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Dispersion in working teams has been addressed by extant research mostly in terms of the physical distance that 
separates team members. Recently, the focus has shifted toward an examination of a newer construct –temporal 
dispersion (TD). The study of TD so far has been constrained mostly to conceptual work. This study furthers the 
understanding of TD through an empirical investigation of its relationship with open source software (OSS) team 
performance. In this paper, hypotheses are developed based on coordination theory, and analyses are performed 
using data collected from multiple archival sources comprising 100 OSS development teams. Results indicate that TD 
positively affects development speed and quality and that software complexity moderates the relation between TD 
and software quality. Theoretical and practical implications are discussed. 
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Following the Sun: Temporal Dispersion and Performance 
in Open Source Software Project Teams 
 
 

 

Open source software (OSS), with roots in the free software movement of the early 1970s, has 
become increasingly important in recent years. The OSS movement generated an alternative 
software development model that attracted much academic and corporate attention (Sen, 2007, 
Stewart et al., 2006), becoming not only mainstream but also commercially viable, in a phenomenon 
called “OSS 2.0” (Fitzgerald, 2006). There are a burgeoning number of OSS initiatives: More than 
230,000 projects and two million users are registered on sourceforge.net, the world’s largest OSS 
repository, representing an increase of more than 100% from 2006 to 2009. 

1. Introduction 

 
Many OSS projects have achieved great adoption success. For example, most web pages are 
delivered through the Apache server (Netcraft, 2009). MySQL has long become a major player in the 
database sector (Gartner, 2006). Furthermore, 60% of the largest companies in North America are 
implementing OSS applications, with half that percentage using them even for their mission-critical 
tasks (Schadler, 2004). More recently, the adoption of OSS has been identified as a top priority for 
software development professionals (Hammon et al., 2009).  
 
A key to the success of OSS projects lies in their ability to foster a sustainable level of coding activity 
from volunteer developers (Fang and Neufeld, 2009, Gonzalez Barahona et al., 1999, Qureshi and 
Fang, 2009, 2011). However, as many as 80% of OSS projects fail because they cannot maintain a 
healthy level of activity (Hermann, 2005, Hertel et al., 2003). The observed variability in coding 
activity has naturally raised the question of what factors influence OSS development performance. 
 
Two streams of OSS research have studied factors influencing development activities. While one 
stream focuses on understanding the motives behind individual developers’ participation in OSS 
projects (Franke and von Hippel, 2003, Hertel et al., 2003, Ke and Zhang, 2009, Ke and Zhang, 2010, 
Lakhani and Wolf, 2005, Roberts et al., 2006, Von Hippel, 2001), the other focuses on identifying 
project characteristics instrumental to the various dimensions of OSS success. Project-level factors 
identified in prior research included project tenure, team size, types of software, programming 
language (Crowston and Scozzi, 2002), project sponsorship (Shah, 2006, Stewart et al., 2006), 
software licensing (Colazo and Fang, 2009, Stewart et al., 2006, Stewart and Ammeter, 2002, Stewart 
et al., 2005), codebase architecture (Baldwin and Clark, 2006), and project network structure (Colazo, 
2010, Grewal et al., 2006). 
 
While these studies have contributed to understanding the success of OSS projects, they have not 
considered an important project team structural factor: the team’s temporal dispersion (TD), briefly 
defined here as the extent to which the working hours of team members differ (see a detailed 
discussion in the Theoretical Background section).  
 
OSS project teams are considered a type of global virtual team (Crowston and Scozzi, 2002, Gallivan, 
2001, Markus et al., 2000); one in which dispersed volunteer developers work together to produce 
software using internet-based collaboration tools. OSS project teams are dispersed not only spatially 
but also temporally. OSS project members’ hours depend not only on the specific time zones where 
the members are located but also on their preferred working times. This study aims to address the 
following research question: How does temporal dispersion affect OSS project performance?  
 
This research question is important for a number of reasons. First, although numerous studies have 
explored OSS success (Colazo et al., 2005, Crowston et al., 2003, Crowston et al., 2004, Raymond 
and Trader, 1999, Stewart, 2004, Stewart et al., 2005), the influence of TD on OSS project 
performance has not yet been researched, and the present paper breaks ground in this respect.  
 
Second, TD is a major actionable configuration factor for project leaders, particularly in commercial or 
corporate software development projects, where the temporal allocation of team members could be 
more easily dictated. For instance, some software firms have considered a "Follow the Sun" approach 
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by purposely structuring globally distributed teams across different time zones to maximize coverage 
and, supposedly, development speed (Espinosa and Carmel, 2003). However, to date there is no 
rigorous empirical support for this practice, and this paper delves into the issue, which is not only 
academically interesting but also practically substantive. 
 
Third, the answer to this research question in the context of OSS projects can pose important 
implications for the larger phenomenon of virtual teams. The current literature on virtual teams 
provides mixed views on the presumed influence of TD. While some researchers posit that TD can 
make virtual team coordination more difficult (Cramton, 2001, Hinds and Bailey, 2003, O'Leary and 
Cummings, 2007, Warkentin et al., 1997), others argue that some temporally dispersed teams can 
achieve remarkable performance (Massey et al., 2003, Yamauchi et al., 2000). However, most studies 
either only assume the presence of TD or dichotomously compare dispersed teams with co-located 
teams without consideration for the different degrees of TD teams might exhibit (O'Leary and 
Cummins, 2007). By focusing on TD and subsequently examining how it affects OSS team 
performance, this study provides insights that help reconcile mixed findings in the virtual team 
literature. 
 
Drawing upon the virtual team literature and coordination theory (Malone and Crowston, 1994), this 
study argues that in the context of OSS development projects, TD positively affects both development 
speed and the quality of the code generated. This study also hypothesizes that these relationships 
are moderated by the complexity of the software being developed. The empirical analysis of the 
hypotheses is based on data collected from multiple archival sources comprising 100 OSS project 
teams.  
 

2.1 Defining temporal dispersion 

2. Theoretical background 

Dispersion in software development teams, particularly in OSS project teams, has been examined 
through different lenses, for instance, dispersion in contributed effort (Olivera et al., 2008, Ortega et 
al., 2007), in permanence within the team (Colazo and Fang, 2009, Espinosa, 2003, Robles and 
Gonzalez Barahona, 2006), and more often  at a distance between team members (i.e., spatial 
dispersion) (Cramton, 2001, Majchrzak et al., 2000, Manzevski and Chudoba, 2000, Neufeld et al. 
2010, Townsend et al., 1998).  
 
Although TD is implicit in the description of virtual teams in most studies (Cramton, 2001, Majchrzak 
et al., 2000, Manzevski and Chudoba, 2000, Townsend et al., 1998), the majority of the extant 
empirical research has loosely operationalized it by either dichotomizing dispersed teams against co-
located ones or confounding TD with spatial or geographic dispersion. TD as a distinctly unique 
construct has not been explicitly addressed until recently (O'Leary and Cummings, 2007).  
 
The limited existing literature, in general, has approached the understanding of TD in two ways First, 
TD has been assimilated to the variation in the time zones where team members are located. Time 
zones serve as a fairly stable, standardized, and recognizable descriptor of TD (O'Leary and 
Cummings, 2007). However, time zone dispersion by definition coexists with spatial dispersion, 
making it difficult to separate the effects. Also, there may or may not be TD even with team members 
working in the same time zone. For example, consider the members of a team working a typical 9-to-
5 workday but disseminated in three distant cities: Toronto, New York, and Quito. These three 
locations are far apart but within the same universal time zone (in this case, UTC-5), and there is no 
TD. Conversely, consider three 8-hour shifts worked in the same location. In this example, there is no 
spatial dispersion but there is TD. Using time zone variation alone to measure TD would misrepresent 
either case. The decision of which time zone applies to a certain country or region within a country 
can also be affected by government policies, such as the implementation of daylight savings time. In 
addition, time zones are, by definition, separated by an integer number of hours, artificially fixing the 
granularity of the analysis. 
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Second, TD has been discussed as the variation in the work hours between team members (Griffith et 
al., 2003, Kirkman and Mathieu, 2005, Knoll, 2000). This indicator accommodates socio-cultural 
variations in work hours and days. It can also account for situations in which team members are 
located at the same site but work different shifts or even flexible hours. In this description, TD does 
not necessarily coexist with spatial dispersion, and yields to a more fine-grained observation of a 
range of TD under which a given team operates, for instance when people work shifts or when 
starting work at different times, whether or not the team members work in the same location. Under 
this approach, the working times should always be measured in a location-independent unit, such as 
Universal Time Coordinated (UTC).  
 
In our particular case of OSS, the latter scenario (i.e., the variation in actual work hours) presents a 
more adequate approach for the following reasons. First, most OSS developers are volunteers with 
very flexible work hours at their disposal (Dempsey, 2002). They do not normally adhere to regular 
“office” hours and even their temporal work patterns may change from day to day or over longer 
periods of time. Thus, those who sit in the same time zone may still work at different times, showing a 
substantive degree of TD. Second, the time zone approach to TD is most suitable when teams have 
both stable geographic boundaries and membership (O'Leary and Cummings, 2007). OSS project 
membership is highly fluid, and thus produces a constant renewal and variation of work time 
information as project membership changes. Third, as explained earlier, while time zone differences, 
by definition, correlate with spatial dispersion, considering actual work hours alleviates the potential 
confounding effect of spatial dispersion. Finally, in terms of empirical feasibility, data on developers’ 
actual work hours are much more tractable in OSS projects than developers’ time zone information 
(see the method section for details).  
 
Taken together, these arguments support the adoption of the variation of developers’ actual work 
hours as the working definition for TD in OSS projects. However, it is noteworthy that, in our definition, 
we do not account for the emergence of TD due to new members joining or leaving the project in 
different generations of developers, nor do we account for the dispersion in effort put into the project 
or the variance in individual developer productivity. 

2.2 Effect of temporal dispersion 
While some studies position TD as an important dimension of virtual teams with notable performance 
implications along with spatial dispersion (Griffith et al., 2003, Martins et al., 2004), others take one 
step further by arguing that spatial dispersion is an outdated descriptor of virtual teams because co-
located teams can also exhibit the behavior typical of virtual teams (Kirkman and Mathieu, 2005). 
Instead, they propose that TD, manifested as the degree of asynchronous communication, should be 
a defining characteristic of virtual teams. Despite the ongoing discussion regarding the role of TD,  
prior research presents largely mixed views on the effects of TD and spatial dispersion on virtual team 
performance (O'Leary and Cummings, 2007). 
 
Following O'Leary and Cummings (2007), this study posits that TD and spatial dispersion are both 
important dimensions characterizing virtual teams, but they exert different effects on team outcomes. 
Spatial dispersion is most closely related to reductions in spontaneous communications because it 
decreases the likelihood of face-to-face communication (Allen, 1977, Te'eni, 2001).  TD, however, not 
only minimizes spontaneous communications but also reduces real-time problem solving because it 
decreases the potential for synchronous interaction (Burke et al., 1999, Dennis et al., 1988).  
 
In a typical OSS project, software is developed by a spatially-dispersed group that manages 
interdependencies by coordinating its efforts through computer-mediated channels with limited or no 
face-to-face interaction (Duchenaut, 2005). The already very low level of face-to-face interaction is 
not likely to diminish as teams become more distant spatially, but coordination difficulties due to lack 
of real-time interaction may become more salient as the TD of a team continues to grow (Espinosa et 
al., 2006). Thus, although spatial dispersion and TD may coexist in OSS projects, their respective 
mechanisms in affecting coordination are different. This study is concerned about understanding the 
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effect of TD on OSS project outcomes by influencing the mechanism of asynchronous communication. 
There has been limited research on the influence of TD on the functioning of virtual teams, and 
particularly, software development teams. Divergent views exist among the researchers who explicitly 
or implicitly accounted for TD. On the one hand, several studies suggest that TD, which necessitates 
the usage of asynchronous communication, detracts from team member coordination and degrades 
communication quality (Warkentin et al., 1997). In asynchronous communication environments, 
coordinating temporal patterns of group behavior is a significant challenge because the transmission 
of verbal cues is hindered, feedback is delayed, and interruptions and long pauses in communication 
can occur (McGrath, 1991). In addition, long-time lapses between communication events, as is often 
the case in temporally dispersed situations, can result in disjointed and discontinuous discussions 
(Ocker et al., 1995). As such, research has found that temporally dispersed virtual teams (e.g., global 
software development teams) face specific problems, such as increased coordination costs (Espinosa 
and Carmel, 2003), additional barriers to conflict management (Montoya-Weiss et al., 2001), difficulty 
in assimilating atypical work hours and in meeting deadlines (Labianca et al., 2005), as well as a 
substantial decrease in the attainability and effectiveness of leadership control over a team 
(Jarvenpaa et al., 1998).  
 
On the other hand, some research postulates that TD can have positive effects on team outcomes 
when asynchronous communication is effectively used. First, asynchronous communication, by 
definition, eliminates time and space constraints on the act of communicating. Second, asynchronous 
communication allows members to take time to consider more carefully both the received information 
and the responses that should follow. Third, it can also allow members to consult other resources, 
internal or external to the team, for improved problem solving (Borges et al., 1999, Rasters et al., 
2002). Fourth, IT tools have been available to coordinate tasks that would otherwise be difficult to 
manage in asynchronous communication. For instance, in the context of software development, 
source code control systems (SCCS), also called “Versioning Systems,” such as Concurrent 
Versioning System or the newer SubVersion, are tools specifically designed to allow developers 
asynchronously contribute to the code base (Mockus et al., 2002) and to facilitate coordination 
(Grinter, 2000). OSS project teams also coordinate their work using lean communication media, such 
as mailing lists (Yamauchi et al., 2000). 
 
The mixed views on the effect of temporal dispersion in existing virtual team literature give rise to the 
need for developing a deeper understanding of how temporally dispersed teams effectively coordinate 
their work and whether potential moderating effects exist. Addressing this need requires (1) 
conceptualizing and measuring temporal dispersion as a distinct construct (rather than approximating 
its influence by looking at spatial dispersion), and (2) understanding how teams manage temporally 
interdependent activities, (i.e., perform temporal coordination) for projects of varying complexity. To 
understand the mechanism of temporal coordination, this study reviews coordination theory and 
discusses temporal coordination in the next subsection.  

2.3 Coordination theory 
Building on Thompson’s typology of functional dependencies (Thompson, 1967), coordination theory 
(CT) defines a team as a group of actors who achieve goals by performing interdependent activities 
that create or require various types of resources (Malone and Crowston, 1994, Malone et al., 1999). 
There are two distinct types of activities: goal-oriented and coordination-oriented activities.  
 
The primary goal of software development teams is to write useful source code to complete a 
functioning program, and thus individual tasks, such as coding and bug fixing, are goal-oriented 
activities. Coordination activities, on the other hand, are performed to address problems that arise 
from dependencies which constrain how goal-oriented activities can be performed (Malone and 
Crowston, 1994). Software project team task assignment and scheduling are examples of 
coordination-oriented activities.  
 
CT posits that three types of dependencies require coordination efforts: task-task, task-resource, and 
resource-resource dependencies (Crowston, 1991, Crowston, 1997). Tasks refer to activities 
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(including both goal- and coordination-oriented activities), whereas resources refer to tools and the 
time and effort of individuals required for task completion (Crowston, 1997). The necessity of task-
task coordination arises from the existence of a set of task precedence relationships unique to a given 
project, much in the same way that business students learn the critical path method for project 
management. For instance, task-task coordination is required when the output of one task is the input 
of others (also known as a prerequisite) and when tasks share the same output (Crowston, 1997).  
 
The need for task-resource coordination is derived from the simultaneous use of shared resources by 
more than one task. As explained by CT, when multiple tasks share a resource, it is either completely 
shareable or non-shareable but reusable. If a resource is completely shareable and unlimited, there 
will be no competition for resources and therefore no need for coordination. However, if a resource is 
limited, or non-shareable but reusable, the only coordination mechanism possible, as suggested by 
the theory, is scheduling the use of the resource (Crowston, 1997). In the presence of non-shareable, 
reusable resources, concentrated teams will be more likely to generate idle manpower and will then 
become less productive than temporally dispersed teams. 
 
The need for resource-resource coordination arises when the availability of a given resource depends 
on the presence of another resource (e.g., the availability of a software tool for coding may depend on 
the availability of a computer). This is the case when one resource is produced by a process in which 
some other resource is needed. Similar to when there is a set of task precedence relationships, 
resources will have their own set of resource precedence relationships (Crowston, 1997). Overall, CT 
states that project team success requires these three coordination activities to be effective, and 
coordination is of particular importance when dealing with complex tasks with tightly coupled 
interdependencies such as collaborative software development (Kraut and Streeter, 1995).  

2.4 Temporal coordination in temporally dispersed teams 
Temporal coordination refers to group actions that manage temporally interdependent activities using 
various resources with an explicit inclusion of time; this underscores the need to account for time as a 
scarce resource in coordination activities (Massey et al., 2003). Drawing upon CT, earlier research 
identifies three types of temporal coordination mechanisms that treat time as an important resource to 
be managed together with tasks and other resources. They include scheduling, synchronization, and 
allocation of resources (Marks et al., 2001, McGrath, 1991). Previous research suggests that these 
temporal coordination mechanisms can influence the nature of team interaction and thus team 
outcomes (Horton and Biolsi, 1993, Montoya-Weiss et al., 2001).  
 
Scheduling refers to the process of deciding how to coordinate between a variety of possible tasks by 
specifying the order and allotted time for interdependent tasks. It is an instance of task-task 
coordination, more specifically, one that specifies when the output of a task is the input of the 
subsequent task. If a team is temporally co-located, with all members amassed in a given working 
time, there may be a substantial chance that one or more team members with skills specific to a given 
task will, at some point, be idle, waiting for the completion of a preceding task. The resulting idle time 
can be minimized if the team members are correspondingly temporally dispersed in such a way that 
their allocation will be exactly aligned with the task sequencing derived from the task precedence 
relationships. Tasks have positive durations, and thus the latter case will require some amount of TD 
among the team. If temporally dispersed teams can be expected to reduce idle time, then it follows 
that those teams should be more productive than concentrated teams.  
 
Allocation of resources refers to specifying members with available time to be spent on specific tasks, 
and therefore is an instance of task-resource coordination. Time is a non-sharable and non-reusable 
resource. When a member is assigned a task at a specific time, that amount of time becomes 
dedicated to the specific task by the specific individual and, therefore, cannot be reused anymore. 
Similarly, members are also resources. If a member is locked in a task, he/she is unavailable to other 
tasks for the assigned period of time. TD allows for an increase in time resources, such that the time 
commitment by members can be spread across varying hours.  
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Synchronization refers to alignment of the pace or effort among members. This is an example of 
resource-resource coordination in the context of temporal coordination: The alignment of team 
members across tasks (i.e., resource as individuals) requires that these members be available at the 
specified time (i.e., resource as time). Using a similar argument to the one used for task-task 
coordination, the consequent temporal sequencing of resource availability indicates that temporally 
co-located teams are less productive than temporally dispersed teams. Teams can be temporally 
allocated so that members are ready to use a resource only when the resource is available, that is, 
once its own resource precedence relationships are met and not before, in the latter instance 
requiring coordination efforts that are detrimental to productivity.  
 
In the next section, this study draws on the virtual team literature and the coordination theory 
discussed in the present section to build research models and hypotheses on the performance impact 
of TD in the context of OSS projects. 

In developing the research model, this study focuses on understanding the effect of TD on both the 
quality and quantity aspects of OSS team performance. OSS performance has been extensively 
studied in prior literature (Colazo et al., 2005, Crowston et al., 2003, Crowston et al., 2004, Raymond 
and Trader, 1999, Stewart, 2004, Stewart et al., 2005), suggesting a wide array of performance 
indicators. From among these indicators, quality of code is used to capture the quality aspect of OSS 
project performance, whereas development (coding) speed is used to capture the quantity aspect.  

3. Research model and hypotheses 

 
Following the previous discussion on the general definition of TD for the particular case of OSS 
project teams, these teams are temporally dispersed for two main reasons. First, OSS projects are 
hosted in publicly available, internet-based platforms with open membership; individuals from 
anywhere in the world may register themselves and start participating without consideration of or 
restrictions on time zone boundaries. Second, although OSS project members can be physically 
located in the same time zone, different members may have different preferences or restrictions with 
regard to the time of a day they participate, hence creating a possible TD even within the same time 
zone.  
 
However, there are several fundamental characteristics of OSS project teams that make temporal 
coordination distinct from other types of virtual teams. First, OSS project teams feature open and 
voluntary yet fluid membership. Although achieving core developer status is not a trivial quest 
(Qureshi and Fang, 2010), most OSS projects make it extremely easy for individuals to join in and 
contribute knowledge, to ensure a sufficient supply of developers (Franke and von Hippel, 2003, 
Hertel et al., 2003, Lerner and Tirole, 2000, Roberts et al., 2006, Shah, 2006, Von Hippel, 2001, Von 
Krogh et al., 2003, Wu et al., 2007). They use unrestricted internet-based access and the ability to 
motivate participants (e.g., hit a programmer’s “personal itch”) (Raymond, 1999) to make participation 
in OSS projects possible from anywhere and at any time. Thus, a distinct underlying characteristic of 
OSS project development is that manpower is an important and theoretically infinite resource, but it is 
not always enforceable or even obtained due to the voluntary nature of OSS project member 
participation.  
 
Second, unlike most commercial software development teams that are severely constrained by a set 
of predefined timelines (Massey et al., 2003), OSS project teams have ongoing programming work 
without strict deadlines that may forcefully regulate developer efforts (Scacchi, 2002). For many OSS 
projects, there are even no predefined release dates; the software is released when the core 
developer group thinks that it is time to release the software (Sarma and Van der Hoek, 2004). 
Although some projects set loosely defined deadlines, they are not always effective because the 
voluntary nature of participants makes enforcing those deadlines difficult. In fact, that major features 
on the critical path are not yet ready as planned happens regularly, leading to frequent timeline 
adjustments (Michlmayr et al., 2007). Thus, compared with traditional software developers, OSS 
developers usually have a much bigger latitude over when and how long to complete assigned tasks. 
Thus, comparatively speaking, time may not be a scarce resource, which is not the case in 
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commercial software development projects.  
 
Given that human resources in OSS development are fostered by volunteerism, and time as a 
resource is generally unconstrained in OSS development, project coordination becomes challenging. 
OSS projects use the central design of software architecture as a facilitator of coordination between 
tasks and a special subscription-based model to manage temporal coordination between tasks and 
resources (e.g., coding task and developer), and between multiple resources (e.g., developer and 
time). These types of coordination are primarily managed through the use of internet-based 
information technologies, including mailing lists (used for technical discussion, bug-fixing, feature 
requesting, etc), “to do” lists, and SCCS. Each of these technologies provides an important role in 
coordinating work across the team: Mailing lists provide a historical log of all communications among 
developers; bug reporting software keeps track of software errors as they are identified and resolved 
over time; tracker software logs new features requested by users and developers as well as their 
implementation; details of tasks pending completion (“to do” lists) are also often available to read and 
act upon; SCCS data provide a complete history of all changes to the software program that occurred 
since its inception. With these tools in hand, project members have access to a nearly complete 
history of the development of codebase, enabling and deepening their engagement in the project.  
 
These technologies, together with the subscription-based model, collectively provide OSS project 
members with well-structured yet highly flexible temporal coordination mechanisms, allowing the 
advantages of TD to be better embraced. This study now looks at how the three important aspects of 
temporal coordination summarized earlier (i.e., scheduling, allocation of resources, and 
synchronization) are managed in OSS projects through these technologies and in the subscription-
based model to achieve an advantage. 
 
First, scheduling in OSS projects is accomplished primarily through the use of a “to do” list or 
applications of a similar nature (Yamauchi et al., 2000), which identify a list of tasks that need to be 
delivered. The list indicates the priority of tasks so that interested developers understand which tasks 
should be completed first. However, developers are still free to tackle tasks of low priority if they so 
choose. As such, developers are essentially informed about scheduling (a sense of temporal 
sequence) but not entirely constrained by the schedule, and they may choose to participate during 
any period suitable for them. In this sense, time is usually a resource for OSS project teams rather 
than a constraint. Thus, not only will TD not cause coordination problems in scheduling for OSS 
project teams, but it will also increase the total time available to projects, allow developers to take the 
extra time needed to code appropriately, and therefore improve team performance both in terms of 
quantity and quality.  
 
 Second and with regard to resource allocation, human resources are allocated based primarily on 
voluntary subscription in OSS project teams (Markus et al., 2000). With traditional software 
development teams, allocation of resources is a pertinent coordination issue because both 
developers and time are limited resources (development cost is measured by man-hours). As such, 
both must be carefully and optimally aligned to meet pre-specified deadlines (Espinosa et al., 2007). 
However, for OSS project teams in which manpower is not always guaranteed and time is often not a 
limited supply, what matters more to resource allocation is whether someone voluntarily subscribes to 
a task and manages to complete it rather than how much time he/she should take to complete it 
(Yamauchi et al., 2000). On one hand, such loosely knit task-resource coordination has less need for 
planning and optimizing the developer resources--coordination tasks that may otherwise be difficult to 
resolve for temporally dispersed teams (Espinosa and Carmel, 2003). On the other hand, the 
advantages of temporally dispersed teams are retained, such as more available time for individual 
developers to reflect, experiment, and code (Borges et al., 1999, Rasters et al., 2002). This 
“individual” quality time is actually appreciated by OSS project teams (Markus et al., 2000). Thus, 
more temporally dispersed OSS project teams can be more productive in terms of quantity and 
quality of coding activity. 
 
Third, synchronization (i.e., aligning the pace or effort among OSS developers) is achieved through a 
review and selection process using the mailing list and SCCS (Yamauchi et al., 2000). OSS 
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developers in general have latitude in deciding which tasks to work on and when to work on them; 
thus, synchronization of these voluntary and seemingly disorganized efforts is particularly important 
for the success of OSS projects. With traditional project teams, team member efforts are aligned 
either concurrently through synchronous communication (if the team is temporally co-located) or 
carefully planned beforehand (if they are temporally dispersed) (Espinosa and Carmel, 2003). The 
purpose of such alignment is to increase cost-effectiveness or resolve conflicting opinions (Montoya-
Weiss et al., 2001).  
 
However, the alignment of these OSS project team resources takes different forms. The code 
completed by voluntary developers will be made open to public and will be subject to review by core 
developers before it is approved for inclusion in the code base (Lee and Cole, 2003, Markus et al., 
2000). Through peer review, decisions on the inclusion of certain code are made based on technical 
merit. In other words, developers’ efforts, manifested as the delivery of source code, are aligned not 
based on pre-defined plans or simultaneous communication that is time-sensitive but on a selection 
and retention process not made under extreme time pressure. In effect, this unique synchronization 
mechanism, together with ample time available for consumption in the ongoing OSS project, enables 
(but does not compel) the team members to engage in activities that can enhance the quantity and 
quality of production (Kelly et al., 1990, McGrath and Kelly, 1986). Furthermore, given that this 
synchronization process is not time sensitive to OSS projects, TD is not likely to have a negative 
effect on the synchronization of developers’ efforts. On the contrary, greater TD will allow project 
progress to be continually monitored, reviewed, reflected, and revised around the clock, thereby 
leading to higher quantity-per-unit time (development speed) and quality of code. Taken together, we 
hypothesize that 
 

H1(a, b): The degree of temporal dispersion is positively associated with (H1a) the 
speed and (H1b) the quality of coding in OSS project teams 

 
However, the relationship between the temporal structure of a team and its performance is not 
unconditional. The effect of TD on a team’s outcomes may be more pronounced when the team is 
engaged in a project task that is highly complex. When tasks are simple, identifying and 
understanding how parts of the task affect one other is relatively easier. However, when tasks are 
more complex, individuals as well as teams find it more difficult to understand and resolve task issues 
due to the marked increase in the relatedness of task-related activities (Wood, 1986).  
 
In the context of software project teams, software complexity is an important issue for code 
development. Basili and Hutchens (1983) defined software complexity as a measure of the resources 
expended while interacting with software code. This complexity arises from the organization of 
program elements within a program, which impacts activities such as coding, debugging, testing, or 
modifying the software. The difficulty in performing these tasks depends in good part on the structural 
characteristics of the source code itself (Kearney et al., 1986). Consequently, this study focuses on 
structural complexity of the software being developed as a prime contextual factor.  
 
Structural complexity captures the characteristics or attributes of the software artifact being developed 
or modified. A software artifact can be considered greater in its structural complexity if it contains 
more interrelated modules or logic flow paths (Darcy et al., 2005). When software is more complex, 
more information needs to be processed during coding. Developers must not only comprehend each 
of the individual instructions but must also spend additional cognitive effort to understand how 
different files, modules, and information flow paths are interrelated. Thus, as the interrelationships 
among various nested parts of the software artifact increase, developers are increasingly troubled 
with the challenge of figuring out in real time and under their immediately available resources the 
interdependencies inherent within the software’s logic decoded into computer instructions, and 
interfacing and/or feeding their solutions to developers undertaking successive or preceding tasks. 
This challenge may be alleviated when asynchronous communication brought about by TD allows for 
more time and resources that help understand the nuances of software complexity and arrive at a 
more effective problem solving. Better problem solving can be translated into an increased number of 
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bugs being found and fixed, and consequently a higher level of coding activity and code quality.  
Moreover, TD allows flexible work time allocation for developers. That is, TD keeps them from being 
constrained to a fixed work schedule and allows them to potentially be in tighter agreement with the 
natural precedence relations present in a given coding endeavor. By adapting work time to the 
demands of the interrelated files, developers can minimize idle time and achieve a greater fit between 
worked hours and productivity. This positive effect is naturally more pronounced when the structural 
complexity of the overall task is more daunting, and TD may be expected to have a more noticeable 
positive effect on coding speed and quality when tasks are more complex. Thus, we hypothesize the 
following: 
 

H2(a, b): Software complexity moderates the relationship between TD and (H2a) the 
speed and (H2b) the quality of coding in OSS project teams in such a way that when 
software complexity is higher, the effect of TD on the speed and the quality of coding 
is stronger. 

4.1 Research setting  

4. Methods 

The public availability of data on OSS, including the product itself (source code) and other artifacts 
such as mailing lists, change logs, and so on, poses a great opportunity for empirical research. OSS 
project team information is hosted in web-based repositories that have been used repeatedly as 
sources of archival data for empirical studies. In accordance with the majority of previous OSS 
empirical studies (e.g. Colazo and Fang, 2009, Fang and Neufeld, 2006, Hahn et al., 2008), the 
setting of this research consists of OSS projects hosted in Source Forge (SF) (www.sourceforge.net). 

4.2 Sampling  
The OSS project data were collected in early 2008. Among all OSS projects hosted in SF, the projects 
analyzed were restricted to those using “C” as their programming language for two main reasons. 
First, “C’” is the most popular programming language in SF; second, the use of a single programming 
language is strongly preferred when using code-based metrics (Jones, 1986). Projects were 
considered written in “C” when at least 90% of their source code files were written exclusively in that 
language.  
 
In SF, an overwhelming majority of the registered projects do not have any meaningful activity with no 
source code at all. Moreover, projects with only one developer are not representative of temporally 
dispersed project teams or even of projects of interest for business. Bigger teams are more likely to 
be representative of projects involving the development of popular, widely used software. 
Consequently and following previous empirical research on OSS, projects with six or more core team 
members were selected (Crowston and Howison, 2003). In accordance with the previous research 
(Mockus et al., 2002), core team members are defined here as project members who have 
administrative rights to write source code in the repository.  
 
In the SF repository, there were 276 software projects being developed by six or more core team 
members and using “C.” These 276 projects constituted the sampling frame. The final sample was 
reduced to 100 projects (36% of the sampling frame) because only that number had archived full data 
on all development activities. In spite of the non-probabilistic nature of the sample (see limitations), it 
contained projects with varied types of applications (Table 1),  sizes, and degrees of maintainability 
(Oman and Hagemeister, 1994) (Table 2). Data were cross-sectional, and the unit of analysis was the 
OSS project. 

http://www.sourceforge.net/�
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4.3 Measurement 
From the source code files for each project, quality of coding was measured by the number of total 
expected pre-test software defects (called “B” after the initial letter of “Bugs”) (Ottenstein, 1981), 
standardized per thousand lines of source code (B/KSLOC). The parameter “B” estimates the 
expected number of defects latent in the source code, and it has been validated (Gremillion, 1984) 
against actually found quality defects in the software testing stage. Note that a higher defect count 
corresponds to lower software quality. This parameter was calculated by parsing the source code of 
each project with an off-the-shelf program commonly used in software development for obtaining 
static code metrics (Scitools, 2005). 
 
Product development speed was measured in two ways. First, the average number of days between 
any two consecutive versions gave a measure of the inter-release time, a direct surrogate for 
development speed. The SCCS log files provided the version numbers of the software as it was being 
developed. For each project, all dates when a change in the revision number occurred were recorded 
for all different types of software versions: major versions (e.g. 1.0, 2.0, etc.), minor versions (1.1 to 
1.2 for example), and “build” versions (e.g. 2.1.1 to 2.1.2).  
 
Second, as inter-release times might be affected not only by development speed but also by different 
release policies, the average number of lines of code written per developer per month, a popular and 
established measure for development speed, was used as a proxy (cf. Jones, 1986).   
 
Software structural complexity was measured using the project's average McCabe's cyclomatic 
complexity factor (McCabe, 1976), a widely used metric for assessing the intricacy and 
understandability of software projects. The projects’ source code files were downloaded and parsed 
with custom-written software analyzer programs to obtain code complexity. The metric was confirmed 
using two different off-the-shelf code analyzers (Scitools, 2005, Testwell Oy, 2005). Complexity is the 
moderating variable in this study, and thus the range of complexity in the sample was inspected using 
the guidelines given by Marciniak (1994). This analysis showed that the programs ranged from simple 
to highly complex (Table 3). 

Table 1: Some Projects Sampled 
Project name Type 
cobolforgcc COBOL compiler 
enlightenment window manager for X11 
gaim instant messaging suite 
vim text editor 
zephyr data acquisition for industrial controllers 

Table 2: Some Project Descriptives 
  Min. Max. Mean Median 
Source Lines of Code 63 88309 1184 2387 
Source Files 5 5651 124 211 
4-Metric Maintainability Index 8 172 97 12 
Team Members 6 13 8.2 8 
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In extant research, only few attempts have been made to measure TD. Knoll (Knoll, 2000) measured 
the mean and standard deviation of actual working hours of team members around the Greenwich 
Meridian Time (GMT). O’Leary et al. (2007) developed an index based on time zone differences 
among team members. McDonough et al. (2001) measured TD in three ordinal categories: co-located, 
virtual, and global. This study did not build on the ordinal measure by McDonough et al. (2001) 
because (1) it compounds the mixed perception of TD and spatial dispersion, and (2) it does not use 
adequately the information content and the fine granularity of data, where working times are extracted 
to the exact second when the activity is logged.  
 
Consistent with the working definition of TD used in this paper, a measure was adapted for it based 
on the variation of actual work hours rather than on time zone differences, as suggested by O’Leary 
et al. (2007). This decision was made based on two conditions recognized in the literature: the nature 
of the sample and the source of the data (O'Leary and Cummings, 2007). First, as mentioned earlier, 
the subjects of the sample, that is, the OSS developers, do not always adhere to normal office hours 
(Dempsey, 2002). While some may contribute during office time, others may consider OSS projects 
as a hobby and work at their leisure, which could be at any time of day. Therefore, actual work hours 
will more accurately capture temporal patterns of OSS developers than time zones. Second, data 
included the complete details of the OSS developers’ specific time for code submission and/or 
mailing-list activities, thus capturing OSS developers’ actual work hours, while location data are far 
from complete in OSS repositories, making it extremely difficult to obtain complete and accurate data 
on time zones. Given “the use of any measure involves tradeoffs among precision, ease of calculation, 
and availability of data” (O'Leary and Cummings, 2007)(p.445), actual-work-hour-based measure was 
believed to be the best available option for the purpose of the study.  
 
Consequently, TD was measured using the variance in the team members’ starting time, where time 
is expressed in a location-independent time unit: UTC. For every day in a given time window 
immediately preceding the measurement of the other variables, the time when each developer 
submitted his/her first contribution was recorded. The mentioned time window was set as a month, 
but results do not change in significance if the time window is set at a quarter or at a semester.1

 
 

Developer activity time was observed from two different sources: time stamps in the SCCS log files 
and stamps recorded in the developers’ e-mail lists. SCCS log information was already in UTC 
regardless of where the code changes came from. E-mail time stamps were not in UTC, but they 
were transformed into UTC by noting the time zone recorded in the e-mail exchange log (e.g., 10:45 
PM UTC+5 was recoded into 5:45 PM UTC). SCCS logs and e-mail logs were then parsed for 
submission times with custom-made scripts written in Practical Extraction and Report Language 
(PERL).  
 
With regard to the control variables, the sampling design naturally controlled for programming 

                                                      
1 Further checks were carried out: TD based on the variance in team members’ last (instead of first) contribution of the day was 
measured, and similar results were obtained. Additionally, as suggested by one of the reviewers, instead of controlling for the 
team size, we ran an additional model measuring TD by the number of worked hours/ (total worked hours x number of 
developers) with the intention of standardizing the metric. The results were again agreeable (available on request). 

Table 3: Complexity of Programs 
Cyclomatic Complexity Range Category % 

1-10 Simple 61 
11-20 Moderately Complex 23 

21 – 50 Complex 14 
> 50 Highly Complex to Intractable 2 
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language to eliminate inconsistencies in the metrics based on source code, such as the number of 
defects or the complexity. Also, the TD measure naturally excludes the level of face-to-face 
communication, which is near zero in most OSS projects regardless of the degree of spatial 
dispersion (Duchenaut, 2005). Other controls included project tenure, team size, source code size, 
type of software license, and a work time overlap index. Some of these controls were not included in 
all regressions; for instance, when the dependent variable was Bugs/KSLOC, the size of the source 
code in KSLOC was not included as a control for obvious model specification reasons. 
 
Project tenure was measured by counting the number of days between the first known date of activity 
in the source code repository and the date the measurements were taken. Project size was measured 
in total lines of source code. The number of developers was taken from the SCCS logs. Recent work 
also suggests that a control should be used for the type of software license used in the project (i.e., 
whether the license has a “copyleft” clause or not) (Colazo and Fang, 2009, Stewart et al., 2006). 
Although the effect is still unclear, a dummy variable was used for this purpose, assigning a value of 
one if the project has a copyleft clause and zero if not.  
 
When measuring TD, introducing an “overlap index” has been suggested to control for the effect on 
TD of overlapping working times among team members as teams grow larger  (O'Leary and 
Cummings, 2007). This is because in distributed teams, as the team grows in size, work times will 
tend to overlap and TD will change, and this effect needs to be controlled for. This overlap index was 
calculated as the average number of developers active in every hour of a 24-hour day for the same 
time window along which TD was measured (one month).  
 
All variables were log-transformed to increase linearity. TD and task complexity were also 
standardized, to alleviate colinearity with their interaction cross-product, as it is customary (Aiken and 
West, 1991). 

Table 4 shows bivariate correlations and descriptive statistics of the variables used in the regression 
models. The results of OLS regressions for the three dependent variables (i.e., number of predicted 
defects per thousand lines of code, average time between consecutive minor releases, and average 
KSLOC written per developer) are shown in Table 5. 

5. Results 

 
First, H1a, which states that TD is positively associated with development speed, is supported: A 
significant and negative relationship was found between TD and inter-release time, an indicator of 
development speed (β=-0.143, p<0.001). Although minor releases were used in the presented 
regression model, the results did not change if either major or “build” releases were used. 
Furthermore, the result showed that TD was significantly and positively associated with the number of 
KSLOC written per developer (β=0.076, p<0.001), further strengthening the support to H1a.  
 
Second, H1b, which states that TD is positively associated with the quality of coding, was also 
supported. TD was found to be negatively associated with the number of total expected pre-test 
software defects per thousand lines of code (β=-0.014,p<0.05), indicating that high TD is associated 
with fewer defects and subsequently with a higher quality of coding.  
 
Third, H2a, which states that software structural complexity moderates the relationship between TD 
and development speed, was not supported. No significant interaction effects of structural complexity 
and TD were found on inter-release time or KSLOC per developer.  
 
However, H2b, which states that software structural complexity moderates the relationship between 
TD and quality of coding, was supported. A significant and negative interaction effect on the number 
of total expected pre-test defects per KSLOC was found between TD and structural complexity (β=-
0.046, p<0.001), indicating that the positive effect of TD on quality is greater when the complexity of 
the product is higher. In other words, temporally dispersing a team has a more beneficial effect on 
quality when the complexity of the product is high than when it is low.    
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Table 5: OLS Results  
 Defects Development Speed 
  B/KSLOC Inter-release time KSLOC/dev 
Intercept 1.749 **** 2.223 **** 2.671 **** 
         
Control Variables        
Copyleft 0.107 **** 0.024  -0.124 *** 
Tenure 0.035  0.131 ** 0.658 **** 
Team size 0.150 **** 0.112 **    
Source size   0.000     
Overlap Index 0.005  -0.032  -0.003   
         
Independent Variables       
TD -0.014 ** -0.143 **** 0.076 **** 
Complexity 0.047 **** -0.006 * 0.022 *  
         
Interaction        
TD X Complexity -0.046 **** -0.012  0.028   
         
R 0.13 2  0.10  0.16   
N = 100        
   **** p < 0.001 ** p < 0.05   
    *** p < 0.01 * p < 0.1   

 
 

This study represents an original contribution to the literature on virtual teams in general and OSS in 
particular by providing several insights into how TD relates to OSS team performance.  

6. DISCUSSION AND CONCLUSIONS  

 
First, this study supports the claim that TD has a positive effect on OSS development speed when 
measured both in terms of inter-release time and the number of lines written per developer.  
 
Second, this study provides general support to the claim that TD is positively associated with the 
quality of coding. The more temporally dispersed an OSS project team, the fewer the expected 
defects.  
 
Third, this study provides empirical support to the moderating role of one important software structural 
characteristic: software structural complexity. Software complexity is found to negatively moderate the 
relationship between TD and the number of predicted defects per KSLOC.  
 
To understand this interaction effect more clearly, the effect is plotted in Figure 1. The results show 
that when complexity is higher, higher TD is associated with better quality (i.e., lower defect count). 
This moderating effect implies that TD may increase code quality when working on complex software. 
This may be because TD allows developers to take time to focus on the problems at hand through 
comprehension of the received information and the responses that should follow, as well as allowing 
members to consult other resources for better problem solving effectiveness (Borges et al., 1999, 
Rasters et al., 2002). When software complexity is low, temporally dispersing team members may not 
be of great help in terms of code quality.  
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Figure 1. Interaction between TD and software structural complexity 
 

 
 
However, from these results, the amount of code written grows with TD but this effect is independent 
of the code’s complexity. A plausible explanation is that the newer code written, while requiring 
coordination effort, is added at a rate independent of the existing complexity because developers 
prefer to write more freestanding modules than to dedicate time to understanding the flow of 
information from older code and building on existing flow paths. 

6.1 Research implications 
This paper contributes to the literature in several important ways. First, to our knowledge, this is the 
first empirical study to measure TD and investigate its relationship with project performance in the 
OSS context, thus adding this crucial yet understudied project structural factor–temporal dispersion–
to the mainstream OSS project literature. Specifically, we provided theoretical insights into and 
empirical support to the important effect of TD on OSS project performance in terms of two different 
performance dimensions: quality and quantity of coding.  
 
Second, this study contributes to the OSS literature by providing insights into the moderating role of 
software structural complexity in the relationship between TD and the quality of software development 
process. Software complexity is an important issue for software development (Kearney et al., 1986) 
and has serious consequences on the quality of software and on the efficiency of its production 
process (Banker et al., 1998, Basili and Hutchens, 1983, Kearney et al., 1986, McCabe, 1976, Xia 
and Lee, 2005). However, existing OSS research that accounts for software complexity is surprisingly 
rare despite its potentially important consequences to project performance. This research fills this gap 
by showing that software complexity not only directly influences OSS performance outcomes as 
expected but also that its effect on quality can be moderated by varying the degree of the team’s TD.  
 
Third, this study has meaningful research implications for the virtual team literature. As discussed 
earlier, the virtual team literature has mixed views on the supposed performance impact of TD 
(Cramton, 2001, Hinds and Bailey, 2003, Neufeld and Fang 2005, O'Leary and Cummings, 2007, 
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Warkentin et al., 1997), but without proper empirical evidence (O'Leary and Cummings, 2007). While 
our TD measure might warrant further refinement, this study breaks new ground with regard to testing 
the effect of TD. In doing so, this study provides solid, non-perceptual evidence about the relationship 
between TD and virtual team performance in the context of OSS projects.  
 
This investigation also helps advance the theoretical understanding of the performance impact of TD 
for virtual team literature. Using OSS as the research context, this study implies that virtual teams, if 
without time as a strict resource constraint, can better enjoy performance gains by temporally 
dispersing their team members, particularly when the product being developed is highly complex. In 
this regard, the findings of this study help provide a more nuanced understanding of the mixed views 
on the effect of TD on virtual teams by explicitly considering the boundary condition of time and of 
product complexity.  
 
There are several important practical implications as well. First, the result of this study is encouraging 
to global virtual team managers who propose that their team’s TD results in faster development speed. 
This paper shows scholarly support for the “Follow the Sun” approach adopted by practitioners. In 
light of the results of this study, managing the TD of software teams becomes a clear strategic 
imperative for global project team managers. Second, strategically managing the temporal work 
patterns of virtual teams in situations where higher-quality work is required for particularly complex 
programs seems to be especially worthwhile. Conversely, for relatively simpler products, TD will not 
yield important quality improvements over a temporally uniform team.  

A notable strength of this study is the “hard” nature of the data and metrics. However, limitations with 
the data should be considered. First, previous research has examined the perils and pitfalls of using 
SF data in OSS empirical studies, with three major issues: the lack of integrity of the downloaded data, 
the need to cross-check data with other available sources, and the need to clean the data (Howison 
and Crowston, 2004). All these problems were carefully addressed and controlled for, mainly through 
an extensive and costly manual review of all the projects in the sample. For instance, licensing 
information was crosschecked with licensing files in the SCCS. Samples of the source code were 
manually inspected to confirm the programming language and line counts. We always used only the 
main branch of the SCCS, and a small number of projects were built from source and compiled to 
confirm that they represented somewhat complete software and that no major blocks of code were 
missing from our analysis. We also double-checked all static metrics using at least two off-the-shelf 
analyzers. 

7. Limitations and future research 

 
Second, the sample is non-probabilistic and thus does not represent the universe of OSS projects. 
However, it is not the intention of this study to generalize findings to small projects or to those that 
never progressed to the coding phase, which are the majority of the projects hosted on SF and of 
OSS projects in general  (Krishnamurthy, 2002). Instead, setting a lower team size limit means that a 
sampling bias is introduced and that the bias is in accordance with the kind of software development 
project that is particularly interesting to the business community (i.e., relatively bigger in team size, 
with longer time spans and a functioning code base).  
 
Third, some measures may be less appropriate as projects become more sophisticated or use other 
programming languages. For instance, we averaged complexity at the file level, which does not 
capture overall architecture. Although in our case we only considered projects written in a procedural 
language (“C”) and cyclomatic complexity is a plausible metric, this measure would need to be 
reconsidered for object-oriented languages when coupling and cohesiveness become more salient  
(Chidamber and Kemerer, 1994). Also, in measuring project tenure, since naturally the data may be 
right-censored one could think that there is a potential bias for overestimation (i.e. at the time of data 
collection we cannot rule out that the last activity we measured was actually the last activity ever). We 
eliminated the uncertainty by updating activity data and confirming that all projects in the sample were 
indeed active beyond our data collection date. It is important to note that our definition of TD is 
restrictive, in the sense that it does not encompass all possible conceptualizations of dispersion in a 
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virtual team. For instance, we do not account for the emergence of TD due to member renewal, nor 
do we account for the dispersion in individual developer effort or efficiency, leaving the task for future 
studies . 
 
Finally, for the reasons explained in the measurement section, both inter-release times and average 
SLOC per developer are only two out of potentially many proxies for development speed that can be 
considered. While our measures arguably do not cover all possible interpretations of “development 
speed,” they offer reasonable support for our results.   
 
Future research can analyze the TD construct within other research frameworks, which will also be 
useful to assess the external validity of these results. Researchers could also explore the effects of 
TD on other project outcomes, such as the degree of evolution of the software’s functionality as an 
alternative measure for development speed. Qualitative studies as well as analytical models of TD in 
teams, considering different moderating effects, can yield rich insights. Cost-benefit analyses of 
setting up temporally dispersed teams should be of substantive interest to software development 
managers. 
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