firms is better able to 
navigate its institutional environment.  In such cases, there may be no intrinsic benefit, only social 
benefit.  That is, in the absence of pressure from other firms (e.g., Wal-Mart mandating its suppliers to 
adopt radio frequency ID tags), the decision is not necessarily “good” from a rational point of view.  In 
fact, IT researchers have found that managers “replicate the selection decisions of other firms even if 
they believe the copied choices to be inferior or suboptimal” (Tingling and Parent, 2003, p. 114).  This 
explanation focuses on norms and social pressures rather than on the intrinsic benefits of the 
technology itself.1   
 
An important theory for examining situations in which the behavior of others is relevant is network 
effects theory (Katz and Shapiro, 1985, Katz and Shapiro, 1986).  Network effects occur when the 
value of belonging to a network is a function of the number of others who belong to the same network.  

                                                      
1 A closely related field of inquiry is heterogeneous diffusion models (Greve 1995; Greve, H. R., D. Strang, and N. B. 
Tuma 1995).  These models provide an empirical method of estimation for social diffusion processes. 
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This is usually applied to technology adoption by noting that the technology gives access to the 
network.  Good examples include fax machines (Economides and Himmelberg, 1995), computing 
networks such as BITNET (Gurbaxani, 1990), and ATM networks (Kauffman et al., 2000).  In this case, 
the behavior of others matters because when others join the network by adopting the technology, it 
increases the value of the technology.  This theory focuses on the value of the technology, and the 
only uncertainty is how others will behave in the future. 
 
Observational learning literature offers another perspective on mass convergence toward a 
technology.  Observational learning suggests that people can augment their own incomplete 
information by observing the behavior of others.  For example, one can learn about a technology by 
observing others’ technology adoption behaviors.  It is worth noting that this point of view can 
supplement the other explanations discussed above.  For example, when a person sees others 
adopting a technology, he might think, “If I adopt that technology then others will like me” or “If I adopt 
that technology then I can interact with others.”  However, the observational learning perspective 
adds the possibility that the person may think, “If others are adopting it, then I should conclude its 
inherent value is higher than I previously thought.”  This is similar to mimetic isomorphism (DiMaggio 
and Powell, 1983) in the strategic management literature. 
 
Information cascade theory (Bikhchandani et al., 1992) was developed to explain the consequences 
of learning from the behavior of others and is particularly useful in the present research.  The 
underlying notion is that individuals each hold some private information that can be thought of as a 
signal about the utility of a course of action.  The signals are not perfect, so individuals must make 
their decisions under uncertainty. The decisions, but not the signals, are observable by other decision 
makers who then use Bayesian updating to revise their beliefs about the appropriate course of action. 
Information cascade theory has been demonstrated in various laboratory experiments.  For example 
(Anderson, 2001, Anderson and Holt, 1996, Anderson and Holt, 1997), experimenters have presented 
subjects with an opaque container that either holds two red balls and one green ball or two green 
balls and one red ball.  The subject’s task is to decide whether the container from which he is 
sampling is the two red-one green container or the two green-one red container.  Each subject is 
allowed to privately draw and view a single ball, representing his private information, from the 
container.  Clearly, the color of the ball is a signal about the total content of the container.  The subject 
then replaces the ball and calls out his decision about the contents of the container so that other 
subjects can hear it.  The next subject repeats the procedure and makes a decision based upon both 
the color of the ball he observes and (presumably) the decision(s) of the prior subject(s). 
 
Based on the key assumptions of uncertainty about the value of a technology, private information, 
observability of prior decisions, and rationality in the form of Bayesian updating, several results 
emerge from these experiments.  The first is the tendency of decision makers to “herd.”  Herding 
means that all decision makers rapidly converge toward the same decision simply because they saw 
others make that decision.  One might imagine a flock of birds or a school of fish that all turn right at 
the same time following the lead bird or fish.  This herding is called an information cascade because 
the information contained in the decision of the first decision maker propagates to other decision 
makers who observe him.   
 
A second key result is that information cascades are fragile.  This means that it is relatively easy to 
change the emergent behavior of the group by introducing just a small piece of new information.  This 
occurs because the entire group’s decisions are based on the relatively little information encapsulated 
in the behavior of the first few decision makers.  In the container game described above, if the first 
two decision makers indicate they think they are dealing with the container that contains two red balls, 
then the third decision maker should rationally concur even if he draws a green ball.  If two subjects 
see red and one sees green then the correct answer is most likely red.  In this case, there is no 
information in the decision of the third subject, and the fourth subject faces exactly the same 
information environment as the third.  Thus, he must rationally say “red” regardless of his own private 
information.  The cascade is fragile because every person knows that he is deciding based on very 
little information, and it does not take a great deal of contradictory information to change his mind.  
The result is that the group as a whole seems flighty—rapidly achieving conformity and then easily 
reversing its decisions when small amounts of contradictory information are presented—even though 
each individual is behaving in a fully rational manner. 
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Information cascade theory provides a complement to the other theories suggested above because 
the causal process is different.  Decision makers follow each other to aggregate information in an 
uncertain environment.  Thus, information cascade theory can explain situations that do not fit the 
assumptions of the other theories.  It can explain situations in which the benefit of a decision does not 
depend on the number of others making the same decision, or when a particular decision does not 
lead to legitimacy, or when people have different and limited information.  The theory seems 
particularly suited to the early stages of technology adoption, when there are not enough adopters for 
network effects to be relevant or future network sizes to be estimated.  Further, at this stage there 
may be too few people making the adoption decision for the technology to be popular enough to 
precipitate social benefit-based behavior.  Of course, in the early stages of adoption, information is 
poor and decision makers may have very different signals about the utility of a course of action.  
Information cascade theory can also complement other theories in later stages of adoption and in 
situations in which the assumptions of the other theories hold.  Nothing forbids decision makers from 
both inferring information and deriving benefits from the decisions of others.   
 
In the present research, we enhance the applicability of information cascade theory to IT adoption by 
developing a more general model of the phenomenon that can be used to develop novel insights.  As 
noted above, there are reasons for exhibiting similar behavior in addition to observational learning.  
Our model represents an intermediate step between Bikhchandani et al.’s (1992) model and a grand 
unified model that includes information cascades, network effects, and social benefit-based herding.  
We accomplish this by expanding the nature of the signal decision makers receive from the 
environment, so that network effects, social benefit-based herding, and other effects may be included 
in the signal. Thus, our model illustrates how researchers can expand the nature of the signal to 
include other factors that might be important to the adoption decision and is a step in the process 
from reductionism to holism. 
 
In addition, we are able to investigate important IT-related questions.  In particular, IT adoption is 
often of interest from the point of view of the seller of IT, and the questions the seller might ask 
concern how to influence the system rather than how the system will behave.  To this end, we 
investigate the finite steps in the adoption path rather than the adoption equilibrium that occurs in the 
limit.  Because prior work in this area has been from an economics perspective, it has focused on the 
limiting equilibrium, minimizing the consideration of the path adopters might follow to reach the 
equilibrium.  For IT adoption in particular, the path adopters follow is a serious consideration for two 
reasons.  First, there is often a finite number of adopters, so it is not clear that asymptotic results are 
generalizable.  Second, technology changes very rapidly, so it is not clear there is time to reach a 
stable equilibrium. 
 
Bikhchandani et al.’s (1992) model, with its focus on binary signals, provides an excellent example of 
the problem and its limits but is too coarse to give a good illustration of the finite sample properties. In 
particular, their model says that if two people adopt a product or technology, then everyone else will 
also adopt.  In contrast, our model allows us to understand the change in probability if two people 
adopt as well as the rate of convergence of probability (Bikhchandani et al.’s (1992) model only 
allows probabilities of 0 percent, 50 percent, or 100 percent, which is useful for theoretical illustration 
but less useful for real world applications).  Similarly, Smith and Sørensen (2000) highlight this point 
when they state about their own article, “This paper is unified by two natural questions: (i) What are 
the robust long-run outcomes of learning in a sequential entry model with observed actions? (ii) Do 
we in fact settle on any one?” (p. 372). In the present research, on the other hand, we are very 
concerned about the short-run outcomes. 
 
Finally, we ask a question that Bikhchandani et al. (1992) could have answered, but did not ask.  We 
ask what happens if an IT vendor splits adopters into different subgroups and how such groupings 
impact the vendor’s risk (i.e., the variance of adoption).  Other models have only been interested in 
what happens in the limit, and so have never considered how splitting a finite number of adopters into 
smaller subgroups might change the dynamics of the system. 
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3.  Model 
Our goal is to produce a rigorous mathematical model of information cascades that can be applied by 
IT researchers.  Information cascade theory is not very amenable to direct application, and making 
minor changes is not a trivial task.  We believe this has retarded the growth of this very important 
aspect of adoption.  Thus, we aim to create a model that is both deployable and easily adjustable. 
 
Our model makes various simplifying assumptions, which we detail below.  The model is valid to the 
extent that the assumptions either mirror reality or do not make a significant difference in this context.  
Moreover, these assumptions give researchers a starting point for adjusting the model to fit different 
circumstances.  The assumptions are as follows: 
 
Assumption #1:  Decision makers must choose between adoption of two technologies called A and B.  
Some examples might include PC or Macintosh, open source or proprietary software, or peer-to-peer 
or mainframe computers.  The model might also represent a choice between adoption and the status 
quo (i.e., no adoption).  The limitation of this assumption is that it only considers two choices, even 
though some situations will, of course, contain many choices. 
 
Assumption #2:  Decision makers have some private information about the relative merits of A and B.  
Specifically, decision makers receive a signal, which is a single observation from a random normal 
distribution representing the difference between A and B.  If A is the better choice, then the random 
distribution will have a greater mean than if B is the better choice.  The decision maker’s problem is to 
decide from which distribution the signal came and, hence, which technology is the better choice. 
By “signal” we mean the overall perception a decision maker has about the merits of a technology.  
We characterize it as a number for the sake of simplicity, but it is, in fact, a pattern of neural activation 
based on the information available to the decision maker and the decision maker’s specific 
knowledge. 
 
For technology adoption, there is usually no shortage of information; in fact, the opposite is true.  
Given the vast amounts of information available today, whether from the Internet or myriad other 
sources, it is safe to assume that different decision makers receive different information. For example, 
receiving information about an SAP product from the SAP company is probably different from 
receiving it from an SAP consultant, which is different from receiving it from the representative of a 
company with a competing product.  However, even if two decision makers receive the same 
information about the technologies in question, they still may interpret it differently because of their 
knowledge bases.  In other words, two people sitting in the same room receiving the same 
information from the same person at the same time about the same technology may have two very 
different perceptions about the technology.  For instance, if one decision maker knows the speaker 
works for the company and the other thinks the speaker is an independent researcher, then the two 
will reasonably have different perceptions of the information they receive. 
 
Representing the precise nature of a signal, either mathematically or psychologically, is essentially 
impossible due to its complexity. For the sake of simplicity, and following standard research practice, 
we assume it can be compressed into a single number.  This number is a measure of the relative 
values of the two choices.  We can think of this value as the answer to the question, “How confident 
are you that A is better?”  A signal such as “A is much better than B” is an extreme private signal that 
is an endorsement for A (although choosing A still may be wrong).  A signal such as “A is a little better 
than B” is a small endorsement for A, and choosing A is more likely to be wrong than with the first 
signal. 
 
Thus, we define a signal as an overall evaluation of the relative merits of a technology based on all 
the information the decision maker has accessed and all the knowledge he possesses.  It may 
include demos, sales pitches, cost benefit analysis, prior experience with similar technologies, 
magazine articles, or any other sources of information that decision makers use.  A signal reflects the 
personal interpretation of all the information by the decision maker.  
 
Assumption #3:  The values of the technologies do not vary across decision makers.  Either A is 
better or B is better for all individuals.  In some situations this assumption clearly will not hold, but in 
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many situations it will hold to some degree.  The benefits of a technology to a specific adopter are 
often correlated with the benefits of the technology to other adopters.  Technologies perform some 
function and adopters usually adopt them with that function in mind.  Moreover, people looking for 
some functionality are probably facing similar problems with similar constraints and capabilities.  Thus, 
a technology that works well within one adopter’s constraints and capabilities probably works well 
within other adopters’ constraints and capabilities.  For example, people frequently need to search for 
information online or type memos or visualize numbers, and thus benefit from search engines, word 
processors, and spreadsheets.  More specifically, people may be familiar with a certain menu layout 
in a word processor and, thus, may benefit more from using WordPerfect than Word (or vice versa). 
To the degree that people’s relative values for technology are correlated, the model we present is 
valid.  We assume perfect correlation, but relaxing the assumption does not change the implications 
of the model.  Imperfect correlation could be modeled as a discount factor on the information of 
others, which has grounding in psychological research (Yaniv, 2004).  Such a discount value for 
imperfect correlation simply makes decision makers’ responses to others’ decisions less dramatic.   
We note that in cases in which each decision maker’s valuation for the two technologies is 
uncorrelated, there is no information to be gained from observing the behavior of others.  Thus, the 
model does not address those situations. 
 
Assumption #4:  The perceived costs and benefits of making a correct or incorrect decision do not 
change during the adoption period, and they are identical for all decision makers.  In other words, 
decision makers are homogeneous.  This is a simplifying assumption (made to keep a variable called 
k constant) and a limitation of this work.  The decision a person makes should depend not only on the 
probability of being correct, but on the benefit of being correct and the cost of being wrong.  Thus, 
decision makers must evaluate the cost of choosing B when A is actually correct and vice versa, the 
benefit of choosing A when A is correct, and the benefit of choosing B when B is correct.  We assume 
these values are constant across decisions. 
 
Assumption #5:  The distributions from which decision makers receive private signals do not change.  
In most cases, over time, more information about the relative merits of technologies becomes 
available to all decision makers, which may change their private evaluations.  For example, decision 
makers’ perspectives on electronic commerce technology have changed dramatically over the last 
decade, and it is unreasonable to believe that current decision makers would receive private signals 
about electronic commerce from the same distributions as did decision makers in the late 1990s.  
However, over a short period of time, distributions can remain relatively static.   Certainly, those who 
have adopted will begin receiving information relatively rapidly, but they will have no incentive to 
share the information about the quality of the technology with competitors.  In fact, many companies 
have employees sign non-compete clauses to keep competitors from gaining access to information 
about how a technology works.  Again, we could relax this assumption by discounting the weight that 
decision makers place on the behavior of prior decision makers. 
 
Assumption #6:  Decision makers make choices sequentially.  This means that each decision maker 
has some decision makers who decide before and some who decide after her.  This also means that 
the time of decision making is known.  For the choice between two technologies, this is not an 
unreasonable assumption.  However, when the choice is between a technology and the status quo, 
then for those who follow the status quo it is not necessarily clear when those decisions were made.  
A decision maker following the status quo may have evaluated the alternative and decided against it, 
or she may not yet have performed an evaluation.  One possible way to alleviate the status quo 
problem would be to discount the decisions of those people following the status quo.  In this case, the 
impact of a status quo decision would be less than the impact of an adoption decision.  We will 
discuss the implications of this possibility later, when we derive results. 
Another issue relevant to the status quo is that following the status quo is not irreversible.  If someone 
chooses at a decision point not to adopt, she may later choose to adopt.  In fact, this issue is not 
limited to the adopt vs. status quo decision; adopters can choose A today and change to B at a later 
date.  This assumption could be relaxed, a possibility we consider later in directions for future 
research.  
 
Assumption #7:  Decision makers know the sequence of prior decisions and the initial conditions.  
Thus, they are fully informed and rational.  Though they face uncertainty, they face no ambiguity.  This 
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is a standard economic modeling assumption.  In most cases, decision makers will likely only observe 
a few other individuals.  We analyze this in more detail in the section on distributions of potential 
adopters. 
 
Assumption #8:  Decisions are observable, but reasons for decisions (private information) are not.  
This means that decision makers can see the technology adopted by prior decision makers.  For the 
case of competing technologies, this is a reasonable assumption, but as discussed above, for cases 
of a new technology vs. the status quo, it may be questionable.  We also note that the Internet and 
similar technologies probably allow decision makers to know more about the reasons for adoption 
now than in the past. 
 
There are two issues that arise from these assumptions.  First, many of the assumptions could be 
relaxed and made more realistic by discounting prior decision makers’ behavior.  We do not include 
this complication in our analysis, so our presentation can be thought of as an upper bound on 
information cascade effects. 
 
The second issue is that not all these assumptions are relevant in all adoption environments.  Thus, it 
is worthwhile to consider when they hold more strongly.  In general, we contend that the assumptions 
hold for technologies with considerable uncertainty in the short run.  We call this early adoption of 
novel technologies.  In particular, the assumptions that require the distribution from which decision 
makers receive signals to remain constant are easily satisfied in the short run.  One can imagine, for 
example, firms implementing enterprise resource planning (ERP) systems.  It may take many months 
(or even years) from the time of the adoption decision (i.e., writing the first check) to having a system 
implemented and operating in the organization.  During that time, technologies may not change and 
other adopters may not gain (or look for) any additional information upon which to base their 
decisions.   
 
The short-run time frame and novel technologies also suggest small numbers of adopters. The group 
of technophile or cutting-edge early adopters is often limited and they make their decisions relatively 
quickly.  Early adoption is particularly important because it sets the stage for subsequent technology 
decisions, especially for technologies that have network effects.  Even when technologies do not have 
network effects, they are often subject to considerable path dependency, so that early decisions 
shape how a technology evolves.  Thus, while the assumptions we make may not apply to all 
adoption situations, they apply to a very important subset of such decisions. 
 
The short-run, small-number-of-adopters focus of the present research differentiates it from past 
information cascade work (Bikhchandani et al., 1992).  Other work is usually concerned with 
asymptotic results (Smith and Sørensen, 2000).  However, the short-run adjustment is arguably most 
appropriate for IT adoption decisions. 

4.  Theory Formalization 
Given the background and assumptions discussed above, we can now formalize the model.  Assume 
that decision makers are faced with two technologies:  A and B.  They receive a private signal about 
the relative merits of the two technologies, which comes from a NORMAL(μA, σ2) distribution if A is the 
better choice and a NORMAL(μB, σ2) distribution if B is the better choice.  (Here, μA and μB represent 
the difference in values between A and B, so a more descriptive subscript might be μ(A-B > 0) and μ(A-B < 

0).  However, in the interest of readability, we will keep μA and μB.)  The private signal is a single 
realization from the distribution, and the decision maker’s problem is to determine from which 
distribution the realization came. 
 
Let lower case letters denote the decision maker’s choice, so that a indicates that the decision maker 
chooses technology A and b indicates that the decision maker chooses technology B.  A decision 
maker would like to make choice a when μA > μB and choice b otherwise.  The first decision maker’s 
prior information suggests that A is better than B with probability pA, and B is better with probability 1- 
pA.   
 
Given the prior, the decision maker then receives a private signal an based on this private signal must 
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choose between A and B.  Thus, the potential adopter’s decision criterion can be represented as a 
threshold that depends on the probabilities of A being better and B being better and the relative costs 
of the decisions, which we discuss below. If an observed private signal exceeds this threshold, then 
the observer will conclude that technology A should be adopted (recall that the distributions represent 
the value of A minus the value of B).   
 
For a given decision criterion, the probability of correctly concluding that A is the better technology is 
Prob(a|μA),2 while the probability of incorrectly concluding that B is the better technology when A is the 
better technology is Prob(b|μA) = 1 - Prob(a|μA).  The probability of incorrectly deciding that A is better 
when it is not is Prob(a|μB), and the probability of correctly deciding that B is better when it actually is 
better is Prob(b|μB) = 1- Prob(a|μA<μB).  These possibilities are shown in Table 1. 
 

Table 1:  Possible outcomes of decision task 

  Potential adopter’s identification 

  A better (a) B better (b) 

Reality 
A better (μA) Prob(a|μA) Prob(b|μA) 

B better (μB) Prob(a|μB) Prob(b|μB) 
 

 
Given that both distributions have the same variance, a measure of the ability of a potential adopter to 
differentiate between the merits of A and B is d’ = μA/σ- μB/σ, which is simply the standardized 
difference between the two means.  These assumptions are illustrated in Figure 1. 
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Figure 1:  Distributions of private signals concerning an information technology 

 
The potential adopter’s problem is to select a threshold beyond which he will conclude that the private 
signal came from the μA distribution.3  In other words, the potential adopter chooses the minimum 
observed value of a private signal that will lead him to believe that A is the better technology.  Any 
observed values above that threshold will lead him to decide that A is better and any observations 

                                                      
2 The notation μA means that the observation came from the distribution with μA as a mean.  It does not refer to the 
mean of the distribution; rather, it refers to the distribution from which the signal came.  The term should literally be 
read as “NORMAL(μA,σ2).”  Thus, Prob(a|μA) is shorthand for Prob(a|(The signal comes from a NORMAL(μA,σ2) 
distribution)).  The notation μB means that the observation came from the distribution with μB as a mean. 
3 Because the labels A and B are arbitrary, we will let A be the label of the better technology for this analysis.  The 
results are symmetrical if B is better.  This can be seen simply by re-labeling all the As as Bs and vice versa. 
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below the threshold will lead him to decide that B is better. 
 
The four possible outcomes of a decision task are graphed in Figure 2.  It can be seen that the 
probabilities of all possible outcomes are determined by the choice of threshold.  Further, it is 
apparent that increasing the probability of concluding that A is better when it actually is better 
(Prob(a|μA)) also increases the probability of falsely concluding that A is better when it is not 
(Prob(a|μB)). 
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Figure 2:  Regions for different decision outcomes 

 
A threshold is chosen to be the location where the ratio of the heights of the probability density 
functions of distributions A and B is greater than some value.  This is expressed mathematically as 
choosing a if 
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The probabilities define a likelihood ratio, which is the ratio of the heights of the distributions at a point 
in Figure 2.  For example, the value of β in Figure 2 is set to two.  Thus, at the threshold represented 
by the vertical line r(β), the height of the μA distribution is twice the height of the μB distribution. 
 
The optimal threshold is chosen by balancing the costs and benefits of each outcome along with the 
prior probability of each distribution.  The optimal value of β (see Green and Swets, 1966) in this case 
is 
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The variable k represents the relative benefits of the outcomes shown in Tale 1.  Though k is 
mathematically simple, it is conceptually complex and requires explanation.  The variable k 
represents the relative differences between the values of the technologies in different states of the 
world. The numerator is the difference between the value of adopting A and the value of adopting B 
given that the unknown state of the world is B is better.  The decision maker does not know whether B 
is better, but she can form some estimate of the value of each technology in the case that B is better. 
The denominator is the difference between the value of adopting A and the value of adopting B given 
that the unknown state of the world is A is better.  The implication is that as k increases, a decision 
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maker will require a greater private observation to convince her to adopt the technology.  
 
There is a variety of ways that k can be made large (or small).  Large or small values of k do not 
require huge differences in the technologies.  Rather, extreme values of k require that in one state of 
the world the technologies are fairly similar in value and in one state they are fairly different.  In fact, it 
is easy for k to be extreme when the technologies are very similar in each possible state of the world.  
For example, if in one state of the world the technologies are so similar as to only produce a $1 
difference in value, and in the other state they are even more similar, differing in value by a mere 
penny, then k=100 (or 1/100, depending on which state has a dollar’s difference).  Thus, large and 
small values of k do not suggest any dramatic technical differences; rather, they just suggest how 
relatively costly it is to make a mistake.   
 
As a practical matter, it is absurd to apply this model if the differences are a dollar and a penny.  We 
would expect that in real situations there is some meaningful difference in the relative values in 
different states of the world.  In situations in which the cost of choosing incorrectly is high (i.e., 
benefits are low), and the benefit of choosing correctly is high, we might see some high values of k.  
That is, high-risk, high-return projects represent a class of extreme k decisions that would be 
important, whereas choices differing by dollars and pennies would be a class of extreme k projects 
that would be of little interest.  However, we must emphasize that the value of k gives us no 
information about the relative merits of each technology.  Instead, it tells us the relative merits of 
choosing a technology in different states of the world. 
 
Consider the following example. Recently, a company called SCO filed a patent infringement suit 
against IBM.  SCO alleged that users of IBM Linux should pay licensing fees to SCO, and SCO sent 
licensing contracts to Linux users.  For the sake of the example, assume that if SCO’s claims had 
been upheld in court Linux users would have had to pay $1,000; if the claims were not upheld Linux 
users would have had to pay $0.  On the other hand, users could purchase Microsoft Windows for, 
say, $500, regardless of the outcome of the lawsuit.  If Linux is technology A and Windows is 
technology B, and we assume the gross value (i.e., before paying the licensing fee) of an operating 
system license is $1,000, then benefit(a|μA) = benefit of Linux given that IBM wins the lawsuit = 
$1,000-$0 = $1,000.  Similarly, benefit(b|μA) = benefit of Windows given that IBM wins the lawsuit = 
$1,000-$500, so the denominator is $1,000-$500 = $500. On the other hand, if IBM loses and B is the 
correct choice, then benefit(b|μB) = benefit of Windows, given that IBM loses the lawsuit = $1,000-
$500 = $500, and benefit(a|μB) = $1,000-$1,000 = $0, so the numerator is $500.  This yields a k of 1. 
 
Of course, there is no reason SCO should limit the licensing fee to $1,000.  If they instead charged 
$2,000, then Linux is still better if IBM wins and still worse if IBM loses, but benefit(a|μB) = $1,000-
$2,000 = -$1,000, so the numerator is $1,500.  This yields a k of 3.  On the other hand, if SCO 
charged a fee of $600, Linux is still better if IBM wins and still worse if IBM loses, but benefit(a|μB) = 
$1,000-$600 = $400, so the numerator is $100.  This yields a k of 0.2. 
 
The source of uncertainty in this example is whether IBM will win, which depends in part on facts and 
opinions about the strength of SCO’s case.  Ignoring any technical distinctions between the two 
operating systems, a private signal would be the opinion of a firm’s legal counsel, and the public 
observation would be whether other firms chose Linux or Windows. 
 
Of course, our description simplifies the case, and we chose costs for ease of addition, but this is a 
real situation that is not well explained by traditional theories such as network externality theory or 
social benefit-based herding.  It is reasonable to assume that firms consulted their legal counsels and 
that they attended to the actions of other firms. 
 
Thus far, we have established the decision task of the potential adopter.  The task is relatively 
straightforward.  The potential adopter sets an acceptance threshold based on the relative benefits of 
adoption and rejection, forms an opinion of the technology, and adopts the technology if his opinion is 
higher than the threshold and rejects it otherwise.  The problem is that potential adopters know they 
may be wrong and would like to incorporate better information into their decisions.  One way they can 
do this is by considering the behavior of others (Abrahamson and Rosenkopf, 1997, Fichman, 2000). 
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As noted above, in uncertain environments with sequential choices, potential adopters can increase 
their own information by considering the observed choices of prior potential adopters (Bikhchandani 
et al., 1992, Bikhchandani et al., 1998, Li, 2004, Walden and Browne, 2002)).4  To formalize this idea, 
assume that potential adopters can perfectly identify prior potential adopters’ decisions but cannot 
identify the private information that led to those decisions (as discussed in the assumptions section 
above).  Nor can they observe the benefits accruing to other IT adopters, because those benefits take 
too long to become apparent (Brynjolfsson and Hitt, 1998, Brynjolfsson and Yang, 1997).  Thus, 
potential adopters can make use of prior information if they condition their own estimates of the 
probabilities of A and B on the prior potential adopters’ choices.  Therefore, Pr(μB) becomes 
Pr(μB|prior potential adopters’ IT adoption decisions) and Pr(μA) becomes Pr(μA|prior potential 
adopters’ IT adoption decisions).  In other words, if one potential adopter sees a prior potential 
adopter adopt, then he infers that the prior adopter must have had a sufficiently high opinion of the IT 
to make that choice. 
 
Consider a situation in which each potential adopter faces the same costs and benefits.  Denote 
potential adopter t’s prior beliefs to be Pr(μA)t and Pr(μB)t, which will depend on the sequence of 
adoption decisions that occurred before time t.  Potential adopter t+1 will have prior beliefs denoted 
Pr(μA) t+1 = Pr(μA|Dt, Dt-1, Dt-2, … D1) and Pr(μ) Bt+1 = Pr(μB|Dt, Dt-1, Dt-2, … D1), where Dt is the tth 
potential adopter’s observable decision.  By Bayes’ theorem, it can be shown that 
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Substituting these two results into (2) yields 
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where k is the constant determined by the costs and benefits of each outcome (assumed to be the 
same for each potential adopter), and Pr(μB) and Pr(μA) are the prior probabilities assumed by the first 
potential adopter. 
 
It is important to note that the probability of an observed action, Dt, given a particular distribution, is 
dependent on all prior decisions (such situations have been referred to as “history-dependent” (Mussi, 
2002)).  Define At as the set of all prior decisions so that At = {Dt-1, Dt-2,…D1} for all t>1.  Then (5) can 
be rewritten as 

                                                      
4 It is worth noting that the present work can be distinguished from research that has investigated sequential 
decisions made by the same individual.  Such decisions have been studied in a wide variety of contexts (e.g., 
Busemeyer, 1982, Mussi, 2002, Puterman, 1994, Seale and Rapaport, 1997, Shanteau, 1970, Sullivan et al., 1995).  
In the present research, we are concerned with each of several decision makers who face the same decision. 
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This equation is interesting because the portion in brackets is β1.  Notice further that β2 is the term in 
brackets multiplied by the last term in parentheses, and β3 is the term in brackets multiplied by the 
last two terms in parentheses.  This can be expressed more generally as 
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This means that the decision threshold for any given potential adopter depends on the prior potential 
adopter’s observed decision, and is, in fact, the prior potential adopter’s threshold multiplied by some 
factor dependent upon the prior decision.  We can also unambiguously show the direction of the 
change from (5). 
 
Note that the assumption that each distribution is normal with the same variance implies that β is a 
monotonic function and thus can be inverted.  Inverting the β function gives us the observed value 
that corresponds to each level of the likelihood ratio.   
 
Given the value of r and the decision, it can be seen that the relevant probabilities are 

tA

r

A

r

BtB bdrdrb
tt

)|Pr()()()|Pr(
)()(




 


 (8) 

and 

tA

r

A

r

BtB adrdra
tt

)|Pr()()()|Pr(
)()(




 


. (9) 

Combining this with (5) shows 
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Thus, if potential adopter t chooses b, then potential adopter t+1 has a more lax decision threshold 
than potential adopter t, meaning that potential adopter t+1 is more likely to choose b than potential 
adopter t.  Conversely, if potential adopter t chooses a, then potential adopter t+1 has a more strict 
decision threshold than potential adopter t, meaning that potential adopter t+1 is more likely to 
choose a than potential adopter t. 
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Next, consider a sequence of decisions in which each decision is the same—a in this case.  Then, the 
β function at any decision time t can be written as 



























 





k
Aa

Aa

A

B
t

i tiA

tiB
t )Pr(

)Pr(

),|Pr(

),|Pr(1

1 





 . (12) 

After the first three decisions, this equals 

 

 

 *
1

)(

)(

)(

)(

)(

)(

3

*
1

*
1

*
1

)*
1(

)*
1(

*
1

)*
1(

)*
1(

)(

)(

)(

)(








































































































































































































r

A

r

B

dr

dr

r

A

dr

dr

r

B

dr

dr

dr

dr

r
A

r
B

r
A

r
B

. (13) 

This is a particularly difficult equation to solve because the limits of integration for each successive 
decision are constrained by the r function of the product of all prior decisions.  In general, this can be 
expressed as a highly complex recursive equation. 
 
The variable of interest is the probability of adoption, which is actually two probabilities—Pr(a|μA) and 
Pr(a|μB).  As signal detection theory illustrates, a decision to adopt can be correct or incorrect relative 
to the real state of the world.  The probability of correctly adopting A when A is actually better can be 
represented as 
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As discussed above, in (5), it is straightforward to show how β changes over time, but it is not obvious 
how the probability of adoption changes over time because (14) does not have a closed form solution.  
However, we can graphically examine the question and offer a solution for (14).  The graphical 
examination is shown in Figure 3. 

                                                      
5 Recall that in an earlier footnote we defined the notion μA to mean the text “NORMAL(μA,σ2).”  To avoid confusion, 

we note that here and in the next equation the bar over A  refers to the mean of the distribution, not the fact that the 

observation came from the distribution.  In other words, the random variable μA has mean A . 



 

 
45 Journal of the Association for Information Systems       Vol. 10 Issue 1 pp. 31-62 January 2009 

Walden & Browne/Sequential Adoption Theory 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-4 -2 0 2 4

Observed Value

P
ro

b
ab

il
it

y 
M

as
s

change in threshold from 
t=1 to t=2

2-33
4

r(
βt

=3
)

r(
βt

=4
)

r(
βt

=1
)

r(
βt

=2
)

r(
βt

=5
)

4
5

Figure 3:  Changes in threshold for consecutive adoption decisions 

 
The figure is graphed assuming μA = 1, μB = 0, σ2 = 1, k = 10, Pr(μA) = Pr(μB) = ½, and all potential 
adopters choose to adopt.  It can be seen from the figure that the first adoption decision has a 
tremendous effect on the threshold set by the second potential adopter.  This is due to the fact that k 
was set very high, meaning that the cost for adopting if B were true was high. 
 
Thus, there is an extreme bias toward choosing not to adopt.  The value of r for the first adopter is 2.8.  
Any private opinion exceeding 2.8 is highly unlikely, but given that it did occur, and thus the first 
potential adopter chose to adopt, the second potential adopter received a great deal of information.  
The probability of an observation from the μA distribution exceeding 2.8 is .036.  However, the 
probability of an observation from the μB distribution exceeding 2.8 is only .003.  Thus, the probability 
of an observation coming from the μA distribution conditional on the knowledge that the observation 
was greater than 2.8 is 12 times the probability of an observation being from the μB distribution 
conditional on the 2.8 threshold.  Therefore, a decision to adopt by decision maker t changes the prior 
belief of the t+1 potential adopter significantly. 
 
Notice also that as the threshold decreases, the amount of information in a positive adoption decision 
decreases.  This occurs because the relative amounts of probability mass to the right of the threshold 
are very similar, and thus the ratios of the cumulative density functions are close to one.  For example, 
if the second potential adopter, facing the threshold r(βt=2), chooses to adopt, the updated prior for the 
third potential adopter does not change much.  Specifically, the probability that an observation came 
from the A-is-better distribution conditional on the observation being greater than the threshold is .79, 
but the probability that an observation came from the B-is-better distribution conditional on it 
exceeding the threshold is .42. This ratio of 1.9 is considerably less than the ratio of 12 obtained from 
the first potential adopter’s adoption choice.  
 
It is worth noting that the fact that each subsequent decision has a positive impact on the probability 
of the next adopter making the same decision is the hallmark of herding behavior (Abrahamson, 1991, 
Fichman, 2000, Kauffman and Li, 2003).  Thus, our theory allows for herding even among rational 
adopters if information about the relative merits of two technologies is poor. 
 
A graph of the marginal impacts of successive identical decisions based on Figure 3 is presented in 
Figure 4.  The figure illustrates a positive but declining impact of subsequent decisions on the 
probability of choosing to adopt for both the B-is-better and A-is-better distributions.  Thus, regardless 
of the actual distribution, subsequent observed decisions lead to increased probability of making the 
same decision. 
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Figure 4:  Marginal impacts of successive identical adoption decisions 

 
The probability of making the same decision increases with the number of identical decisions, but it 
increases at a decreasing rate.  Thus, from a theoretical perspective, it is important to ask whether 
the probability of making the same decision as others converges to some value.  In other words, is 
herding absolute, as herding literature often assumes?  Smith and Sørensen (2000) show that under 
certain conditions the probability of making a particular decision does converge.   From an applied 
perspective, it is more interesting to examine the convergence path.  The rate and reliability of the 
convergence path determine how organizations can make use of this theory in the real world.  The 
behavior at n = ∞ is irrelevant to any real world application and, pragmatically, potential adopters will 
probably have trouble incorporating a large number of prior decisions into their own decision (Miller, 
1956).  Thus, two important research questions are: 

Research question 1:  Do the decisions of sequential potential adopters 
converge? 

Research question 2:  What is the convergence path? 

 
Herding is fickle if based on fashion alone, but rational herding based on information aggregation may 
not be.  When one potential adopter decides against a stream of identical decisions, she changes the 
threshold in the opposite direction.  Thus, if potential adopter t had a lax decision criterion and still 
failed to adopt, potential adopter t+1 would utilize a strict decision criterion.  As noted above, with a 
lax decision criterion, a positive adoption decision is not very informative, but a negative adoption 
decision contains a great deal of information.  The magnitude of the change depends on the 
magnitude of the decision criterion.  Based on the fact that subsequent identical decisions quickly 
move the threshold toward a bias for making the same decision, it can be seen that contrary 
decisions have more impact than confirmatory decisions. 6  However, the magnitude of contrary 
decisions is not clear.  Thus, it is useful to consider the impact of a contrary decision on the 
convergence path of sequential decisions.  This yields our third research question. 

Research question 3:  What is the effect of contrary decisions on the 
convergence path? 

 

                                                      
6   It is worth noting the relevance of the present discussion to science and decision-making behavior generally.  A 
single confirmatory observation often makes a great deal of difference in driving a conclusion, but adding additional 
confirmatory observations makes increasingly less difference to the conclusion.  Confirmations quickly lead to 
asymptotic confidence in a conclusion in many situations.  This line of reasoning also explains why science seeks to 
disconfirm conclusions rather than confirm them. 
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Innovations often diffuse through social networks based on strong communication channels 
(Abrahamson and Rosenkopf, 1997, Fichman, 2000, Rogers, 1995, Zmud, 1983).  Thus, it is 
important to investigate the effects of our adoption theory if adopters are in closed groups (e.g., 
industries, geographies, social groups) rather than in a totally open environment in which everyone 
can see everyone else.  Our fourth research question is: 

Research question 4:  What is the effect of groups of potential adopters on the 
number of correct decisions? 

5. Research Design 
Simulation is often used to examine models of technology diffusion (Abrahamson, 1991, Abrahamson 
and Rosenkopf, 1997, Oh and Jeon, 2007) because the complex mathematical modeling has no 
closed form solutions.  Thus, typical derivatives cannot be calculated analytically.  Instead, we specify 
the parameters of the model and solve it many times.  We then change the parameters and repeat 
the process.  When we graph the changes in the simulated behavior for different levels of parameters, 
we offer a graphical representation of the effects of those parameters. 
 
Our purpose with the simulation is to show the implications of the model for various levels of the 
parameters.  As Abrahamson and Rosenkopf observe, “Traditional rate-oriented models of innovation 
diffusion do little to explain the occurrence, extent, and persistence of bandwagons” (Abrahamson 
and Rosenkopf, 1993).  To resolve this issue, these authors used a complicated simulation that 
incorporated additional model parameters.  The advantage of this approach is a more informative 
model, but the drawback is the difficulty in solving the model.  We follow these authors in using 
simulation to solve our model.  This technique requires that we specify the model and then have a 
computer solve it many times under a variety of different assumptions.  We then report the cumulative 
results. 
 
The simulation incorporates both implications and sensitivity.  For example, different technologies will 
surely have different costs and benefits and thus different values of k.  To establish how the model 
changes with these different levels of k, we simulate a wide range of ks in Figure 7 (discussed below).  
By plotting several levels of k on the same graph, we show how the model works at different levels of 
the parameter and develop an understanding of the sensitivity of the model to changes in the 
parameter. 
 
Throughout, we drew the observed values from the A-is-better distribution.  The A-is-better and the B-
is-better distributions were normally distributed with variances of one and means of one and zero, 
respectively.  The results are identical with respect to any scaling that preserves the measure d’ (see 
Green and Swets, 1966).  If d’ increases, then the convergence will be much quicker because the 
confidence with which a value is attributed to a particular distribution will be higher.  The reverse is 
true if d’ decreases.  The priors Pr(μA) and Pr(μB ) were both 0.5, indicating that, in the absence of any 
other information, they were equally likely.  We varied k, the relative cost and benefit, thereby varying 
β.  We note the value of k below each graph. 

6.  Data and Results 

6.1. Convergence 
We begin by addressing our first two research questions, which concern whether the decisions of 
sequential potential adopters converge and the appearance of the convergence path.  The answers 
are not intuitive from the equations and so bear testing.  To answer the first question, we ran a string 
of 1,000 repetitions of 100 decisions.  The results of this simulation are shown in Figure 5. 
 
The figure shows two important characteristics.  First, there is not convergence to the correct decision 
after 100 decisions.  Specifically, 96.4 percent of the 100th potential adopters chose the correct 
distribution.  The second item to notice is the jaggedness of the line, which indicates that even at 100 
decisions, there are still reversals.  For example, 96.3 percent of the 98th potential adopters made the 
correct decision, so in one trial “someone” reversed the prevailing decision at the 99th decision.  Note 
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also that even at the extremes, potential adopters may reverse in the incorrect direction.  Between the 
91st and 92nd decision, 0.3 percent of the potential adopters reversed in the incorrect direction.   
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Figure 5:  Convergence of Decisions, 1,000 samples of 100 decisions, k = 1, d’=1 

 
This suggests that several forces are at work, making convergence a more difficult issue than 
previously believed.  We should be concerned not with absolute convergence, but with the speed of 
convergence.  This depends on the relative costs and benefits of making correct or incorrect 
inferences about the merits of A and B and the discriminability of signals.  The variable k captures 
these costs and the variable d’ captures discriminability.   Varying d’ moves the signal distributions 
either closer together or farther apart.  The units of d’ are standard deviations, so d’ = 1 means the 
distributions are one standard deviation apart.  This is a measure of the uncertainty of the signal.  As 
d’ approaches zero, the ability to discriminate between distributions approaches zero, and as d’ 
approaches infinity, the ability to discriminate approaches infinity.  The effects of different levels of d’ 
on the rate of convergence are reported in Figure 6.  As discrimination improves, decision makers 
more quickly converge on the correct decision because both their own private signals and the inferred 
signals of others are more reliable. 
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Figure 6:  Effect of Discrimination on Convergence in 1,000 samples of 100, k = 2 
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Varying k produces different rates of convergence, as shown in Figure 7.  Note that the observations 
are actually coming from the A-is-better distribution, so the correct decision is a. 
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Figure 7:  Effect of Costs on Convergence in 1,000 samples of 100, d’ = 1 

 
Notice that when k is very high, it is not clear that there is any convergence to the correct decision.  
Large k implies that the difference in benefit between the two technologies when B is the correct 
choice is large relative to the difference in benefit when A is the correct choice.  This means that if B is 
the correct choice, then B is much better than A, but if A is the correct choice there is not much 
difference.  Returning to the Linux licensing example, high k indicates that if IBM wins, there is not 
much difference in cost between Linux and Windows, but if IBM loses the price of Linux will be much 
greater than the price of Windows.  In this situation, even if SCO’s case is weak, potentially adopting 
firms may not be willing to take the risk of adopting Linux.  Note further that with increases in k, many 
potential adopters make incorrect decisions even after viewing 99 prior decisions.  For example, at k 
= 5, the 100th potential adopter is only 78.5 percent likely to make the correct decision and 21.5 
percent likely to make the wrong one.  Even if k is small, we still do not achieve convergence after 
100 decisions. 
 
If the net benefit of choosing A when A is better is greater than the net benefit of choosing B when B is 
better,7 then potential adopters will have a low k, which will lead to a bias toward A.  This is good if A 
is, in fact, the better technology.  However, if B is the better technology, then this situation can lead to 
many incorrect decisions even after additional information is incorporated by decision makers.  This is 
particularly troubling if B is the status quo, because it leads to a bias toward adoption (Abrahamson, 
1991).  If this bias is present, it can help explain why there are so many failed IT implementations.  
Recently, however, perceptions of the benefits of IT in at least some areas of the popular press seem 
to have become more negative (Carr, 2003).  If this is the case, we may experience a period of 
underadoption of technically efficient IT. 
 
We include k=100 to show the limiting behavior.  This level of k is probably rare, but is fairly easy to 
imagine.  One good example is the recent patent case concerning Research In Motion (RIM) Co.’s 
Blackberry (Krazit and Broache 2006).  At some point in the past, RIM faced a decision about what 
technology to use to connect wireless devices to wired networks to deliver email messages from the 
wireless Blackberry.  They chose a technology (A) and later claimed to have developed a workaround 

                                                      
7 This can occur for a variety of reasons.  Ceteris paribus, if the gross benefit of choosing A when A is better 
increases, then k decreases.  Ceteris paribus, if the gross benefit of choosing B when A is better is very small or 
negative, then k decreases.  Also, if the benefit of choosing A and the benefit of choosing B are very close when B is 
better, then k decreases.  Put another way, if choosing B when A is correct is a significant mistake, but choosing A 
when B is correct is a minor mistake, then k is small.  
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(technology B) (Hamblin, 2006).  The k they faced can be decomposed based on a state of the world 
in which technology A may or may not have already been patented.  We assume that if technology A 
had not been patented, it is slightly more efficient and the better choice; thus, the benefit of a|A is 
some number and the benefit of b|A is a similar but smaller number because we assume that A is 
somewhat more efficient.  On the other hand, if A had been patented and B had not been, then B is 
the better choice by far.  This means the benefit of b|B is much greater than the benefit of a|B.  In this 
particular instance, technology A had been patented and RIM was forced to make a settlement 
payment of $612.5 million to the owner of technology A (Krazit and Broache, 2006).  We can easily 
imagine that from a technical perspective A may have only been a million dollars better, which would 
give a k of 611.5 for this particular technology.  This situation also occurred when Microsoft settled 
with Eolas for $521 million for using patented technology in Internet Explorer Plug-ins, and when 
Microsoft settled with Intertrust for $440 million for choosing the wrong technology for digital rights 
management.  This patent issue is present any time a firm makes choices about a technology to 
include in a product.  The point is that in these cases k is large and there are very few observable 
differences between technologies.  The private signal represents the quality of the patent search 
performed prior to implementation. 
 
It is useful to pause here and discuss how these results are different from Bikhchandani et al. (1992).  
In the former paper decision makers could converge to either the correct or incorrect decision.  
However, in our formulation of the model decision makers seem to be converging to the correct 
decision almost all the time.  This is because each new decision lets new information enter the 
system, as shown in Figure 4.  Thus, even false starts are overcome with time, as anticipated by 
Bikhchandani, et al. (1998).  Even when many people choose the wrong distribution, eventually 
someone receives a signal high enough to overcome it and choose the correct distribution.  However, 
if the costs (i.e., k) are high enough, the probability of someone receiving a high enough signal is 
extraordinarily low. For example, at k=100, the probability of receiving a signal extreme enough to 
make someone choose the correct distribution is less than one in two million. 
 
Based on the results of the first simulation, a natural question to ask is whether 100 decisions are 
enough to achieve convergence to the correct decision.  Perhaps more repetitions are necessary.  
More to the point, it is not clear whether the threshold moves faster than the probability needed to 
overcome it.  To test this question, we ran simulations of 1,000,000 decisions, as shown in Figure 8.  
However, even at 1,000,000 decisions potential adopters make incorrect decisions.  At the same time, 
the number of correct decisions at 100,000 decisions is different from the number at 1,000,000, 
suggesting that even after 100,000 observations potential adopters may reverse if they receive a 
private signal that is sufficiently extreme. 
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Figure 8:  Convergence of Decisions, 1,000 samples of 1,000,000 decisions, k = 5, d’=1 
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We have kept k constant across all potential adopters in a particular simulation.  This implies that the 
costs and benefits for every potential adopter are similar.  It is worth noting, though, that this might not 
always be the case.  For example, in the SCO vs. RIM case discussed above, after SCO filed its case, 
Hewlett-Packard (HP) indemnified all its Linux users against SCO licensing litigation.  In other words, 
HP said it would pay the licensing fee if SCO won the case.  This would clearly change k by making it 
smaller.  Similarly, when SCO filed the lawsuit, it increased k.  Therefore, we explore the impacts of 
different ks in Figure 9.  We specify k = 5 for the first 10 decision makers and then k = 100 for the 
remainder of the decision makers. 
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Figure 9:  The effect of a change in k at the 11th decision in 1,000 samples of 100, d’=1 

 
The graph shows that increasing k increases the threshold and thereby reduces the probability of 
making the correct adoption decision for the 11th and following adopters.  However, it does not reduce 
the probability to near zero as it did when k was fixed at 100 for all decision makers.  Moreover, the 
probability of adopting continues to increase after the 11th adopter, whereas it remained constant 
when all adopters had a k of 100.  This occurs because the first ten adopters had a threshold 
sufficiently low to allow some information into the system.  Though the 11th adopter is faced with a 
very high k, he also has enough information about other adopters’ signals to judge the relative 
probabilities of A and B being the better choice, so he is relatively confident that adopting technology 
A is a good idea even if his own cost of a mistake is high. 
 
This helps explain why, for example, firms give away trial copies and why it is so important for 
vendors to work closely with partners when first introducing a new technology.  With a new technology, 
potential adopters may have a high value of k because the cost of adopting A if B is in fact better is 
high (a|μB).  If this is the case, potential adopters are likely not to purchase the technology and no 
information about it will enter the system.  This, in turn, will cause more potential adopters to pass on 
the technology.  However, if the vendor of a technology can somehow mitigate the downside risk for a 
few initial firms (either by giving away trial copies or by working closely with the initial adopters), then 
it may be able to demonstrate that A is better and overcome future adopters’ concerns (particularly 
a|μB).  This is precisely the kind of change in k shown above.  Comparing k=100 in Figure 9 and 
Figure 7 shows the benefit to the vendor of mitigating the downside risk. 

6.2. Impact of Contrary Decisions 
One of the implications of information cascade theory is that because no new information enters the 
system, decision makers never become particularly confident in their decisions. This property is 
referred to as “fragility” (Bikhchandani et al., 1992). The concept of fragility is, to some degree, an 
artifact of the Bikhchandani et al. (1992) model.  With binary signals, the magnitude of the signal is 
fixed, and so it is easy to establish a threshold beyond which the signal cannot have any impact.  
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However, in our sequential adoption theory model, with continuous signals potential adopters may 
receive extreme private observations that result in decisions that are contrary to the prevailing 
cascade.  Notice this is subtly different from the Bikhchandani et al. (1992) type of fragility because it 
is endogenous to the model.  Bikhchandani et al. (1992) require some input beyond the model such 
as a change in preferences or more informed agents.  In our model, fragility can result from the luck 
of the draw based on what information decision makers use and how they interpret that information. 
Thus, there may be another type of fragility, and we investigate this fragility in our third research 
question concerning the impact of contrary decisions on the convergence path. 
 
We looked at this effect by introducing a contradictory decision at the 25th decision.  Specifically, 
whatever the 24th potential adopter did, the 25th did the opposite.8  The results of this simulation are 
displayed in Figure 10. 

 

-250%

-200%

-150%

-100%

-50%

0%

50%

100%

1 11 21 31 41 51 61 71 81 91

Decision Number

P
er

ce
n

t 
m

ak
in

g
 c

o

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

r(
β

)
T

h
re

sh
o

ld
in

st
an

d
ar

d
 d

ev
ia

ti
o

n
s

percent making 
correct decision

Mean r (β) 
threshold
in standard 
deviations

P
er

ce
n

t 
m

ak
in

g
 

co
rr

ec
t 

d
ec

is
io

n

r(
β

) 
T

h
re

sh
o

ld
 i

n
  

 
st

an
d

ar
d

 d
ev

ia
ti

o
n

s
 

Figure 10:  Effects of Contradictory Information in 1,000 samples of 100, k = 1, d’ = 1 

 
The figure shows that the impact of contradictory information is tremendous.  The percentage of 
correct decisions dropped from 93 percent to 59 percent from the 24th to the 26th potential adopter.9 
The mean threshold changed from 1.60 to 0.78.  This is important, considering that the first potential 
adopter was 70 percent likely to be correct and had a threshold of 0.50.  This means that the 
contradictory information of the 25th potential adopter more than reset the information in the string of 
decisions.  This occurred because the 26th potential adopter knew that the 25th potential adopter was 
aware of all of the prior adoption decisions and had a threshold value larger in absolute value than 
any prior potential adopter (1.62 on average).  Thus, for the 25th potential adopter to reverse the 
cascade, he must have received a very extreme private observation.  Specifically, an observation of 
less than –1.62 is 12 times as likely to have come from the B-is-better distribution as from the A-is-
better distribution.  Therefore, the 26th potential adopter is much less likely to follow the first 23 
decisions than was the 24th potential adopter. 

 
A common sense explanation may help illustrate our point. At the 24th decision, there are three 
possible states in which the system can exist: a correct cascade, an incorrect cascade, or no cascade 
at all.  If the 24th decision maker is in a correct cascade and the 25th decision maker chooses 

                                                      
8 We use the 25th decision because in both the 24th and 25th decisions 92.9% of the individuals make the same 
choice; thus, by using the 25th decision, we control for extreme observations in the 24th decision. 
9 Note that the probability that the 25th decision maker was correct was 7 percent and the probability that he was 
incorrect was approximately 93 percent because he was forced to behave in an opposite manner to the 24th decision 
maker.  Thus, the important difference is between the 24th and 26th decision makers. 
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incorrectly, then the 26th decision maker knows that the 25th decision maker must have had an 
observation extreme enough to outweigh all of the prior decisions (although he does not know at this 
point that the 25th decision maker’s choice was the opposite of what it should have been), so the 26th 
decision maker sets his acceptance threshold a little higher than that of the 1st decision maker.  
However, the 26th decision maker will probably receive a signal that favors the correct answer, so 
even with the threshold slightly higher, the 26th decision maker has a reasonable chance of making 
the correct decision.  So the correct cascade starts again (although with slightly lower probability than 
it would have started with in the first place). 
 
On the other hand, if the 24th decision maker is in an incorrect cascade and the 25th chooses correctly, 
then the 26th decision maker sets his acceptance threshold a little lower.  This means he is more likely 
to make the right decision than the 1st decision maker.  Thus, contrary information is very damaging to 
incorrect cascades.10 
 
If the 24th person is not in a cascade, and the 25th person makes a decision opposite to that of the 
24th, then the 26th decision maker has little information from the string of decisions that have come 
before.  Hence, the 26th decision maker puts a great deal of weight on his private signal, which is 
likely to be correct, and therefore probably starts a correct cascade. 
 
The point is that extreme observations are very harmful to incorrect cascades, but not very damaging 
to correct cascades or non-cascades.  This explains why we see an upward sloping curve on the 
probability of being correct.  As more decisions are made, extreme observations appear, which are 
quite likely to reverse incorrect cascades and do little damage to correct cascades.  This means that 
the variance of the signal has a tendency to eventually bring most strings of adoptions toward the 
correct decision.  Moreover, this is an internal property of the model.  It does not require an 
exogenous change. By comparison, in the Bikhchandani et al. (1992) model there is a string of 
decisions that rapidly converges to some probability less than one and greater than one half.  On the 
other hand, the probability of being correct in our model tends to converge to one (for moderate 
values of k and d’).  This is an endogenous property of the model, which tends to eliminate incorrect 
cascades. 

6.3. Distribution of Potential Adopters 
The impact of groups of potential adopters is investigated by our fourth research question.  It is 
particularly useful to consider group decision making from the perspective of the decision motivator.  
In the case of a novel technology, the decision motivator is the creator of that technology.  From this 
perspective, the important question concerns the distribution of possible outcomes.  We examined 
this issue by separating 100 potential adopters into groups and repeating the simulations, each with 
1,000 samples.  A group is a set of potential adopters who can observe one another’s actions.  For 
example, if the group size is 10, then the second potential adopter can observe the action of the first, 
and the 10th can observe the actions of the first through the ninth.  However, the 11th (the first adopter 
in a new group of 10) can observe no other potential adopter, but the 12th can observe the 11th and 
the 20th can observe the 11th through 19th.  We are interested in the aggregate behavior of 100 
decision makers if they are able to observe certain other potential adopters.  A histogram of the 
decisions is presented in Panel 1.  Each histogram shows the outcomes of the group’s or groups’ 
decisions for 1,000 simulations, in which adoptions are sequential across groups. 
 
The panel indicates that introducing the sequential effects causes the distribution of decisions to 
become bi-modal as the group size of potential adopters increases.  Increasing the number of 
potential adopters participating in a sequence increases the mean of the distribution, but it also 
increases the chance of having all potential adopters make an incorrect decision.  Thus, the value to 
a technology vendor of introducing a technology choice to a single large group or many small groups 
depends upon the risk propensity of the vendor.11  

                                                      
10 It is important to note that we cannot say whether the probability of receiving a sufficiently extreme value decreases 
faster than the threshold increases.  In other words, the extremeness of an observation needed to reverse the 
cascade increases with each decision.  Given the results of our investigation of k, we expect this depends on the 
value of k. 
11  The benefit to a particular event is b = Σa prob(a)*U(a), where a is a specific outcome and U is a function 
describing the individual adopter’s utility for that outcome.  The second derivative of U reveals the adopter’s risk 
attitude.  If one is risk averse then U’’ < 0, so that doubling the outcome a more than doubles the utility.  Organizing 
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Panel 1:  Distributions of decisions with different group sizes 

 
When a vendor takes on a project with random payoffs, the utility of those payoffs may not change at 
the same rate as the monetary value of the payoff.  If the utility of a payoff increases more slowly than 
the monetary value of a payoff, then the vendor is risk averse.  Intuitively, doubling a payoff does not 
always double the utility of a payoff.  Therefore, when any decision maker chooses among potential 
payoffs that have random outcomes, the decision maker must balance the risk she is taking against 
the expected utility of the outcomes.  To put it another way, the decision maker must receive some 
premium for bearing increased risk.  Figure 11 shows that while larger group sizes lead to larger 
expected numbers of adopters, they also lead to larger standard errors.  In the most extreme case, 
when everyone adopts as a group, a vendor faces the risk of having no adoptions at all in exchange 
for a high expected value.  At the other end of the spectrum, when everyone decides independently, 
vendors can expect a middling number of adoptions with very high certainty.  A firm that is very risk 
averse would prefer to have a small expected value with high probability, while a firm that is risk 
seeking (or risk neutral) would prefer a higher expected number of adoptions even if there is a chance 
of complete failure. 
 
One important consideration with small groups is that they might share their signals with one another, 
even if they are otherwise competitors.  Sharing signals in this way would make each group more 
likely to choose correctly.  Such a situation would skew the results in Panel 1 to the right, and the 
results would be more skewed the larger the group size. 

                                                                                                                                                                     
adopters into different sized groups changes prob(a) as shown in the panel (which are frequency plots of prob(a)).  
Obviously, changing prob(a) changes the overall benefit, but the type of change depends on the nature of the 
individual’s utility U.  If one is risk averse, then the increased probability of very poor outcomes associated with large 
groups may outweigh the increased probability of very good outcomes, leading one to prefer small groups.  However, 
if one is risk neutral, then the increased expected value of large groups will lead one to prefer large groups.  Thus, the 
optimal group size from the decision motivator’s point of view depends on his or her attitude toward risk. 
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Figure 11:  Expected value and standard deviation of adoption by group size 

7.  Discussion 
In this paper we have developed and tested a model of observational learning to explain technology 
adoption decisions.  Previous IS researchers have explained IT adoption in terms of costs and 
benefits, network externalities, and social benefit-based herding.  Our observational learning 
explanation uses a modified version of the information cascade model of Bikhchandani et al. (1992).  
While there are many papers that apply the other stated reasons for adoption, there are few (see, e.g., 
Walden and Browne, 2008) that make use of the information cascades model.  We believe this is due 
in part to the fact that the information cascades model is designed for theoretical elegance but 
requires non-trivial adjustments to be useful for developing practical explanations.  We have made 
those adjustments and both derived new insights and presented a model that can be used as a 
building block for developing a more unified view of adoption. 
 
There are several important implications for adoption.  Decision makers tend to follow one another 
(herd), but they tend to do so in the correct direction.  The probability of being correct increases as 
more decisions are made rather than settling to some steady state.  Our simulations suggest two 
reasons for this result.  First, we allow for extreme observations in the signals.  Whereas others have 
studied simple binary signals, we allow for signals to come from a normal distribution, and thus 
decision makers are not limited to simply preferring one option or the other.  Rather, they can prefer 
one option a lot or a little or any amount.  Second, when a decision maker reverses the prevailing 
cascade, it more than resets the prior beliefs of the next decision maker.  This is particularly 
damaging for incorrect cascades.  Thus, over time the possibility of extreme signals has a greater 
tendency to reverse incorrect cascades than to reverse correct cascades. However, the behavior 
depends on the costs and benefits.  When the relative costs and benefits of bad and good choices as 
embodied in the parameter k become extreme, decision makers do not necessarily converge to a 
correct cascade. Convergence to a high probability of correct decisions also tends to be fairly slow, 
and extreme values of k slow down the convergence even more.  This means that it may take some 
time for a decision maker to experience a signal sufficiently extreme to reverse an incorrect cascade. 
 
This result has implications for the behavior of a population of adopters that is divided into groups that 
can observe their internal members but not external members.  If adopters are divided into large 
groups, then most of the time almost all of them will make the correct decision (however, although 
rare, occasionally almost all of them will make the incorrect decision).  On the other hand, if adopters 
are divided into small groups, a few decision makers will make the wrong decision, but most will make 
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the correct decision.  The mean chance of being correct is higher for large groups, but the variance is 
also higher. 
 
Because adoption of IT is often quite complex, it is practically and scientifically useful to develop 
numerous perspectives on the phenomenon. Decision makers in the business world likely consider 
several different perspectives when making adoption decisions.  At some point, most decision makers 
probably ask questions such as, “Does this technology meet our requirements?,” “Can we afford it?,” 
and “Will my superiors and peers see this as a good decision?”  To these questions we add a 
fundamental question from observational learning: “Do other adopters know something we don’t 
know?”   
 
This last question is extraordinarily important because of the role of observational learning in human 
behavior and decision making. As noted, people generally learn by observing the behaviors of others, 
making this mechanism one of the most powerful decision tools available. The observational learning 
perspective is particularly important because the wisdom of considering others’ actions is often 
questioned.  Although blindly following others’ behavior without due consideration of one’s own signal 
is obviously foolish (Tingling and Parent, 2003), the observational learning perspective suggests that 
much is to be gained by incorporating the decisions of prior similarly-situated decision makers into 
one’s own decision. In fact, some research shows that the real problem is not that decision makers 
consider the actions of others, but that decision makers fail to weigh the actions of others heavily 
enough (Yaniv, 2004).  
 
Our model offers many implications for research and practice, as well as directions for future research.  
For example, we have assumed that potential adopters can observe some characteristics of the IT 
that hint at its nature (adopters’ private observations).  However, we have not investigated those 
characteristics.  Although this allows the model to be generalized to a number of useful theories, it is 
also important to consider what characteristics potential adopters evaluate in a technology.  Is ease of 
use or complexity or network size important, or are there other factors?  Are these indicators different 
across different technologies?  Are some better indicators than others?  There are various theories 
that are relevant to this issue and that could be incorporated into sequential adoption theory. 
 
For example, it is important to ask whether everyone observes the same factors.  Currently, we 
assume that the signal is a function both of the data and the observer, but it can be useful to separate 
these two concepts.  We would expect that the value of others’ actions would increase if the others 
had observed different characteristics because it would allow for better discrimination.  However, this 
depends on whether and how well different characteristics predict the same outcome. 
 
Another example concerns network effects.  It would be straightforward, if perhaps tedious, to 
incorporate network effects into the model by allowing the benefits and costs of the decision (i.e., the 
constant k) to depend on network size.  Of course, one could include other variables of interest in the 
relative costs. 
 
In our model we held k (the relative costs and benefits) fixed and inferred the information from the 
decision.  One could also hold the information content constant and infer k or, more specifically, the 
determinants of the specific elements of k.  Of course, one could also infer both k and the information.  
Moreover, one could apply econometric techniques to estimate the values of the parameters 
empirically. 
 
This raises the point that k consists of four elements.  It is important for adopters to recognize this and 
incorporate estimates of each of these four components into their decision making.  Not only will this 
improve decision making, but it can also aid decision makers in classifying where problems might 
emerge.  This is not a new result, but we believe it is worth reiterating. 
 
It is also important to understand how potential adopters assess the benefits for the different 
outcomes in Table 1.  There may be systematic biases that potential adopters introduce into their 
judgments of benefits.  IT adopters in particular may place more negative value on failing to adopt a 
good technology than is warranted (Hitt and Frei, 1998).  It is easy to envision this bias as a partial 
explanation for the dotcom boom of the late 1990s. 
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Anecdotal evidence in business is also available for the observational learning perspective.  On the 
back cover of the July 26, 2004 issue of Forbes magazine an advertisement for Oracle’s E-Business 
Suite appeared.  The ad read, “E*Trade Financial Runs The Oracle E-Business Suite.  The Best 
Companies Run Oracle Applications.”  Oracle also has another ad using 1-800-Flowers, and recently 
SAS has offered a similar advertisement.  Several explanations are available that may explain the 
use of these types of ads.  For example, the cost-benefit framework is present. People looking for an 
inexpensive video game are not likely to buy Oracle E-Business Suite, because it neither does what 
they want nor fits their budget.  Similarly, this ad signals an adoption that may implicate network 
effects.  The ad might also encourage social benefit-based herding, or be viewed as a celebrity 
endorsement. 
 
However, we believe that the best explanation for the goal of these ads is observational learning.  
Decision makers in other companies see that 1-800-Flowers has adopted the Oracle product and 
infer that 1-800-Flowers must have thought that adoption was a good decision.  Thus, they 
incorporate the information contained in that decision into their own decision making.  If network 
effects were the main driver, the ad would have been improved by listing many adopters rather than 
just one.  Similarly, 1-800-Flowers is not large enough or prominent enough to engender wide social 
benefit-based herding. Being like 1-800-Flowers will not make regulators, customers, and vendors 
treat a company better, nor will it make others view a company in a more flattering light.  (Being like 
General Electric or Walt Disney might accomplish these things, but not 1-800-Flowers.)  We do not 
completely discount other possible explanations for these ads, as we note above, but we argue that 
observational learning is a strong potential explanation.  
 
Our results also show that imitation in adoption decisions can be incorrect.  Thus, we answer 
Abrahamson’s (1991) call to investigate the diffusion of technically inefficient technologies and the 
rejection of technically efficient technologies.  However, both incorrect and correct fads can be 
reversed by a sufficiently extreme private signal.  Thus, the beginning and end of a fad are preceded 
by unanticipated behavior of a pioneering decision maker. 
 
We noted earlier that in most cases decisions to adopt a particular technology or to not adopt 
(maintain the status quo) are not irreversible (Assumption #6).  Relaxing this assumption in our model 
can lead to numerous additional research questions.  A model could be designed in which, rather than 
specifying discrete decisions, individual decision makers are characterized by hazard functions that 
specify their probability of adopting in a given period of time.  Observational learning would occur by 
allowing these hazard functions to be functions of other decision makers’ observed adoption 
decisions.  Any time one decision maker adopted, the probability of other decision makers adopting 
over a given increment of time would increase.  For increments of time when no one adopted, the 
probability of other decision makers adopting over a given increment of time would decrease.  Such 
an extension could be very valuable for exploring questions of when adoption occurs and questions 
about the costs of waiting.  Moreover, private signals might become much more important in the 
beginning stages of adoption, which would probably carry on to future stages.  We are also unsure 
how reversibility would impact the distributions of groups of adopters.  This is clearly a limitation of the 
current work that would be worthwhile to investigate further. 
 
Another important finding is that the introduction of groups of potential adopters makes the distribution 
of decisions bi-modal.  These results (shown in Panel 1) are consistent with findings in behavioral 
decision making research.  Groups often make better decisions than individuals due to increased 
discussion and differing points of view.  This is consistent with the higher means of correct decisions 
by groups in Panel 1.  However, groups also are more likely to make extreme decisions, both good 
and bad, due to phenomena such as group polarization, in which the dominant view in the group is 
adopted and then rationalized and justified by the group members (El-Shinnawy and Vinze, 1998, 
Isenberg, 1986, Lamm, 1988).  This group rationalization process can lead to both good decisions 
(for example, groups agreeing to high levels of charitable giving (Muehleman et al., 1976)) and 
sometimes to extremely bad decisions (as, for example, in groupthink decisions and mob violence). 
 
As shown in Panel 1, when there are many small social groups that are essentially independent, it is 
very unlikely that all the groups will make the same correct (or incorrect) decision.  Instead, some 
groups will adopt a particular IT and some groups will not, subject largely to random events that gave 
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the first adopters in that group a strong positive (or strong negative) signal. This could explain the 
resilience of technologies that clearly do not perform as well as rivals.  Absent illegal behavior or 
overwhelming incentives, local preferences and random events generally prevent a single technology 
from dominating all others when numerous independent groups are operating in the environment.  
This may also explain why Oracle ran its ads using several different companies.  E*Trade is a 
financial services firm, while 1-800-Flowers is a retail firm.  Thus, each ad targets a different group. 
 
Our model also suggests another possible reason that each Oracle ad targets a different group.  A 
factor that is important when incorporating the decisions of others into a person’s own decision is how 
similar that person is to the others.  For example, ERP systems have generally worked well for 
manufacturing firms but have been less effective for services firms.  We have assumed that the 
correct choice is perfectly correlated across firms in our simulations, but our model allows one to 
change the correct choice to be imperfectly correlated.  In other words, if technology A is the right 
choice for company 1, then it is possible to model technology A as the correct choice for company 2 
only 90 percent (or 80 percent or 73.5 percent) of the time.  The important point is that none of the 
other research perspectives allows us to examine such a question, though it is clearly relevant to 
actual practice.  Thus, we can ask questions with our model that have not yet been posed by IS 
researchers. 
 
In sum, sequential adoption theory offers an important explanation of the behavior of sequential, 
similarly-situated potential adopters using a rigorous mathematical foundation based on established 
theory.  Our theory offers both researchers and practitioners a valuable tool for understanding 
sequential adoption of technologies and other artifacts. 
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APPENDIX 
 
Below is the pseudo code for the simulation.  The actual SAS code is available upon request. 
 

1. Define k, priors prob(μA)= prob(μB)=0.5, σ2=1, A  and B  => d’. 

2. Calculate β = k*( prob(μB)/ prob(μA)). 

3. Draw a signal from a normal distribution with appropriate mean and variance. 

4. Calculate the threshold as 
)(2

2)ln( 222

BA

ABr






 . 

5. If signal > threshold then decision = A otherwise decision = B. 

6. Calculate new β = old β *prob(decision| μB)/ prob(decision| μA) 

7. Repeat 3-6 100 times 

8. Repeat 1-7 1,000 times 
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