

Volume 11 Issue 11/12

Jo
ur

na
l o

f t
he

 A
ss

oc
ia

tio
n

fo
r I

nf
or

m
at

io
n

Special Issue

Abstract

Thomas A. Alspaugh
Georgetown University
thomas.alspaugh@acm.org

Walt Scacchi
University of California, Irvine
wscacchi@ics.uci.edu

Hazeline U. Asuncion
University of Washington, Bothell
hazeline@u.washington.edu

The prevailing approach to free/open source software and licenses has been that each system is developed,
distributed, and used under the terms of a single license. But it is increasingly common for information systems
and other software to be composed with components from a variety of sources, and with a diversity of licenses.
This may result in possible license conflicts and organizational liability for failure to fulfill license obligations.
Research and practice to date have not kept up with this sea-change in software licensing arising from
free/open source software development. System consumers and users consequently rely on ad hoc heuristics
(or costly legal advice) to determine which license rights and obligations are in effect, often with less than
optimal results; consulting services are offered to identify unknowing unauthorized use of licensed software in
information systems; and researchers have shown how the choice of a (single) specific license for a product
affects project success and system adoption. Legal scholars have examined how pairs of software licenses
conflict but only in simple contexts. We present an approach for understanding and modeling software
licenses, as well as for analyzing conflicts among groups of licenses in realistic system contexts, and for guiding
the acquisition, integration, or development of systems with free/open source components in such an
environment. This work is based on an empirical analysis of representative software licenses and of
heterogeneously-licensed systems. Our approach provides guidance for achieving a “best-of-breed”
component strategy while obtaining desired license rights in exchange for acceptable obligations.

Keywords: Open source software, software licenses, case study, semantic modeling, system architecture,
design theory

Volume 11, Special Issue, pp. 730-755, November 2010

Software Licenses in Context: The Challenge of
Heterogeneously-Licensed Systems

* Michael Wade and Kevin Crowston were the accepting senior editors. This article was submitted on October
23, 2009 and went through two revisions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301382432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010 731

Software Licenses in Context: The Challenge of
Heterogeneously-Licensed Systems

The hallmark of Free/Open Source Software (FOSS) is that the source code is available for remote
access, open to study and modification, and available for redistribution to others with few constraints,
except the rights and obligations that insure these freedoms. FOSS sometimes adds or removes
similar freedoms or copyright privileges depending on which FOSS copyright and end-user license
agreement is associated with a particular FOSS code base (Fontana et al., 2008; Rosen, 2005).
Some licenses for “free software” such as the group of GNU General Public License (GPL) and
Lesser General Public License (LGPL) versions (Free Software Foundation, 1991, 1999, 2007a,
2007b, 2007c) are well known and widely used, while others are obscure and sometimes specific to a
particular software vendor. The Open Source Initiative (OSI, 2009), whose web portal gives
information on many facets of FOSS, especially FOSS licenses, currently certifies more than 50
FOSS licenses, thus indicating a diverse ecology of freedoms, copying rights, and other license
obligations and constraints.

1. Introduction

Some FOSS licenses overlap or subsume one another’s rights, while others present potential
conflicts when comparing one license to another. Consequently, FOSS developers generally choose a
single license to apply to their FOSS project, as part of their governance regime (de Laat, 2007). The
choice of FOSS license to apply has been a defining characteristic of most FOSS projects, where the
license chosen may connote not only an intellectual property sharing regime, but also a statement
about beliefs, values, and norms expected to be shared by FOSS project developers, as well as
affiliation within a larger social movement (Elliott and Scacchi, 2003, 2008, Roberts et al., 2006).
However, a single license may not be sufficient to provide “copyleft” access to non-software specific
data objects, representations, processing rules, or visual renderings. Similarly, with ever more FOSS
components becoming available with different FOSS licenses — and some now even offered under
multiple licenses1

 — and given that different versions of a particular software component may have
different licenses or license constraints, software and information system developers face a growing
challenge: to determine how multiple software licenses interact, whether during system design (at
“design time”), while compiling and linking source code to produce an executable program/binary (at
“build time”), or when installing and running a newly acquired/downloaded version of software from a
FOSS project or other provider that may need to interoperate with other software programs (at “run
time”).

The problem we address in this article is that of understanding and analyzing what happens when
software systems are developed from FOSS or proprietary components that are not all under the
same license. What license applies to the resulting system? What rights or obligations apply? How
can one determine which license constraints match, subsume, or conflict with one another? We refer
to this as the challenge of heterogeneously-licensed systems (HLSs), and we find that a growing
number of firms and government agencies must increasingly address this challenge. Consider the
following two examples: one short, and the second more detailed.

First, when Bank of America took over operation of the Merrill Lynch (ML) trading firm in 2008, ML
was known as a leading developer of in-house financial and trading systems incorporating FOSS
components. However, the bank now had to rapidly determine whether this corporate takeover
constituted a “software distribution” by ML, as well as what consequences might arise from integrating
the ML systems with its own (Asay, 2008), since this would likely create an HLS.

Second, Unity3D is an interactive environment for modeling and animating 3D graphic objects and
object compositions within computer games or virtual worlds. Unity3D is an HLS, as seen in its
software copyright license agreement that lists 18 externally produced components or groups of
components, apparently distributed under eleven distinct licenses (Unity Technologies, 2009). So

1 MySQL (2006) is offered under a dual-license choice of GPL (any version) or a proprietary license, and Mozilla now offers a tri-
license choice of the Mozilla Public License (MPL) version 1.1 or later, GNU General Public License version 2.0 or later, or GNU
Lesser General Public License version 2.1 or later, for its core software offerings (Mozilla, 2009).

Alspaugh et al./Software Licenses in Context

732 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

what “license” rights and obligations apply to this software? Is it the concatenation, union, or
intersection of the license constraints found in each of the identified license copyrights? Do any of
these license constraints conflict with one another (e.g. stipulating no redistribution of software versus
ensuring the right to software redistribution)? How does the architectural configuration of the software
components associated with a given license affect which component licenses interact, and which do
not? Understanding the rights and obligations incorporated into the Unity3D system license requires
understanding and analyzing the corresponding terms and conditions of each of these licenses, and
potentially understanding the architecture in which Unity3D incorporates them. This is the burden
facing software consumers, and it appears to be one that is growing. It is also a burden facing
software integrators, as they must ensure they can give appropriate rights (and impose acceptable
obligations) for their consumers.

The current state of the art of research in the fields of law and FOSS does not address these
concerns, as we will show in more detail in the Related Research section. Legal researchers have
examined interactions between pairs of FOSS licenses in the abstract, but not in the context of real
systems and the architectural components and configurations found there. FOSS research in this
area has concentrated on recovering or confirming the license of an individual homogeneously-
licensed software component, with only one group (other than ourselves) examining the application of
FOSS licenses in the context of actual HLSs, and then only of pairs of licenses applied in a small
fixed number of architectural contexts. None of these approaches provide answers to the questions
posed above.

We believe these answers can be determined in part through systematic empirical means that rely on
analysis of (a) the interpretation of software license terms and conditions within different FOSS
licenses, along with (b) the configuration of software components (and licenses) that denote the
architectural composition of the resulting system.2

 In particular, we argue that (b) requires an open
source model of the architectural configuration of a system in which each component has an open
(published) interface. We call such a configurational model an open architecture (OA) (Oreizy, 2000).
In current practice, an OA is not available to external developers or users when proprietary software
components/systems are included, as is the case for Unity3D. We find that the size and complexity of
the HLSs we have examined, combined with increasingly large numbers of licenses involved, outstrip
the ability of developers to manually determine the rights and obligations for the system and to
identify potential and actual conflicts. Our research has thus been drawn to models and approaches
that support automatic analysis, calculations, and guidance for licensing challenges, and that can be
integrated into the processes and tools that HLS developers already use.

Our efforts are directed at theory building, since there is no existing theory for understanding HLSs
and analyzing them to determine overall license rights, obligations, and conflicts. As such, we are
developing a theory-based, empirically verified model as an operational theory for how to understand
and analyze FOSS licenses in ways that determine where HLS architectures have conflicting rights
and obligations, as well as how these architectures may be modified to remove the conflicts. Because
existing theory, as outlined under Related Research, is not sufficient to explain or analyze the license
interactions through system architecture that arise in HLSs, we extend it through a design science
approach (Hevner et al., 2004), extending the existing “kernel” theories through a grounded-theory
qualitative analysis of representative licenses to identify missing constructs (Glaser and Strauss,
1967), and validating the extended theory by embodying it in automated development tools and
applying it in current-day contexts. The tools provide a proof of concept and starting point for a
production-quality capability for analyzing, guiding, and verifying license governance and compliance
of HLSs, and are discussed elsewhere (Alspaugh et al., 2009a). This capability supports the needs of
large enterprises that increasingly develop complex information systems using or reusing existing
FOSS systems/components rather than developing each system from a blank slate.

2 Our efforts are not intended to be construed as offering legal advice, but our approach is adaptable to different legal framings or
interpretations, which are beyond the scope of this paper. Thus, our approach does not claim to offer complete or definitive answers
according to an existing legal interpretation.

733 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

Alspaugh et al./Software Licenses in Context

The goal of this work is to develop an extensible, automatable theory for analyzing the obligations
and rights of software licenses in the kinds of complex systems now seen in enterprises. The theory is
based on the legal foundations of licenses and contracts, and accounts for the range of current and
future license provisions. It makes it a practical possibility to produce systems of best-of-breed
components, whether FOSS or proprietary and under whatever licenses, while addressing not only
the classical requirements of functionality, reliability, testability, etc. but also the licensing-oriented
requirements that arise for HLSs. These include production of a system that can be legally used;
legally distributed; legally modified and evolved to meet changing requirements; and for which it can
be reliably shown what rights are obtainable and what obligations must be met in order to obtain
specific desired rights.

Our approach starts by constructing a semantic model of the rights and obligations found in the text of
FOSS licenses. This modeling need only be done once for a license, unless or until the license or its
interpretation is changed. Next, the analytical methods we propose determine whether conflicts arise
when specific FOSS-licensed components are incorporated within an OA, working from component
attributes that give the semantic models for their corresponding license. Last, our testbed
environment demonstrates that our theory can be supported with automated tools, which offer the
potential to analyze large, complex HLSs at design time, build time, or run time. As a result, our
theory is operational in that it can be applied to a complex HLS to empirically determine whether its
architecture possesses conflicting rights or obligations, given its components’ licenses and
interconnections. Finally, our theory is not limited to a single pre-determined interpretation of the
meaning of terms for rights and obligations found in FOSS licenses. It allows for alternative legal
interpretations of a license, which can then be analyzed and supported by our approach and with our
automated tools, when so coded to reflect these interpretations.

Our theory provides answers to the questions posed above. By examining HLSs, we find that it is
typical that no license, per se, applies to the resulting system. Instead, there is a collection of rights
available for the system, and for each right there are corresponding obligations that must be met. We
find that the collection of rights may be empty, and that if specific rights are desired, such as the right
to use the system and the right to distribute it, these rights must be considered at each stage of
development from design through distribution. The specific rights and obligations are determined by
the licenses of the system’s components and by the architectural configuration in which they are
combined. Informal analysis of license constraints by experts can identify which ones may match,
subsume, or conflict, but our theory supports a formal analysis that can be automated for non-experts.
These issues are addressed in our other work, which implements and applies an initial version of the
theory presented and elaborated here (Alspaugh et al., 2009b).

The remainder of the paper is organized as follows. In the next section, “A Motivating Example,” we
present a motivating example displaying some of the non-obvious ways in which FOSS license
conflicts can manifest themselves. The “Related Research” section reviews prior research that helps
inform our understanding of the problem we are addressing. Emphasis is placed on studies that rely
on empirically grounded investigations of FOSS development projects and outcomes. The
“Intellectual Property (IP) Basics” section summarizes IP law, and “Software Licensing and FOSS
Licenses” does the same for licenses.

The section “A Theory of Software Licenses and their Application” summarizes existing legal theory
and presents the basic meta-model and reasoning rules that can be derived from it. Following this, we
present an empirical study of a selection of widely used software licenses, and a study approach that
can be extended to additional licenses, and use the results to extend the meta-model and render it
strong enough to support automated application of licenses and calculation involving them. In this
regard, we seek to provide a semantic or logical model (a set of logical constraints) for specifying
license rights and obligations, such that any use of a given license reuses its logical model.

The next section “License Architecture of Heterogeneously-Licensed Systems” presents the types of
architectural components and connectors that our study showed as significant for FOSS licensing.
Following this, “Embodying and Applying the Models and Analysis” presents an external validation of

Alspaugh et al./Software Licenses in Context

734 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

our theoretical results, in which we embodied the theory in an interactive software architecture
environment and applied it to HLSs. Such an environment demonstrates the potential to scale up the
analysis to large, complex systems that may be too difficult to analyze without such automated
support. The value of the environment is also demonstrated through detection of conflicting license
constraints across components that can be resolved through changes to the system‘s architectural
configuration, such as through the introduction of license firewalls or substitution of similar software
components with different licenses. This section is then followed by the “Discussion” section that
offers our view of any HLS as being subject to a “virtual license” that results from an empirical
analysis of the different licenses superimposed on the architecture of a composed software system.
Such a virtual license represents a union of the license constraints across the components, once
conflicting license constraints have been resolved, and an intersection of the license rights that result.
We then conclude our study with a final statement of the results we have accomplished through our
approach.

Shortly before beginning the research described here, we prototyped a new multimedia content
management portal that included support for videoconferencing and video recording and publishing.
Our prototype was based on an existing Adobe Flash Media Server (FMS), for which we developed
both broadcast and multi-cast clients for video and audio that shared their data streams through the
FMS. FMS is a closed source media server for which the number of concurrent client connections is
limited, with the limit determined by the license fee paid. We could invite remote users to try out our
clients and media services (up to the connection limit), but since the FMS license did not allow
redistribution, we found we could not offer interested users a copy of the run-time environment that
included the FMS. We could distribute everything but the FMS, though our compiled components
were built to use our copy of the FMS. Consequently, recipients would be unable to run the system
even if they purchased their own FMS license. The only useful way to distribute our portal system was
in the form of the source code of our locally developed clients and services. A potential user would
need to license, download, and install his own copy of the FMS, configure our source code to use it,
and rebuild our system. In our view, this created a barrier to sharing the emerging results of our
prototyping effort.

2. A motivating example

We subsequently undertook to replace the FMS with Red5, an open source Flash media server, so
we could distribute a complete run-time version of our content management portal to remote
developers. Now these developers could install and use our run-time system as is, or if they preferred
they could download the source code, revise, build, and configure it to suit their own needs, and
share their own run-time version.

Our experience illustrates how heterogeneous licensing can interact with system architecture
decisions to hamper common software research and development activities in surprising ways, even
for experienced FOSS designers and developers, and if not planned for successfully can cause
substantial unexpected costs and delays. Our license theory, embodied in the tool described later in
the paper, would have highlighted the lack of distribution rights and modeled the non-substitutability of
the FMS server at system design time rather than much later at system distribution and run time.

It has been typical until recently that each software or information system is designed, built, and
distributed under the terms of a single proprietary or FOSS license, with all its components
homogeneously covered by that same license. The system is distributed, with sources or executables
bearing copyright and license notices, and the license gives specific rights while imposing
corresponding obligations that system consumers (whether external developers or users) must honor,
subject to the provisions of contract and commercial law. Consequently, there has been some very
interesting research on the choice of FOSS license for use in a FOSS development project, and its

3. Related research

735 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

Alspaugh et al./Software Licenses in Context

consequences in determining the likely success of such a project.

Brown and Booch (2002) discuss issues that arise in the reuse of FOSS components, such as that
interdependence (via component interconnection at design time, or linkage at build time or run time)
causes functional changes to propagate, and versions of the components evolve asynchronously,
giving rise to co-evolution of interrelated code in the FOSS-based systems. If the components evolve,
the OA system itself is evolving. The evolution can also include changes to the licenses, and the
licenses can change from component version to version.

Stewart et al. (2006) conducted an empirical study to examine whether license choice is related to
FOSS project success, finding a positive association with the selection of business-friendly licenses.
Sen, Subramaniam, and Nelson in a series of studies (Sen, 2007; Sen et al., 2008; Subramaniam et
al., 2009) similarly find positive relationships between the choice of a FOSS license and the likelihood
of both successful FOSS development and adoption of corresponding FOSS systems within
enterprises. These studies direct attention to FOSS projects that adopt and identify their development
efforts through use of a single FOSS license. However, there has been little explicit guidance on how
best to develop, deploy, and sustain complex software systems when heterogeneously-licensed
components are involved, and thus multiple FOSS and proprietary licenses may be involved.

Legal scholars have examined FOSS licenses and how they interact in the legal domain, but not in
the context of HLSs. St. Laurent (2004) examines twelve FOSS licenses, including several no longer
in wide use, and compares them to a hypothetical proprietary license he created; license interactions
and conflicts are only very briefly discussed, and only in general terms. Rosen (2005) surveys eight
FOSS licenses and creates two new ones written to professional legal standards. He examines
interactions primarily in terms of the general categories of reciprocal and non-reciprocal licenses,
rather than in terms of specific licenses. Rosen was general counsel for the Open Source Initiative
(OSI, 2009). Fontana et al. (2008) primarily focus on guidance for FOSS projects on a number of
legal issues, but provide a good and authoritative survey of FOSS licenses, especially the GPL group
of licenses. Fontana et al. are lawyers (with one exception) associated with the Software Freedom
Law Center; Fontana and Moglen were two of the authors of the GPL, LGPL, and AGPL version 3
licenses. Finally, Kemp (2009) reviews significant court cases that have been pursued, and how they
do or do not address issues concerning the propagation of rights and obligations across programs
depending on how they are derived, contained, compiled, or linked at build time, especially when the
GPLv2 license is involved. Common to this legal scholarship is an approach that analyzes licenses
and the interactions among them abstractly rather than in the context of an HLS, and on at most a
pairwise basis. The characteristics of the software in which the licenses interact are not taken into
account, or at most in very general terms, even though almost every FOSS license is framed in terms
of the software and architectural constructs in existence when the license was written.

Ven and Mannaert (2008) discuss the challenges faced by independent software vendors developing
an HLS. They focus on the evolution and maintenance of modified FOSS components. Tuunanen et
al. (2009) exemplify most work to date on HLSs, in that they focus on reverse engineering and
recovery of individual component licenses on existing systems, rather than on guiding HLS design to
achieve and verify desired license outcomes. Their approach does not support the calculation of HLS
virtual licenses. Many more researchers have worked from this after-the-fact point of view (Gobeille,
2008; Di Penta et al., 2010).

German and Hassan (2009) describe a license as a set of grants, each of which has a set of
conjoined conditions necessary for the grant to be given. Figure 1 is a meta-model equivalent to their
notational license definition. They analyze interactions between pairs of licenses in the context of five
types of component connection. They also identify twelve patterns for avoiding license mismatches,
found in an empirical study of a large group of FOSS projects, and characterize the patterns using
their model. Their license models, developed independently from our work at about the same time,
are equivalent to the first level of our license models and provide confirmation that our work builds on
accepted foundations. As we show below, our license model goes beyond German and Hassan’s to
address semantic connections between obligations and rights that existing FOSS licenses exhibit,

Alspaugh et al./Software Licenses in Context

736 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

and to connect with the structure of software systems in a general and extensible way rather than a
fixed set of cases.

Figure 1. The meta-model used by German and Hassan (2009)

Other previous work examined how best to align acquisition, system requirements, architectures, and
FOSS components across different software license regimes to achieve the goal of combining FOSS
with proprietary software having open APIs when developing a composite “system of systems”
(Scacchi and Alspaugh, 2008). This is particularly an issue for the U.S. Federal Government in its
acquisition of complex software systems subject to Federal Acquisition Regulations (FARs) and
military service-specific regulations. HLSs give rise to new functional and non-functional requirements
that further constrain what kinds of systems can be built and deployed, as well as recognizing that
acquisition policies can effectively exclude certain OA configurations, while accommodating others,
based on how different licensed components may be interconnected.

Software licenses are primarily concerned with copyright. Copyright is defined by Title 17 of the U.S.
Code and by similar law in many other countries. It grants exclusive rights to the author of an original
work in any tangible means of expression, namely the rights to reproduce the copyrighted work;
distribute copies; prepare derivative works; distribute copies of derivative works; and (for certain kinds
of work) perform or display it. Because the rights are exclusive, the author can prevent others from
exercising them, except as allowed by “fair use.” The author can also grant others any or all of the
rights or any part of them; one of the functions of a software license is to grant such rights and define
the conditions under which they are granted.

4. Intellectual property (IP) basics

Traditional proprietary licenses typically grant a minimum of rights licensees need to use the licensed
software, retaining control of software the licensor has produced and restricting the access and rights
outsiders can have. In contrast, FOSS licenses are designed to encourage sharing and reuse of
software, and typically grant as many rights as possible consistent with that goal. FOSS licenses are
conventionally classified as academic or reciprocal. An academic FOSS license, such as the Berkeley
Software Distribution (BSD) license, MIT license, or Apache Software License, grants nearly every
copyright right for components and their source code, and imposes few obligations. Anyone can use
the software, create derivative works from it, or include it in proprietary projects. Typical academic
obligations are simply to not remove the copyright and license notices (University of California, 1998).

5. Software licensing and FOSS licenses

Reciprocal or copyleft FOSS licenses take a more active stance towards the sharing and reuse of
software by imposing an obligation that reciprocally-licensed software only be combined (for various
definitions of “combined”) with software that is in turn also released under the reciprocal license. The
primary goal of reciprocity in licenses is to increase the amount of FOSS by encouraging developers
to bring additional software into the FOSS commons, and to prevent improvements to OSS software
from vanishing behind proprietary licenses. Example reciprocal licenses are the GPL licenses, the
Mozilla Public License (MPL), and the Common Public License (CPL).

It has been common practice for a FOSS project to choose a single license under which all its
distributions are released, and to require developers to contribute their work under conditions
compatible with that license. For example, the Apache Contributor License Agreement (Apache,
2009) grants enough of each contributor’s rights as an author to the Apache Software Foundation for

737 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

Alspaugh et al./Software Licenses in Context

it to license the resulting systems uniformly under the Apache license. This sort of rights regime, in
which the rights to a system’s components are homogeneously granted and the system has a single
well-defined OSS license, was universal in the early days of FOSS and continues to be widely
practiced.

6.1. Legal grounding

6. A theory of software licenses and their application

Under U.S. law and the law of most countries, a license can be either a bare license or a contract
license. A bare license simply grants one or more copyright or patent rights from the copyright and/or
patent holder to another person. A contract license is constructed in the form of a contract, involving
an exchange of promises between the parties. In a contract license, the licensor grants one or more
rights in exchange for some consideration from the licensee receiving them. The consideration given
by the licensee may be very small, as little as “a peppercorn” in the traditional explanation, but it
cannot be nothing. However, in addition to a payment or other obvious consideration, it can take the
form of “(a) an act other than a promise, or (b) a forbearance, or (c) the creation, modification, or
destruction of a legal relation” (American Law Institute, 1981). In FOSS licensing the fundamental
consideration is typically interpreted as the licensee’s “detrimental reliance” on the licensed rights, or
in other words the reliance on the software that would be to the licensee’s detriment if the software
were withdrawn. A license, whether bare or contract, can also impose specific non-consideration
obligations as a condition of the license grant. Most FOSS licenses are drawn as contract licenses in
order to benefit from the well established case law on interpretation of contract provisions, with the
exception of the GPL family of licenses which are drawn as bare licenses (Rosen, 2005; Gordon,
1989; Determann, 2006; Guadamuz, 2009; Hillman and O’Rourke, 2009; Kemp, 2009).

In a seminal article published in 1913 and cited up to the present day, Hohfeld presented a theory by
which he proposed to resolve the imprecise terminology and ambiguous classifications he found in
use for legal relationships (Hohfeld, 1913). He set out a system of eight jural relations to express and
classify all legal relationships between parties. The eight relations are listed below followed by
informal descriptions in parentheses. The first four regulate ordinary actions:

• right (may)
• no-right (cannot)
• duty (must)
• privilege (need not)

while the second four regulate actions that change legal relationships:

• power (may change relation R)
• disability (cannot change R)
• liability (must accept changes in R)
• immunity (need not accept changes in R).

Each relation has an opposite relation whose sense is its opposite, and a correlative relation whose
sense is its complement. The relations are shown with their opposites and correlatives in Figure 2.

Alspaugh et al./Software Licenses in Context

738 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

Figure 2. Hohfeld’s jural relations, indicating opposites and correlatives

It has been argued that Hohfeld’s jural relations provide a sound basis for legal expression, first by
Hohfeld himself and more recently with specifics and supporting data by Allen and Saxon (1995), and
the relations have been used by many other researchers in law and other fields, such as Balkin
(1991), Gordon (1989), and Humphris-Norman (2009) in law, Daskalopulu and Sergot (1997) and
McCarty (2002) in artificial intelligence, and Huhns and Singh (1998) and Siena et al. (2008) in
software engineering.

6.2. A basic meta-model for licenses
We derived a basic meta-model for software licenses by analyzing the structures defined in law and
dividing them into constituent parts, as shown in Figure 3. An enactable right or obligation is
composed of the action performed, the actor performing it, and the modality expressing whether the
action is allowed, required, or forbidden in terms of Hohfeld relations. The two parties involved in a
license are the licensor and licensee. In addition, it is clear that while a right or obligation may involve
virtually any action, those actions that are regulated by copyright and patent law are distinguished as
of particular importance. Overall, a license is modeled as one or more rights to be granted, each right
corresponding to zero or more obligations to be performed in exchange. Both rights and obligations
are modeled as tuples of actor, modality, and action, with rights having modalities “may” or “need not”
and obligations “must” or “cannot.”

Figure 3. Basic meta-model for software licenses

6.3. Reasoning rules in this meta-model
The legal grounding suggests and supports two rules of implication for licenses following this model.
The first rule expresses the contractual exchange of promises: a right is granted only if its
corresponding obligations are fulfilled. The second rule expresses Hohfeld’s correlatives: an
obligation can be fulfilled only if its actor has the right to fulfill it. If that right is not immediately
available, then the actor may have to obtain it by first fulfilling other obligations. The obligation’s

739 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

Alspaugh et al./Software Licenses in Context

correlative is that prerequisite right. If the obligation is that the actor “must” perform the action, then
the prerequisite right is that he “may” perform it, while if the obligation is that the actor “cannot”
perform it, then the requisite right is that he “need not.”

The chaining of these two rules is sketched in Figure 4, in which the desired right depends (by rule 1)
on a necessary obligation, which in turn depends (by rule 2) on the obligation’s correlative right as a
prerequisite. If the prerequisite right is not immediately available, it must be obtained by performing
the obligations necessary for it, and so forth until all the obligations are performable.

Figure 4. Chain of rights and obligations

This chaining is illustrated most clearly by the reciprocal licenses, in which (in general terms) the right
to distribute a derivative work derived from a reciprocally-licensed original carries the obligation to
distribute it only under that reciprocal license. The correlative right is the right to distribute copies
under that license; if all the originals on which the derivative was based were obtained under the
same license, then that right is immediately available, but if the originals were under two or more
different licenses then it may not be immediately possible to distribute the derivative under all of them,
as their provisions may conflict. If so the correlative right would have to be obtained by recursively
fulfilling whatever obligations (if any) would grant it. It may not be possible to obtain the correlative
right at all, either because the relevant licenses do not grant it under any circumstances, or because
the necessary obligations are in conflict and cannot be simultaneously fulfilled. In such a case, the
desired right is not available and there is no way to obtain it.

6.4. Extending the theory using empirical data
The view and analysis of software licenses as described in the previous section is appropriate as a
basis for human reasoning about licenses in the abstract, but is not sufficient for formal analysis and
automation. As an example, how does GPL version 2.0 apply to a specific software component
code.c? A human being could (with some effort) list the rights and obligations for code.c using that
view as a basis, but the process could not be automated using it. If the copyright right to distribute
copies of code.c were desired, a human being could identify the provisions of GPL version 2.0 that
applied, but again this could not be automated.

In addition, it was not clear to us whether the theory of the previous section fully accounted for actual
software licenses, or whether (and if so to what extent) experts working with licenses use experience
and shared tacit knowledge to account for features and interactions not covered by theory.

We conducted a grounded-theory qualitative study of software licenses in order to address these
issues. The research questions for the study were:

• Do software licenses match the meta-model in Figure 3?
• What features, if any, are not accounted for by the meta-model?
• What software-architectural structures are referenced in licenses, and how do they interact

with the structures in the meta-model?

Alspaugh et al./Software Licenses in Context

740 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

• In what ways does the meta-model need to be extended in order to support automated
calculation, inference, and application of abstract license provisions to concrete software?

The research questions for the study were developed and elaborated using the Goal Question Metric
approach (Basili et al., 1994). The texts of ten licenses were analyzed first by semantic
parameterization (Breaux et al., 2008) to account for differences in terminology and conceptualization
between the studied licenses, and were then chunked and open-coded systematically in accordance
with qualitative practice (Creswell, 2003; Miles and Huberman, 1994). The extensions to the meta-
model were generated from the data using a grounded-theory approach (Glaser and Strauss, 1967;
Corbin and Strauss, 2007).

The ten licenses analyzed were:

• Apache 2.0
• Berkeley Software Distribution (BSD)
• Common Public License (CPL)
• Eclipse Public License 1.0 (EPL)
• GNU General Public License 2 (GPL)
• GNU Lesser General Public License 2.1 (LGPL)
• MIT
• Mozilla Public License 1.1 (MPL)
• Open Software License 3.0 (OSL)
• Corel Transactional License (CTL)

These ten were chosen to represent a variety of kinds of licenses, and include one proprietary (CTL),
three academic (Apache, BSD, MIT), and six reciprocal licenses (CPL, EPL, GPL, LGPL, MPL, OSL)
that take varying approaches in implementing copyleft. The nine FOSS licenses account for
approximately 75% of FOSS software at the time of this writing (Black Duck, 2009), and include the
licenses presented by Rosen as representative (2005). The texts of the FOSS licenses are from the
Open Source Initiative web site (OSI, 2009), and the text of the proprietary CTL license is from
Corel’s web site (Corel, 2009).

The four stages of the analysis were as follows. First, we performed a word and term level analysis of
the texts. We disambiguated the text in several ways. We identified forward and backward references
and linked them to their references, identified synonyms, and distinguished polysemes expressing
different meanings with identical wording. We identified terms of art such as “Derived Work” from
copyright law, and specialized terms such as “work based on the Program” for GPL and “Electronic
Distribution Mechanism” for MPL that have a license-specific meaning. We then constructed
(automatically) a concordance of the resulting text: an index giving each instance of the significant
words in the licenses. We excluded minor words such as articles, conjunctions, and prepositions
whose use in a particular license carries no specialized meaning. Then we (automatically) tagged
each sentence with its section, paragraph, and sentence sequence numbers. Figure 5 shows a
portion of the concordance for GPL.

741 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

Alspaugh et al./Software Licenses in Context

Figure 5. GPL version 2.0 concordance, section 2.0 paragraph 1

Second, we identified parts of each license having no legal force, such as GPL 2’s “Preamble” section,
or that dealt with anything other than copyright, such as patents, trademarks, implied warranty, or
liability. We iterated this step using the concordance to confirm our identifications. The remainder of
our analysis focused on copyright.

Third, using the concordances across the licenses, and guided by legal work on FOSS licenses
(Fontana et al., 2008; Rosen, 2005; St. Laurent, 2004), we identified words and phrases with the
same intensional meaning, and textual structures parallel among the licenses. Working from these,
we iterated to identify natural language patterns in the licenses, and patterns of reference among
license provisions and to the licensed software and its context.

Fourth, we chunked and open-coded the text into segments addressing the same issues, with the set
of issues arising from the texts themselves. We compared the categories and individual segments of
text with the meta-model, noting cases of agreement and cases in which the meta-model did not
account for significant features. As the iterative process progressed, new meta-model structures
arose from the categories and from the structures expressed in the texts. The iteration converged on
an extended meta-model shown in Figure 6 and elaborated in Figure 7 that summarizes what we
found as a set of semantic relations. Our analysis confirmed that each license we examined consists
of one or more rights, each of which entails zero or more obligations. Rights and obligations have the
same structure, a relation expressed as a tuple comprising an actor (the licensor or licensee), a
modality, an action, an object of the action, and possibly a license referred to by the action.

Figure 6. The extended meta-model for licenses, adding Object and License

We found a wide variety of license actions, some defined in copyright law and others defined by
specific licenses. Many of the objects within actions are references, and the kinds of references we

Alspaugh et al./Software Licenses in Context

742 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

identified in the ten analyzed licenses are listed in Figure 7, along with the contexts in which they
occur. The objects for rights are self-explanatory from their names. If the object of an obligation is
“Right’s Object” then that obligation is instantiated with the same object as its corresponding right (e.g.
hypothetical right “Licensee may modify X” with obligation “Licensee must publish modifications of
X”); “All Sources of Right’s Object” results in as many obligations as the right’s object has source files,
with an instance of the obligation for each one; “X Scope Components” for each reciprocal license X,
results in as many obligations as there are components within the scope of propagation of X’s
obligations that includes the right’s object, and “X Scope Sources” analogously for sources of
components in that scope.

Figure 7. Permitted combinations of actor, modality, action, object, and license

Note that while some objects such as “Right’s Object” refer only to the same entity that the
corresponding right does, others such as “All Sources of Right’s Object” and “X Scope Components”
induce more complex patterns. In order to instantiate an abstract right or obligation containing such
an object, it is necessary to have information about the system they refer to, such as the way in which
components are interconnected, in order to determine each license scope in that system, or the
sources from which a component was built. We call the abstraction of the system that provides this
information the license architecture of the system, and discuss it in the next section.

As a cross-check on the validity of our analysis, we implemented the license meta-model in Java and
expressed the licenses using it, generated a restricted natural language (RNL) form for each license
right and obligation, and compared them with the originals. The RNL text for an example abstract right
(one not bound to a specific object and context) extracted from the BSD license is:

Licensee · may · distribute <Any Source> under <This License>

where “distribute under” is an action reserved by copyright law and the abstract object <Any Source>
quantifies the right over all sources licensed under the license containing the right (here, BSD); an
example concrete obligation (one bound to a specific context) is:

Licensee · must · retain the [BSD] copyright notice in [file.c]

where “retain the copyright notice” is an action that is not reserved by copyright law, BSD is the
concrete license the action references, and file.c is the concrete object the action references. The

743 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

Alspaugh et al./Software Licenses in Context

encoded actions contain tokens identifying where the tuple’s object and (if present) license are
inserted, for example in the GPL action “sublicense % under ^” which becomes “sublicense OBJECT
under LICENSE” for a particular object and license. Figure 8 informally illustrates how actions may
contain concrete objects or licenses, references to objects or licenses bound elsewhere, or quantifiers
using the information in the license architecture to produce sets of concrete rights or obligations.

Figure 8. Object/license references, informally

This model of licenses gives a basis for reasoning about licenses in the context of actual systems.
The additional information we need about the system is defined by the list of quantifiers that can
appear as objects in the rights and obligations. We term this information the license architecture (LA).
It is an abstraction of the system architecture:

• the set of components of the system;
• the relation mapping each component to its license;
• the relation mapping each component to its set of sources; and
• the relation from each component to the set of components in the same license scope, for

each license for which “scope” is defined (e.g. GPL), and from each source to the set of
sources of components in the scope of its component.

We tested the internal validity of the study as described above by implementing the meta-model as a
Java package, expressing the licenses in the meta-model using the package, automatically re-
generating text for each license, and comparing the regenerated text with the original for semantic
equivalence (of course the two texts were syntactically dissimilar). At the time of writing, the meta-
model has also been validated by a law student specializing in Intellectual Property, an international
legal researcher in the area of comparative systems of Intellectual Property, and a law professor in
Intellectual Property; these validations were done first informally through discussions of the meta-
model and how the legal concepts in licensing and contracts and the specifics of various licenses
align with its structures, and then formally through a qualitative analysis in which the legal researcher
independently represented two licenses in terms of the meta-model’s structure. The key point shown
by these validations is that the meta-model is sufficiently expressive to support various legal
interpretations. We tested the study’s external validity by incorporating the Java package embodying
the meta-model into a software architecture tool as described below, and using it to analyze HLS
architectures.

In this study, we examined ten software licenses; we will examine additional licenses and fully expect
that new license structures will be revealed and new elaborations of the meta-model will arise.
However, this does not invalidate the results of the present study. We note that any successful theory
will have to account for the features we identify here, and at most will add additional features, not
remove any.

Alspaugh et al./Software Licenses in Context

744 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

As noted in the previous section, certain elements of software architectures affect how license
provisions take effect. A software architecture is composed of components, each of which is a “locus
of computation and state” in a system, and connectors which link them and mediate interactions
between them (Shaw et al., 1995). The components and connectors below are significant for one or
more FOSS licenses and can affect the license interactions and overall rights and obligations for the
system.

7. License architecture of Heterogeneously-Licensed systems

7.1. Components
Software source code components. A source code component is one whose source code is
available so the component can be modified and rebuilt. These can be either:

• standalone programs,
• libraries, frameworks, or middleware,
• Inter-application script code that coordinates the actions of two or more applications, or
• intra-application script code that controls actions within its application, as for creating Rich

Internet Applications using domain-specific languages such as XUL for the Firefox web
browser (Feldt, 2007), or “mashups” that combine data, functionality, or presentations from
two or more sources to create a new service (Nelson and Churchill, 2006)

Executable components. These components are in binary form, and the source code may not be
available for access, review, modification, or possible redistribution (Rosen, 2005). If proprietary, they
often cannot be redistributed, and if so will be present in the design- and run-time architectures but
not in the distribution-time architecture.

Software services. An appropriate software service, such as Google Docs, provided through a client-
server connection to a local or remote server, can be used in place of a source code or executable
component.

Application programming interfaces (APIs). Availability of externally visible and accessible APIs is
the minimum requirement for an “open system” (Meyers and Oberndorf, 2001). APIs are not and
cannot be licensed (Rosen, 2005), and can be used to limit the propagation of some license
obligations.

Configured system or subsystem architectures. These are software systems that are used as
atomic components of a larger system, and whose internal architecture may comprise components
with different licenses, affecting the overall system license.

7.2. Connectors
Methods of connection. These include:

• static linking performed permanently at system build time,
• dynamic linking performed temporarily at run time, and
• client-server connections.

Methods of connection affect license obligation propagation, with different methods affecting different
licenses. Although there is some controversy over this question, and our statements here should not
be taken as legal advice, there appear to be grounds to believe that a client-server connection serves
as a license firewall for reciprocal obligations from all current licenses except the Affero GPL (AGPL)
version 3.0, which was designed to address client-server connections explicitly, and certain related
licenses not otherwise discussed in this article; and more controversially that a dynamic link rather

745 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

Alspaugh et al./Software Licenses in Context

than a static link blocks the same obligations (Determann, 2006; Rosen, 2007; Stoltz, 2005). At the
time of writing, no court has ruled definitely on these questions.

Software connectors. Some connectors are themselves software whose intended purpose is to
provide a standard or reusable way of communication through common interfaces, e.g. CORBA,
Microsoft .NET, Mono, and Enterprise Java Beans. Software connectors, by sending communication
through a standard and thus uncopyrightable interface, may affect the propagation of license
obligations.

To minimize license interaction, a problematic-licensed component may be surrounded or
encapsulated by what we term a license firewall, namely a layer of dynamic links, client-server
connections, license shims, or other connectors that block the propagation of specific reciprocal
obligations.

7.3. Other information in a license architecture
As noted in the previous section, some license obligations require more information in order to be
instantiated, namely the ones that incorporate any object other than “Right’s Object.” A system’s
license architecture thus includes the relationship from component to sources, which we will not
discuss here since it is straightforward from a development point of view. The other such objects “X
Scope Sources” and “X Scope Components” may be inferred from the information already in the
license architecture. We note that we expect the license architecture abstraction to be elaborated in
parallel with the meta-model as new license structures are identified.

Figure 9 presents a screenshot of a simple but not trivial HLS that raises the kinds of issues that
come up in all HLSs. Its components include a web browser, an email and calendar system, a word
processor, and a web application. In the screenshot these four components have been outlined with
dashed rectangles. The web browser is Firefox, the email and calendar system is Gnome Evolution,
the word processor is AbiWord, and the web application is running in a Red Hat Fedora Linux
command window, but similar functionality (with possibly higher quality or better adapted functionality)
could be achieved with other components of the same class. This particular system implements a
simple office productivity environment for a university research laboratory.

8. Embodying and applying the models and analysis

Alspaugh et al./Software Licenses in Context

746 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

Figure 9. A heterogeneously-licensed composite system

The software architecture of the high level components and their interconnections in this system is
shown in Figure 10. Components, shown in upright font, implement pieces of the system’s
functionality. Each component is associated with a license governing the terms of its use. Connectors,
shown in italics, connect and translate if necessary between the interfaces of two components. Where
the two interfaces are the same, the connector is identified simply by the API for the two interfaces,
and has no license. If the two interfaces differ, then the connector is implemented by a small piece of
software, a shim, that translates between them, and the shim has or could have a license. Arrows
show communication between connectors and components. The components, the connectors, and
the topology in which they are arranged constitute the architecture of the system. This architecture
shows the system’s high-level design.

Figure 10. The design-time architecture describing the system

747 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

Alspaugh et al./Software Licenses in Context

Figure 11 shows the architecture with the abstract components and connectors replaced by specific
implementations. In this instance architecture describing a particular implementation of the system,
the web browser is Firefox, the word processor is AbiWord, connectors 1 through 3 are XWindows
calls, and so forth. All the components and connectors are FOSS, though not homogeneously
licensed: for example, the Gnome Evolution and AbiWord components are distributed under GPL
version 2.0, while the Apache web server component is distributed under the Apache License version
2.0, with which GPL 2.0 is not compatible. The network protocol HTTP, being a data transfer interface
conforming to an open standard, has no license. Most of the components and connectors in the
architecture are not visible to the user when the system is running, but four of them can be identified
in Figure 9, and the user interface (UI) as a whole can be identified as running on a Red Hat Fedora
system by the blue script “f “ in the upper left corner of the screen.

Figure 11. A build-time architecture describing the version running in Figure 9

Figure 12 shows a high-level view of the license architecture of the system of Figure 9, with the
mappings to sources and license scopes omitted for clarity. Here each component is represented by
its license, with the connectors and connections the same as in the design-time and build-time
architectures. For ease of reference, we also provide Figure 13 in which the license architecture is
additionally annotated with each component’s name.

Figure 12. The license architecture of the instantiation of Figure 11

We noted above that GPLv2 and Apache2.0 are not compatible; a reverse-engineering and recovery
approach for license analysis, as discussed above in “Related Work” (Gobeille, 2008; Tuunanen et al.,
2009; Di Penta et al., 2010) could determine that the system in Figures 9 through 13 might have a

Alspaugh et al./Software Licenses in Context

748 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

license conflict, but without the license architecture it could not determine whether the system will
have a conflict. In fact, our analysis (confirmed by the software tool) correctly shows that no conflict
exists, because the Apache2.0 component is licensed-firewalled from GPLv2 obligations by the client-
server connection that blocks its only path to GPLv2 components. Even without this firewall, the
conflict could be avoided by accepting Firefox under MPL1.1, since Firefox is distributed through the
Mozilla tri-license under which recipients can choose any of the three possible licenses.

Figure 13. The license architecture, annotated with each component and connector

Since this system has an open architecture, it could be straightforwardly modified to use a proprietary
word processor like Corel WordPerfect (or Microsoft Word) in place of AbiWord, for example to obtain
different functionality or to be consistent with an enterprise policy for uniformity across systems. There
would be no license conflict, since the word processor component in this architecture is firewalled off
by client-server connections and software connectors. However, our analysis (confirmed by the tool)
identifies that the system no longer has the same rights: anyone can use the system, but the right to
distribute the system is no longer available, since the Corel Transactional License (CTL) forbids
copying and redistribution. This is not a license conflict, but simply the lack of a potentially desired
right. Note that the enterprise could choose to purchase a separate copy of WordPerfect for each
system, in which case each individual instance of the system could be distributed (although still not
copied); or it could distribute the system minus WordPerfect, with each recipient obtaining his/her own
copy of WordPerfect and integrating it into the system. We do not maintain that any of these
approaches (AbiWord, separate copies of WordPerfect, or user-integrated WordPerfect) is better or
worse than another, merely that each has its own distinct functionality, available rights, and/or build
process.

Finally, we outline the effect of a very different choice: replacing the word processor component with a
web-based word processing service such as Google Docs. In this case the calculation is not dealing
only with licenses, but also with a Terms of Service agreement whose provisions are different. Some
rights are unchanged: anyone can use the system, and the system can be redistributed. But in order
to achieve this, not only does the enterprise have to replace the word processing component and the
inter-application scripts that shim its interfaces, it has to alter the system’s architecture. Google Docs
will provide word processing services but only through the web browser; the web browser will not be
connected through system calls to the Linux component, or through XWindows to the display; and the
scripts will be changed to connect to the word processor and browser through the same connection.
Again, this choice is not necessarily better or worse than any of the previous three, it merely offers
different costs and affordances.

749 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

Alspaugh et al./Software Licenses in Context

Figure 14. License architecture (annotated) using WordPerfect in place of AbiWord

We chose this simple but not trivial example so that the explanation would be of manageable length.
Most enterprise HLSs differ from this one only in scope, not in the kinds of issues that arise. The
issues would simply be more numerous, and the paths of license effects would be more complex,
necessitating a theory-based automated tool not only for ease and accuracy but also to make the
balancing and selection among design choices manageable. As we explored and analyzed OA
systems, we realized this same example architecture describes a substantial number of e-business
information systems. For example, our department’s payroll system also has the architecture of
Figure 10, although for that system of course the connectors and scripts are different in order to
produce a different specific system function. Using and distributing this or any other HLS within or
outside an enterprise has legal implications, due to the varied and possibly conflicting licenses found
for the systems’ components and the large number of distinct obligations that arise. Organizations
with assets need to be concerned that the use or distribution of such HLSs can leave them vulnerable
to liabilities due to violations (even if inadvertent) of license terms and conditions. Our work gives a
basis from which organizations using and developing HLSs can assess their rights and obligations,
and guide HLS acquisition and development in order to achieve not only the desired system
functionality, quality, and evolvability, but also the rights that are needed in exchange for obligations
that are acceptable.

Throughout this paper, we have sought to understand and analyze composite software or information
systems that constitute an HLS. Here, we discuss some of the consequences that follow from this
understanding and analysis.

9. Discussion

First, as we saw in related research, there has been a great deal of interest in determining what
aspects or features of FOSS development projects are significant contributors to project success. The
choices among available FOSS licenses, when applied to a single system as a whole, revealed that
certain license choices are positively associated with project success. But, what are we to expect in
trying to anticipate potential outcomes when system components may have different licenses? This is
part of the challenge for understanding HLSs. Consequently, it is unclear what outcomes for HLS
development projects should be anticipated based on prior studies of FOSS success factors, and thus
this should be recognized as an outstanding problem for further study. However, it does appear that
there is growing awareness that both public and private sector enterprises are moving to develop

Alspaugh et al./Software Licenses in Context

750 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

composed (or otherwise integrated) systems of systems, and that such HLSs may become more
commonplace.

Second, through modeling of FOSS licenses and analysis of HLSs rendered as an OA with a license
attributed to each component and to the other components to which it is directly linked (or
interconnected), it becomes possible to articulate which licenses or constraints match or conflict with
one another. The case study in the previous section helps demonstrate this. Further, when license
constraints are discovered, the nature of each conflict (e.g. “must not redistribute software” versus
“must redistribute software if modified”) then gives rise to possible ways in which that conflict can be
mitigated or resolved. These include reconfiguring the system architecture, replacing conflicting
components with compatible alternatives under non-conflicting licenses, or inserting license mediators.
However, if an OA for the system is not available and cannot be derived from available information
(as is the case for the Unity3D software package identified in the Introduction), then it may not be
possible to analyze or reliably determine what license constraints apply, or whether any are in conflict;
and this places system consumers or users in an uncertain situation. Thus, understanding and
analyzing HLSs requires a model of the constraints found in the system component licenses, along
with an OA rendering of the system and corresponding license constraints.

Lastly, once the analysis of an HLS has been conducted and identified license conflicts resolved or
eliminated, then what remains is a set of license constraints that characterize the rights provided and
the obligations to be fulfilled by the systems consumers or users. But this unified set of license
constraints in general does not conform to an existing single license (since if it did, the system would
not be considered an HLS), so then what is the license in effect? We believe one way to address this
is to consider the resulting set of non-conflicting rights and obligations for an HLS to constitute a new
kind of license which we can designate as a virtual license. However, we do not anticipate that such a
virtual license will simply be treated as a new type of license (and thus submitted to a license review
authority like the Open Source Initiative). Instead, a virtual license will simply represent a set of rights
and obligations within corporate policy space or license regime that an enterprise finds acceptable,
manageable, and traceable (cf. Dinkelacker et al., 2002). In this regard, we may expect that future
study could determine whether enterprises can simply specify which resulting license rights or
obligations they will accept and fulfill, and which they will not, independent of the name or pedigree of
the FOSS license or project from which those rights and obligations may have originated.

In this paper, we introduce the problem of how to understand and analyze heterogeneously-licensed
systems composed and built from FOSS and/or proprietary components, each of which may be
subject to different licenses with different rights and obligations. We started by providing examples of
HLSs that are beginning to appear, and that help articulate the challenge of understanding how
license constraints may interact, match, or conflict within the system’s architecture, whether at design
time, build time, or run time. We found that such analysis requires an explicit semantic model of the
license rights and obligations, along with an open architectural rendering that can be attributed with
the corresponding license constraints. Without both of these, it may not be possible to systematically
analyze or comprehensively understand what license constraints apply to the whole system (or
system of systems). But with both, we demonstrate it is possible to conduct such an analysis, and to
determine which license constraints match, subsume, or conflict with one another. It also becomes
possible to explore and readily evaluate alternative system architectures that may resolve conflicting
license constraints, particularly when analysis of HLSs can be supported with an automated
environment, such as the one we have developed to this end.

10. Conclusion

The contribution presented in this paper constitutes identification of a new, emerging category of
problem, which we identify as the challenge of heterogeneously-licensed systems, along with an
empirically grounded approach and design theory for analyzing and modeling FOSS license rights
and obligations, and to modeling and analyzing the architecture of an HLS, in order to determine the
resulting set of license constraints that applies to the composed system. We described and

751 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

Alspaugh et al./Software Licenses in Context

demonstrated our approach, along with the kinds of information we employ, which are empirically
observable when FOSS components are employed, and when all participating software license rights
and obligations can be systematically modeled. Whether our approach is relevant to legal
interpretations or framings for the purpose of asserting defensible intellectual property rights is
beyond the scope of our study (and expertise) and thus remains an open question for future study.

The authors extend their thanks to the anonymous reviewers of earlier versions of this paper for their
thoughtful and insightful evaluations.

Acknowledgments

Support for this research is through grant #0808783 from the National Science Foundation, and also
#N00244-10-1-0038 from the Acquisition Research Program at the Naval Postgraduate School. No
review, approval, or endorsement implied.

Alspaugh et al./Software Licenses in Context

752 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

References
Allen, L. E. and Saxon, C. S. (1995). Better Language, Better Thought, Better Communication: The A-

Hohfeld Language for Legal Analysis. In 5th International Conference on Artificial Intelligence
and Law (ICAIL’95):219–228.

American Law Institute (1981). The Restatement (Second) of Contracts.
Alspaugh, T. A., Asuncion, H.U., and Scacchi, W. (2009a). Intellectual Property Rights Requirements

for Heterogeneously-Licensed Systems. In 17th IEEE International Requirements
Engineering Conference (RE’09):24–33.

Alspaugh, T. A., Asuncion, H. U., and Scacchi, W. (2009b). The Role of Software Licenses in Open
Architecture Ecosystems. In First International Workshop on Software Ecosystems
(IWSECO-2009): 4–18.

Apache Software Foundation (2009). Individual Contributor License Agreement version
2.0. http://www.apache.org/licenses/icla.txt

Asay, M. (2008). In Acquiring Merrill Lynch, must Bank of America Open Source Its Software? CNET
News, http://news.cnet.com/8301-13505_3-10043029-16.html, 16 September 2008.

Balkin, J. M. (1991). The Promise of Legal Semiotics. University of Texas Law Review, 69:1831–1852.
Basili,V. R., Caldiera, G., and Rombach, H. D. (1994). The Goal Question Metric approach. In

Encyclopedia of Software Engineering:528–532, John Wiley and Sons.
Black Duck Software (2009). Top 20 Most Commonly Used Licenses in Open Source

Projects. http://www.blackducksoftware.com/oss/licenses
Breaux, T. D., Antón, A. I., and Doyle, J. (2008). Semantic Parameterization: A Process for Modeling

Domain Descriptions. ACM Transactions on Software Engineering and Methodology, 18(2).
Brown, A.W., and Booch, G. (2002). Reusing Open-Source Software and Practices: The Impact of

Open-Source on Commercial Vendors. In: Software Reuse: Methods, Techniques, and Tools
(ICSR-7).

Corbin, J. M. and Strauss, A. C. (2007). Basics of Qualitative Research: Techniques and Procedures
for Developing Grounded Theory. SAGE Publications.

Corel Transactional License (2009). http://apps. corel.com/clp/terms.html
Creswell, J. W. (2003). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches.

SAGE Publications, Thousand Oaks, CA, USA.

.

Daskalopulu, A. and Sergot, M. (1997). The Representation of Legal Contracts. AI & Society, 11(1-
2):6–17.

de Laat, P.B. (2007). Governance of Open Source Software: State of the Art, J. Management and
Governance, 11(2), 165–177.

Determann, L. (2006). Dangerous Liaisons – Software Combinations as Derivative Works?
Distribution, Installation, and Execution of Linked Programs Under Copyright Law,
Commercial Licenses, and the GPL. Berkeley Technology Law Journal, 21(4).

Di Penta, M., German, D. M., Gueheneuc, Y.-G., and Antoniol, G. (2010). An Exploratory Study of the
Evolution of Software Licensing. To appear: 29th International Conference on Software
Engineering (ICSE ‘10).

Dinkelacker, J., Garg, P. K., Miller, R., and Nelson, D. (2002). Progressive Open Source, Proc. 24th

Elliott, M. S., and Scacchi, W. (2003). Free Software Developers as an Occupational Community:
Resolving Conflicts and Fostering Collaboration. ACM International Conference on
Supporting Group Work (GROUP’03):21–30.

Intern. Conf. Software Engineering, Orlando, FL, 177–184.

Elliott, M. S., and Scacchi, W. (2008). Mobilization of Software Developers: The Free Software
Movement. Information Technology & People, 21(1):4–33.

Feldt, K. (2007). Programming Firefox: Building Rich Internet Applications with XUL. O’Reilly Media.
Fontana, R., Kuhn, B.M., Moglen, E., Norwood, M., Ravicher, D.B., Sandler, K., Vasile, J., and

Williamson, A. (2008). A Legal Issues Primer for Open Source and Free Software Projects,
Software Freedom Law Center, Version 1.5.1.

Free Software Foundation (1991). GNU General Public License Version
2.

http://www.softwarefreedom.org/resources/2008/foss-primer.pdf

http://opensource.org/licenses/gpl-2.0.php
Free Software Foundation (1999). GNU Lesser General Public License Version

http://www.apache.org/licenses/icla.txt�
http://news.cnet.com/8301-13505_3-10043029-16.html�
http://www.blackducksoftware.com/oss/licenses�
http://www.softwarefreedom.org/resources/2008/foss-primer.pdf�
http://www.softwarefreedom.org/resources/2008/foss-primer.pdf�
http://opensource.org/licenses/gpl-2.0.php�

753 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

Alspaugh et al./Software Licenses in Context

2.1. http://opensource.org/licenses/lgpl-2.1.php
Free Software Foundation (2007a). GNU Affero General Public License Version

3. http://opensource.org/licenses/agpl-v3.html
Free Software Foundation (2007b). GNU General Public License Version

3. http://opensource.org/licenses/gpl-3.0.html
Free Software Foundation (2007c). GNU Lesser General Public License Version

3. http://opensource.org/licenses/lgpl-3.0.html
German, D. M. and Hassan, A. E. (2009). License Integration Patterns: Addressing License

Mismatches in Component-based Development. In Proc. 31st

Glaser, B. G. and Strauss, A. L. (1967). The Discovery of Grounded Theory: Strategies for Qualitative
Research. Aldine Publishing Company.

 International Conference on
Software Engineering (ICSE ‘09), Vancouver, BC, Canada, 188–198.

Gobeille, R. (2008). The FOSSology project. In International Working Conference on Mining Software
Repositories (MSR’08):47–50.

Gordon, W. J. (1989). An Inquiry into the Merits of Copyright: The Challenges of Consistency,
Consent, and Encouragement Theory. Stanford Law Review, 41(6):1343–1469.

Guadamuz, A. (2009). The License/Contract Dichotomy in Open Licenses: A Comparative Analysis.
University of La Verne Law Review, 30(2):101–116.

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design Science in Information Systems
Research. MIS Quarterly, 28(1):75–105.

Hillman, R. A. and O’Rourke, M. A. (2009). Rethinking Consideration in the Electronic Age. Hastings
Law Journal, 61:311–336.

Hohfeld, W. N. (1913). Some Fundamental Legal Conceptions as Applied in Judicial Reasoning. Yale
Law Journal, 23(1):16–59.

Huhns, M. N. and Singh, M. P. (1998). Agent Jurisprudence. IEEE Internet Computing, 2(2):90–91.
Humphris-Norman, D. O. Justice, Rights, and Jural Relations: A Philosophy of Justice and Its

Relationships. University of Southampton. 2009.
Kemp, R. (2009). Current Developments in Open Source Software. Computer Law and Security

Review, 25(6):569–582.
McCarty, L. T. (2002). Ownership: A Case Study in the Representation of Legal Concepts. Artificial

Intelligence and Law, 10(1-3):135–161.
Meyers, B. C. and Oberndorf, P. (2001). Managing Software Acquisition: Open Systems and COTS

Products. Addison-Wesley Professional.
Miles, M. B. and Michael Huberman, M. (1994). Qualitative Data Analysis: An Expanded Sourcebook.

SAGE Publications.
Mozilla Foundation (2009). Mozilla Code Licensing. http://www.mozilla.org/MPL/.
MySQL (2006). MySQL Licensing Policy. http://www.mysql.com/about/legal/licensing/
Nelson, L. and Churchill, E. F. (2006). Repurposing: Techniques for Reuse and Integration of

Interactive Systems. In International Conference on Information Reuse and Integration (IRI-
08):490.

OSI (2009). Open Source Initiative. http://www.opensource.org/
Oreizy, P. (2000). Open Architecture Software: A Flexible Approach to Decentralized Software

Evolution. PhD Thesis, Information and Computer Science, University of
California.

.

http://www.ics.uci.edu/~peymano/papers/thesis.pdf
Roberts, J. A., Hann, I.-H., and Slaughter, S. A. (2006). Understanding the Motivations, Participation,

and Performance of Open Source Software Developers: A Longitudinal Study of the Apache
Projects. Management Science, 52(7):984–999.

Rosen, L. (2007). Comments on GPLv3. http://www.rosenlaw.com/GPLv3-Comments.htm
Rosen, L. (2005). Open Source Licensing: Software Freedom and Intellectual Property Law. Prentice

Hall.

Scacchi, W. and Alspaugh, T.A. (2008). Emerging Issues in the Acquisition of Open Source Software
within the U.S. Department of Defense, Proc. 5th Annual Acquisition Research Symposium,
Vol. 1, 230-244, Naval Postgraduate School, Monterey, CA.

Sen, R. (2007). A Strategic Analysis of Competition between Open Source and Proprietary Software,
J. Management Information Systems, 24(1), 233–257. Summer.

Sen, R., Subramaniam, C., and Nelson, M. (2008). Determinants of the Choice of Open Source

http://opensource.org/licenses/lgpl-2.1.php�
http://opensource.org/licenses/agpl-v3.html�
http://opensource.org/licenses/gpl-3.0.html�
http://opensource.org/licenses/lgpl-3.0.html�
http://www.mozilla.org/MPL/�
http://www.mysql.com/about/legal/licensing/�
http://www.ics.uci.edu/~peymano/papers/thesis.pdf�
http://www.rosenlaw.com/GPLv3-Comments.htm�
http://www.rosenlaw.com/GPLv3-Comments.htm�

Alspaugh et al./Software Licenses in Context

754 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

Software Licenses, J. Management Information Systems, 25(3), 207-240, Winter.
Shaw, M., DeLine, R., Klein, D. V., Ross, T. L., Young, D. M., and Zelesnik, G. (1995). Abstractions for

Software Architecture and Tools to Support Them. IEEE Transactions on Software
Engineering, 21(4):314–335.

Siena, A., Mylopoulos, J., Perini, A., and Susi, A. (2008). From Laws to Requirements. In First
International Workshop on Requirements Engineering and Law (RELAW’08):6–10.

Stewart, K.J., Ammeter, A.P., and Maruping, L.M. (2006). Impacts of License Choice and
Organizational Sponsorship on User Interest and Development Activity in Open Source
Software Projects, Information Systems Research, 17(2), 126–144.

Stoltz, M. L. (2005). The Penguin Paradox: How the Scope of Derivative Works in Copyright Affects
the Effectiveness of the GNU GPL. Boston University Law Review, 85(5):1439–1477.

Subramaniam, C., Sen. R., and Nelson, M. (2009). Determinants of Open Source Software Project
Success: A Longitudinal Study, Decision Support Sys., 46(2), 576–585.

St. Laurent, A. M. (2004). Understanding Open Source and Free Software Licensing. O’Reilly Media,
Inc., Sebastopol, CA.

Tuunanen, T., Koskinen, J., and Kärkkäinen T. (2009). Automated Software License Analysis.
Automated Software Engineering, 16(3-4):455–490.

Unity Technologies (2009). Unity End User License Agreement. http://unity3d.com/unity/ unity-end-
user-license-2.x.html.

University of California, Berkeley (1998). The BSD License. http://opensource.org/licenses/bsd-
license.php

Ven, K. and Mannaert, H. (2008). Challenges and Strategies in the Use of Open Source Software by
Independent Software Vendors. Information and Software Technology, 50(9-10), 991–1002.

http://unity3d.com/unity/%20unity-end-user-license-2.x.html�
http://unity3d.com/unity/%20unity-end-user-license-2.x.html�
http://opensource.org/licenses/bsd-license.php�
http://opensource.org/licenses/bsd-license.php�

755 Journal of the Association for Information Systems Vol. 11 Special Issue pp. 730-755 November 2010

Alspaugh et al./Software Licenses in Context

About the Authors

Thomas A. Alspaugh is Visiting Assistant Researcher in the Institute for Software Research at the
University of California, Irvine, and Adjunct Assistant Professor at Georgetown University. He resides
in the Washington, DC area. After working in industry as a developer, project lead, and development
manager (at IBM, Data General, and other companies), and as a computer scientist in the Naval
Research Laboratory’s Software Cost Reduction project, he received his PhD in Computer Science
from North Carolina State University in 2002. From 2002 to 2008 he was Assistant Professor in
Informatics at the University of California, Irvine. His research interests include software requirements,
the interaction between software and law, and open-source licensing;
see http://www.thomasalspaugh.org/.

Walt Scacchi is Senior Research Scientist and Research Faculty Member in the Institute for
Software Research, and also Director of Research at the Center for Computer Games and Virtual
Worlds, both at University of California, Irvine. He received a PhD in Information and Computer
Science at UC Irvine in 1981. From 1981 to 1998, he was a professor at the University of Southern
California. Dr. Scacchi returned to UC Irvine in 1999. His research interests include open source
software development, computer game culture and technology, virtual worlds for modeling and
simulating complex engineering and business processes, developing decentralized heterogeneous
information systems, software acquisition, and organizational analysis of system development
projects. Dr. Scacchi is an active researcher with more than 150 research publications, and has
directed more than 50 externally funded research projects. He has also had numerous consulting and
visiting scientist positions with more than 25 firms or institutes, including four start-up ventures. His
recent activities and research publications can be found at http://www.ics.uci.edu/~wscacchi.

Hazeline Asuncion is an Assistant Professor at the University of Washington, Bothell. Dr. Asuncion
received her PhD in computer science from the University of California, Irvine, in 2009. Previously,
she was a Postdoctoral Researcher in the Institute for Software Research at the University of
California, Irvine. She has also worked in industry in a variety of roles: as a software engineer at
Unisys Corporation and as a traceability engineer at Wonderware Corporation where she designed a
successful in-house traceability system. Her research emphasis is on traceability, the identification
and visualization of related information units that are often distributed and represented
heterogeneously.

http://www.thomasalspaugh.org/�
http://www.ics.uci.edu/~wscacchi�

	14T1. Introduction
	14T2. A motivating example
	14T3. Related research
	14T4. Intellectual property (IP) basics
	14T5. Software licensing and FOSS licenses
	14T6. A theory of software licenses and their application
	6.1. Legal grounding
	6.2. A basic meta-model for licenses
	6.3. Reasoning rules in this meta-model
	6.4. Extending the theory using empirical data
	14T7. License architecture of Heterogeneously-Licensed systems
	7.1. Components
	7.2. Connectors
	7.3. Other information in a license architecture
	14T8. Embodying and applying the models and analysis
	14T9. Discussion
	14T10. Conclusion
	14TAcknowledgments
	14T References

