

Volume 12 Issue 1

Jo
ur

na
l o

f t
he

 A
ss

oc
ia

tio
n

fo
r I

nf
or

m
a

tio
n

Abstract

Special Issue

Richard Torkar
Blekinge Institute of Technology
richard.torkar@bth.se

Pau Minoves
i2cat Foundation
pau.minoves@i2cat.net

Janina Garrigós
i2cat Foundation
janina.garrigos@i2cat.net

Today’s software companies face the challenges of highly distributed development projects and constantly
changing requirements. This paper proposes the adoption of relevant Free/Libre/Open Source Software (FLOSS)
practices in order to improve software development projects in industry. Many FLOSS projects have proven to
be very successful, producing high quality products with steady and frequent releases. This study aims to identify
FLOSS practices that can be adapted for the corporate environment. To achieve this goal, a framework to
compare FLOSS and industrial development methodologies was created. Three successful FLOSS projects were
selected as study targets (the Linux Kernel, the FreeBSD operating system, and the JBoss application server), as
well as two projects from Ericsson, a large telecommunications company. Based on an analysis of these
projects, FLOSS best practices were tailored to fit industrial development environments. The final results
consisted of a set of key adoption opportunities that aimed to improve software quality and overall
development productivity by importing best practices from the FLOSS environment. The adoption opportunities
were then validated at three large corporations.

Volume 12, Issue 1, pp.88-122, January 2011

Adopting Free/Libre/Open Source Software
Practices, Techniques and Methods for
Industrial Use*

* Michael Wade and Kevin Crowston were the accepting guest editors. This is one of the accepted papers for
the Special Issue on Empirical Research on Free/Libre Open Source Software in 2010 Issue 11 and 12. This
article was submitted on 12th October 2009 and went through two revisions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301382224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

89

Adopting Free/Libre/Open Source Software Practices,
Techniques and Methods for Industrial Use

Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

1. Introduction
To structure the software development process, organizations generally adopt a software
development methodology. Avison and Fitzgerald (2003) define a software development methodology
as “a recommended collection of phases, procedures, rules, techniques, tools, documentation,
management and training used to develop a system.” There are many available software
development methodologies that an organization can follow to drive its projects, ranging from the
traditional waterfall model to more modern ones that adopt an agile approach. For example, Ericsson
AB, one of the major software producers of telecommunication systems and the site of the present
study, uses a software development methodology called Streamline. Created by and for Ericsson, this
methodology is widely implemented in-house with some project-specific variations.

In parallel with the development of formal methodologies, over the past twenty-five years
Free/Libre/Open Source Software (FLOSS) communities have evolved a distinctive way of producing
software. Noticing the success of several FLOSS projects, industry has shown particular interest in
understanding how the massively distributed development teams commonly found in FLOSS
communities manage to deliver high quality software. Distributed development poses significant
challenges for software developers, but FLOSS teams often seem to be able to overcome these
challenges. Based on the hypothesis that industry can benefit from adopting some practices from
FLOSS development, the aim of this study is to collect, identify and analyse relevant FLOSS software
development practices and then transform them to general adoption opportunities.

Free/Libre/Open Source Software has been an object of research for some years. FLOSS projects
have been analysed mainly from two perspectives: as a product or as a development methodology.
Studies investigating FLOSS as a product focus on measurable characteristics of the software or
projects, such as defect density, software packaging statistics, software growth or number and type of
contributors. Target projects of such studies have included the Apache httpd server (Paulson et al.,
2004), the Linux kernel (Paulson et al, 2004), the GCC compiler (Paulson et al., 2004), the Debian
Linux distribution (Amor et al., 2005; González-Barahona et al., 2001), OpenBSD (Li et al., 2005), and
the Eclipse development environment (Herraiz et al., 2007). In the second group, we find studies
investigating FLOSS as a way of producing software. These studies can be broadly categorised by
their focus on community culture (e.g., Glass, 2003), organisational models (e.g., Gacek and Arief,
2004; Lattermann and Stieglitz, 2005) or processes and methods (e.g., Scacchi, 2002; Warsta and
Abrahamsson, 2003).

While this previous research is relevant for understanding and extracting practices from FLOSS
communities, how companies might benefit from adopting FLOSS processes and methods is still a
largely untouched topic. One of the few examples of an initiative in this direction is HP’s Progressive
Open Source (Dinkelacker et al., 2002). Dinkelacker et al. focused on the FLOSS communities’
openness, trying to adapt it for an industrial environment. Specifically, they created an infrastructure
for HP’s projects that increases code visibility within the organisation, trying to achieve the benefits of
code visibility in FLOSS projects.

To achieve the main goal of this study, i.e. to detect and extract additional FLOSS practice adoption
opportunities, five software projects were compared. Two belonged to Ericsson AB, while the other
three were the following FLOSS projects: the Linux Kernel, the FreeBSD operating system and the
JBoss application server. Thus, this study has a broad scope, setting up a case study with an
emphasis on development practices, methods and techniques, spanning five projects. The study was
performed between January 2009 and May 2010.

The most important result from this study is a list of suggested “adoption opportunities” for industry,
that is, distinctive FLOSS development practices that might have benefit for development in a
company setting. Additionally, as an intermediate step, we provide an analysis of the differences
between FLOSS methodologies and the Streamline methodology as used by Ericsson. As a basis for
the analysis, we created a framework to compare development methodologies, a framework

Torkar et al. / Adopting FLOSS for Industrial Use

90 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

especially tailored for comparing FLOSS methodologies with other methodologies. The final step in
the study was a validation of the results (Gorschek et al., 2006) through a series of workshops
performed at Ericsson and two other large companies. Like Ericsson, these two companies make use
of agile methodologies when producing software-intensive systems, but in other domains, thus
contributing to the generalizability of our recommendations.

The remainder of the paper is structured as follows: In Section 2, we explain the framework
developed to structure the comparison of Streamline and the FLOSS development methodologies
(further detailed in Appendix A). In Section 3, we describe the research methodology adopted. The
results from the comparison, with an accompanying analysis, are found in Section 4 and Appendix B,
while the outcome of the study, i.e. the recommended adoption opportunities, can be found in Section
5. Section 6 presents a validation of the study results, while Section 7 covers validity threats. Finally,
Section 8 concludes the paper and presents future and on-going work.

2. Initial Study Framework
In this section, we discuss the development of an initial framework to guide data collection for the
Streamline and the FLOSS development methodologies. We first discuss the goal of having a
framework. We then present possible comparison frameworks found in the literature, the reasons why
they were or were not selected for our study and finally, the framework that was chosen as a base for
creating the final comparison method.

Due to the exploratory aim of this research, a framework that prompted consideration of all the
methodology viewpoints was desired. The desired outcome of a comparison would be a complete list
of differences between the methodologies used in the Ericsson and FLOSS projects. One of our
requirements was a comparison framework that would help to elicit non-obvious issues, as well as the
capacity to elicit issues at different levels (activities, principles, roles, etc.). We considered several
comparison frameworks to find one that would be most suitable for our purpose. We next briefly
review the frameworks we considered.

We first considered the Normative Information Model-based System Analysis and Design (NIMSAD)
presented by Avison and Fitzgerald (1995) and Avison and Taylor’s (1997) comparison framework.
However, we found that these frameworks assumed the existence of a problem the methodology is
trying to address and consequently focused on suggesting the most appropriate methodology
depending on the encountered problem. We did not want this problem-oriented approach, as we
wanted to find differences at different levels, so these frameworks were not adopted. Similarly,
Davis’s (1982) framework was discarded for being too oriented towards requirements engineering.

We also considered the Compare Design Methodologies (CDM) originally proposed by Song and
Osterweil (1994) and as applied by Guimarães and Souza Vilela (2005). CDM was not adopted for
two main reasons. First, it is used to compare methodologies of the same family, assuming a low level
of difference, and is therefore focused on spotting small differences. For this reason, we were
concerned that it might be unsuitable for comparing two potentially very divergent ways of working.
Second, its purpose is to find the best methodology among some candidates, based on some
subjective criteria. We were not interested in finding whether FLOSS was better than Streamline or
vice versa, but rather to identify the concrete differences between the methodologies.

We next turned to Avison and Fitzgerald’s (1995) frameworks. Avison and Fitzgerald (1995) identified
two reasons for comparing methodologies: an academic reason, that is, to understand the nature of
methodologies (our goal), and a practical reason, that is, to guide the selection of a methodology for a
given development. Taking these premises as starting point, they proposed two frameworks. The first
framework provided a list of twenty-six ‘ideal-type’ criteria that a methodology should fulfil, as shown
in Table 1. A problem with this framework is that it may be out of date. For instance, the known
preference of agile methodologies for having little documentation is considered a negative trait by this
framework.

91 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

Torkar et al. / Adopting FLOSS for Industrial Use

Table 1. Avison and Fitzgerald Assessment Criteria

Rules Information system boundary Total coverage

Designing for change Understanding the information
resource

Teach-ability

Documentation standards Effective communication Validity

Simplicity Early change On-going relevance

Inter-stage communication Automated development aids Effective problem analysis

Consideration of user goals and
objectives

Planning and control Participation

Performance evaluation Relevance to practitioner Internal satisfaction

Relevance to application External satisfaction Scan for opportunity

Visibility Separation of analysis and design

Avison and Fitzgerald’s (1995) second framework includes seven basic points of view from which a
methodology could be described (see Table 2). The application of this framework provides an
academic description of a methodology that allows for a structured comparison, ranging from its
philosophical background to the final form that practitioners consume. We felt that this framework
provided a good overall framework for describing a development methodology, but as stated was too
abstract for our needs. The framework ignored some details that could uncover attributes that would
be very valuable for the comparison phase, such as communication and coordination issues or life
cycle details.

Table 2. Avison and Fitzgerald Points of View for Describing a Methodology

 Philosophy
o Paradigm
o Objectives
o Domain
o Target

 Scope

 Output
 Practice

o Background
o User base
o Participants

 Product

Our final approach was to combine and customise the two Avison and Fitzgerald (1995) frameworks
to reinforce their strengths and alleviate some weaknesses. As Avison and Fitzgerald (1995)
themselves stated “the above criteria (Table 1) form a useful checklist but clearly need to be tailored
for a particular purpose.” Specifically, we used both frameworks as a prompt for our initial data
collection, but then created a tailored comparison framework that included aspects such as software
development life cycle, degree of participation and an increased focus on what might be considered
as relevant activities. The use and tailoring of these frameworks will be discussed in the following
section.

3. Research Methodology
In this section we describe the research approach adopted to identify features of the software
development methodologies followed in the three FLOSS projects and in Ericsson’s Streamline
methodology. Overall, the study was conducted as follows: i) develop a comparison framework (as
described in Section 2); ii) perform a case study of the development methodologies of the five projects;
iii) derive a set of adoption opportunities from comparison across the results of the case study; iv)
perform a validation (Gorschek et al., 2006) of the results through a series of workshops at three
different companies in three disparate domains. More specifically, we followed a four-step process to
produce the possible adoption opportunities, explicitly modelling our methodology on the grounded
theory approach (Martin and Turner, 1986). The first two steps were inductive (Martin and Turner, 1986),
where data collection preceded theory formulation. The concrete steps were as follows:

Torkar et al. / Adopting FLOSS for Industrial Use

92 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

1. Collect information about the development methodology applied at Ericsson and in FLOSS
projects.
(a) Grounded theory equivalent: Data-collection, note taking and open coding.

2. Analyse, synthesise and categorise the information in order to allow a side-by-side
comparison of FLOSS and Ericsson methodologies.
(a) Grounded theory equivalent: Memo building, axial and selective coding, sorting and

writing.
3. Compare the methodologies and identify the differences that are significant (differences in

which FLOSS can provide an improvement for Ericsson).
(a) Side-by-side comparison, discussion and industry feedback.

4. Suggest FLOSS methodology adoption opportunities to Ericsson and other companies.
(a) Comparison analysis and industry feedback.

Section 3.1. presents the selected projects and their fundamental characteristics. Section 3.2.
describes how the main information gathering was conducted, and Section 3.3. outlines how the
comparison was carried out and the tailored comparison framework created.

3.1. Case Study Setting
In this subsection, we discuss the choice of projects for our study. As a qualitative research approach
was used, only a small number of projects could be examined. For the industry projects, two projects
inside the development unit were available for the case study. Due to confidentiality reasons, we will
refer to them as Projects A and B. Both Projects A and B used the Streamline methodology.

To achieve a list of adoption opportunities from FLOSS development that might be applied at Ericsson
for project/process improvement, three FLOSS projects were identified. There are many successful
FLOSS projects, with very diverse configurations. A small sample could never be representative of the
whole FLOSS universe, and this was never the intention. Instead, a decision was made to favour a
sample that resembled the targeted Ericsson projects, since such a sample would be more likely to
reveal suitable adoption opportunities. To make the appropriate choice, some initial Ericsson project
data were collected. This data served as an initial contact with the Streamline methodology and more
importantly, as a way to characterise Ericsson projects in terms of size, number of developers,
domain, and so on. These gathered characteristics were used to guide the selection of FLOSS
projects that resembled the Ericsson ones. The following sections describe the attributes of Projects A
and B and the selected FLOSS projects.

3.1.1. Industry Project Characteristics
Several attributes were considered to characterise Ericsson’s software development processes and
methods. However, the final list was synthesised down to four. These were the characteristics used
when making the FLOSS project selection:

• Large source code size. Project A contained around 1,250 KLOC while Project B contained
110 KLOC. Hence, we were interested in FLOSS projects with a fairly large code base.

• High number of developers. 90 developers worked full time at Project A (around 14,400

man-hours per month). 40 developers work at Project B (around 6,400 man-hours per
month) with this number doubling in less than a year. Considering the inequality of
dedication between industry and FLOSS developers (on average FLOSS developers
invests less than 10 hours a week on development activities (Robles et al., 2001), we were
looking for FLOSS projects with more than 100 active contributors.

• Legacy. Project A started seven years ago and, thus, carried a large amount of legacy code.

Project B, while it was started three years ago, reused and maintained the code of a nine-
year-old project. Therefore, legacy was a significant property of both projects.

• Similar domain. As all software projects, Projects A and B design decisions were driven by

93 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

Torkar et al. / Adopting FLOSS for Industrial Use

many non-functional requirements. Some of them, like robustness and performance, could
be elicited, but many more subtle ones remained hidden. To have projects with similar non-
functional requirements, FLOSS projects from a similar domain were selected. This domain
was generally stated as enterprise server-side software with an emphasis on high
availability and performance.

3.1.2. FLOSS Project Characteristics
Three FLOSS projects were chosen as study targets because they were similar to the industry project
characteristics and were especially interesting from a development methodology point of view. The
selected FLOSS projects were the Linux kernel1, the JBoss Application Server2 and the FreeBSD
operating system3. All three projects are supported by a large group of contributors, over many years,
and have managed to create large and established source code repositories. Also, all three
communities have relevant industry participation. This factor is particularly important as it ensures that
the FLOSS projects are valuable enough to become commercially interesting. Additionally, that paid
and volunteer contributors coexist in the same development community is a new relevant trend in
FLOSS projects. Table 3 presents descriptive statistics for all projects as of April 2009. However,
other attributes of interest were also considered when selecting the projects:

• The Linux kernel. With an impressive community of over 1,000 developers, 70% of which
serve the interests of over 100 companies (Kroah-Hartman et al., 2008), the Linux kernel
project is probably the largest example of FLOSS engineering at work. Of special interest to
our study is the issue of balancing interest diversification in functionality requests, while
maintaining robustness and performance.

• JBoss Application Server. JBoss community development is strongly tied to a commercial

firm (JBoss, a division of Red Hat4). This sponsoring produces an interesting mix of FLOSS
and industry processes, especially in the software configuration management and quality
assurance areas. Additionally we find pressure to respect release schedules and promised
features as commonly found in traditional industry projects.

• FreeBSD. The FreeBSD development philosophy has similar principles concerning

industry’s continuous integration practices as applied by Projects A and B (Jørgensen,
2001). This feature was a decisive attribute to select FreeBSD as a project to study.

Table 3. Descriptive Statistics of Selected Projects

 Project A Project B Linux kernel JBoss FreeBSD

Lines of code (thousands) 1,250 110 8,500 1,200 6,000

Developers 90 40 1,000 50 200

Legacy (years) 7 9 15 10 13

3.2. Information Gathering
An important part of this study was the information-gathering phase. All the information found from the
studied projects was collected using field notes that were then analysed to compare the
methodologies. We aggregated the methodology information about the three FLOSS projects in
addition to the information concerning the two Ericsson projects. The information gathering was
performed with the main objective in mind of defining the development methodology of the five
studied projects to allow for structured comparisons. The Avison and Fitzgerald matrix was used to

1 http://www.linuxfoundation.org
2 http://www.jboss.org
3 http://www.freebsd.org
4 http://www.redhat.com

Torkar et al. / Adopting FLOSS for Industrial Use

94 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

ensure a broad coverage of the methodology characteristics. Additionally, in order to target concrete
and real world development challenges, practitioners’ subjective opinions about the development
methodology was collected in order to focus the research on interesting fields that could lead to
adoption opportunities.

The amount of information available in written form is overwhelming both at Ericsson and, to some
extent, in a typical FLOSS project. However, a completely different issue is how close this
documentation is to reality once theory is put into practice and time passes. We wanted to study the
real practice of the methodologies, with its problems, issues and workarounds as perceived by the
practitioners. For this reason, whenever possible, we used the practitioners’ knowledge to confirm
and extend the information found. Sources of information for the Ericsson projects included:

• Documentation, including descriptions of processes, roles and activities as well as project
specific methodology implementation documentation. Also, the development wikis proved to
be a useful source of technical and teamwork data.

• Interviews were carried out with developers in six different key roles in each project,

offering different points of view over the complete life cycle of the project. Responsible
engineers in the following areas were interviewed: requirements, design, testing, and project
management. Additionally, one engineer responsible for development methodology
Ericsson-wide provided insight on the Streamline principles. The interviews were conducted
in a semi-structured manner as described by Hove and Anda (2005). This study was
executed at an Ericsson development site, allowing for high interaction between
researchers and practitioners.

• A survey was conducted. Once in the comparison phase it became necessary to gather the

point of view of the developers and testers about several key topics. To gather data from a
representative sample of the developers of both projects, a survey was designed and
executed. The questions covered task assignment, tools, ways of working, documentation,
communication and decision-making. The survey also provided a practitioner’s opinion
overview, very much as in Torkar and Mankefors (2003). The survey targeted 130
developers and had 92 respondents during the 22 days it was open (leading to a response
rate of more than 70%).

When studying FLOSS projects, we relied on three information sources.

• Documentation, including projects’ homepages, wikis, guidelines, handbooks and mailing
list archives. The open nature of FLOSS projects in general meant that a lot of data was
publicly available. The data was later used to extract information regarding processes, roles
and activities.

• Overview of research literature. As we selected three well-known FLOSS projects, there

was a certain amount of previous research available covering the three projects. Although
as stated before, previous research on these projects was usually quantitative in nature, it
was still very useful in supporting our qualitative analysis.

• Survey. Due to time constrains, an adequate round of interviews in the FLOSS

communities could not be performed. Instead, this part of the research relied on previous
research literature, an already conducted survey (Robles et al., 2001) and first-hand
documentation from the FLOSS communities.

3.3. Analysis Approach
Figure 1 offers an overview of the comparison method adopted. Readers familiar with the Osborn-
Parnes Creative Problem Solving (Hurson, 2007) method will recognise the divergent-convergent
thinking pattern. The first steps, up to the field memo, were used to generate as many ideas about the

95 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

Torkar et al. / Adopting FLOSS for Industrial Use

methodologies as possible. The Avison and Fitzgerald (1995) frameworks discussed above were
used as a prompt for this part of the study, ensuring that we had examined each methodology from
multiple viewpoints. The last steps were designed to synthesise all information and reveal both
important issues and the general information structure. The described technique produced two
results: first, a more appropriate ‘table of contents’ for the framework used for analysing and
presenting the differences, leading to our final comparison framework (presented in Appendix A); and
second, a list of knowledge gaps with respect to the methodologies. Filling these knowledge gaps
brought the comparison to its final state.

Figure 1. Comparison Method

Divergent thinking. As stated before, the purpose of the first steps of the comparison method was to
elicit as much information as possible, rather than focusing on a particular predefined set of issues.
This approach was chosen to encourage broader thinking and discussion about the methodologies. In
the initial phase, many pages of notes were taken summarising interviews and documentation
analysis. Topics covered were as broad as software engineering itself.

To extend the scope of these notes, two matrices were created: one containing information from
Ericsson and the other containing information extracted from the FLOSS projects. The dimensions for
the matrices were created by applying each assessment criteria (see Table 1) to each description
point (see Table 2). For each intersection, a discussion among researchers was initiated. This
discussion was based on initial field notes as well as further information gathering.

This procedure helped to generate a lot of discussions regarding the investigated methodologies from
multiple viewpoints. It also helped in spotting several knowledge gaps previously overlooked during
the initial study phase. Both these ideas and the knowledge gaps were captured in a field memo, a
structured document that served as an instrument to articulate our findings.

Convergent thinking. In the next phase of the research, findings in the field memos were clustered. As
noted above, we used the two Avison and Fitzgerald (1995) frameworks to generate ideas, but
wanted a more organized and parsimonious presentation of the methodologies to organize the
presentation of our results. To do the clustering, the findings were written on a number of sticky notes
and all sticky notes were placed on a whiteboard without any special order. Collaboratively among all
researchers, the sticky notes were then grouped by topic, generating issue clusters. From this
process, a topic structure emerged, which helped us to spot both the relative size and relations

Torkar et al. / Adopting FLOSS for Industrial Use

96 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

between issues. This topic structure became the foundation of the comparison framework we used
when comparing the Streamline and FLOSS methodologies (see Appendix A). Given its origin, the
final framework has some resemblance to the original Avison and Fitzgerald (1995), but with a
structure that is more fitted to the two sets of methodologies being compared.

Once we had the clusters, we examined what we had learned about each methodology in each
cluster. For clusters where we detected a lack of information, a set of questions was written to
address knowledge gaps or points that could be clarified. These knowledge gaps were used to start
another round of interviews, documentation analysis, and a survey. Unlike previous phases, this time,
information gathering was highly directed, seeking answers to concrete questions instead of being
open-ended. This process was continued until a final set of findings for each aspect of the
comparison framework was obtained.

4. Selected Comparison Results and Analysis
In this section, we present an analysis of the differences between FLOSS methodologies and the
Streamline methodology. Differences are analysed from several perspectives, according to the
comparison method described in Section 3, using interviews, document analysis and a survey as
input. The structure of this section follows the topics of the comparison framework that was
developed, which is described in detail in Appendix A. In the main body of the paper, we present only
a subset of the analysis—the different activities in the compared methodologies—that gives a flavour
of the kinds of comparisons made. The full detailed comparison, covering background (history,
objectives, principles, paradigm, usage), model, life cycle, rules and tools, and participatory aspects
of the methodologies, is given in Appendix B. In this section, we cover design making, coordination
and communication, requirements, planning and control, information availability and verification and
validation. For each of these, we discuss how the activity is addressed in Streamline and in the
studied FLOSS projects, as a basis for identifying possible adoption opportunities.

4.1. Decision Making
Decision-making is done across several levels in Ericsson Streamline projects. As stated before,
Streamline has a principle concerning self-organising teams that is reflected in the decision-making
processes. Implementation-related issues are fully handled by development teams, including the
design of the solutions. However, a System Architecture Team (SAT) also participates in the decision-
making to ensure that the overall project architecture is respected. Teams are also responsible for
generating their own planning estimates, as discussed in Section 4.4. Even with the considerable
number of decisions that are left to development teams, our survey results show that 62% of the
respondents think that their participation in more decision-making would improve the decisions taken.
One respondent puts it this way: “It’s important that the right people influence each decision. The
trend is, all employees or no one, which is equally bad.”

In contrast, decision-making in FLOSS projects enables as much participation as possible.
Concretely, decision-making in FLOSS projects revolves around the maintainers, and perhaps a
“benevolent dictator” guiding the project. Fogel (2005) describes the benevolent dictator as the “final
decision-making authority… who, by virtue of personality and experience, is expected to use it
wisely.” The maintainer shares some of the benevolent dictator responsibilities but on a local scale,
usually on one (or a few) software module(s) where he has the most experience. The maintainer is
responsible for maintaining the module integrity and quality and for assuring the coherence of the
module towards the whole system. There are several module maintainers but just one benevolent
dictator for the FLOSS projects studied. How these roles exercise their decision-making power varies
from project to project. However, there are two common denominators in all FLOSS projects:

• Decision-making power must be used with discretion, usually only when it is clear that the
community will not reach an agreement by consensus.

• Decision-making must be public, transparent and explicit, and all members of the

community should be able to participate if desired.

97 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

Torkar et al. / Adopting FLOSS for Industrial Use

Discussions being public has several beneficial effects for the community. First, while the decision-
making process can seem slow and cumbersome compared to Streamline, in the long run, decisions
are usually more elaborated and incorporate more points of view. As a result, the community
embraces decisions taken to a higher degree. Also, newcomers can learn about the development by
just reading the discussion threads (both current and archived), which provide the rationale for the
decisions. To avoid discussions on recurrent topics that have already been decided, FLOSS
communities make extensive use of FAQ pages and mailing list archives. Additionally, since
discussions are public and later archived, the participants tend to think twice before stating an
opinion, as their community recognition is at stake. As an extreme case, in the Linux kernel project,
there is a common agreed rule to avoid discussions about new features or possible bug fixes without
attaching source code as proof of concept, and usually benchmarking data. This way pointless
discussion is kept to a minimum. This reflects one fundamental difference between FLOSS and
industry: “the fact that decision-making in Linux does occur but it happens after development, not
before it” (Iannacci, 2003).

4.2. Coordination and Communication
In Streamline, small teams perform small (less than six weeks) implementation iterations on the
project’s baseline. We have already seen the considerable degree of decision-making power that
these teams have to achieve their implementation goals. However, the specific goals to be achieved
have to be prepared beforehand to avoid conflicts and/or overlapping work. By the use of anatomy
plans on requirements, planning and a clear roadmap, implementation tasks are allocated so that
teams can work concurrently in a coordinated way. A traversal SAT provides assistance to avoid
issues from an architectural point of view. Progress is monitored by the means of burn-down charts. A
set of procedures have been established to handle cases where a development team needs
resources that cross project boundaries (such as approval to acquire some third-party product).

While the FLOSS structure looks simpler at first sight, the underlying communication interactions can
be more complex. Iannacci (2005) describes the coordination and communication structures in the
Linux kernel project as heterarchical. If we analyse FLOSS projects from a hierarchical point of view
we will soon notice that there are rarely more than three levels: usually a heterogeneous contributor
base, a group of maintainers or core team and the project leader or benevolent dictator. However, the
project leader is the only one who stays at the top (with the focus on delegating tasks and
responsibility), while the position of the rest may change depending on the specific interaction. If we
analyse the typical evolution of developers in a FLOSS project, we will see that they sometimes act
as a maintainer, while other times as a developer, reviewer or simply a user. As developers shift
personal interests, the roles of maintainer, developer and reviewer are dynamically and temporarily
assigned to the more credited and interested individuals. Thus, when observing the network of
interactions as a whole, we can see a loosely coupled network where interactions are dynamically
established and deprecated.

While Streamline’s predictable and quite static organisational structure can appear more ordered and
efficient, FLOSS communities extract several benefits from heterarchies. Firstly, by the means of the
maintainer’s system, tricky tasks are usually taken up by the best available developer, while easier
tasks are left to more inexperienced ones, who in turn use them to gradually gain credit. This gain of
credit is of key importance as it fuels the meritocracy system that keeps FLOSS communities going.
Secondly, heterarchially distributed authorities naturally drive the development in several directions at
once, which in FLOSS projects is usually considered a good thing. Finally, as opposed to industrial
settings, where change (i.e., developer’s rotation) is seen as a menace to project stability, FLOSS
minimises risks by embracing continuous change and reducing the dependence on a single
individual.

Despite all the discussed strengths, FLOSS project coordination structure depends on some
preconditions in order to run smoothly. First, and most importantly, communication must be horizontal
and direct among peers, without intermediaries. This way, peer relations can be easily established
independently of team and project boundaries. It is also important to have appropriate tool support so

Torkar et al. / Adopting FLOSS for Industrial Use

98 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

conversations are permanent and feed the knowledge base (i.e. mailing list archives, how-tos, FAQ)
and contribution ownership can be tracked (for instance, FreeBSD uses the svn blame5 command for
this (Jørgensen, 2001). Additionally, three main types of information must be abundant:

• Technical know-how, so that the necessary learning process associated to frequent
developer reallocation does not flood the communication channels.

• Behavioural guidelines, so that community members know what is expected from them and

what they can expect from others.

• Clear conflict resolution procedures, which, even if used sporadically, tells the community
members what to expect in a worst case scenario, for instance, when a discussion is taking
too long and is blocking further development.

In contrast, Projects A and B at Ericsson also have a considerable documented knowledge base, but
our conducted survey shows that its functionality is limited. 62% of the developers answered that the
information is hard to retrieve, 41% that it is unclear or incomplete, and 34% that the information
exchange tools are inadequate.

4.3. Requirements
In Streamline, requirements are handled in a traditional way. Strategic Product Managers gather and
prioritise requirements from several sources (e.g., customers, marketing, internal). Technical Product
Managers then divide the requirements into sets that can be implemented by a single team in a single
iteration. To support this, a cross-functional board of System Managers and Node Architects provides
technical insight and first effort estimates.

In contrast, the FLOSS projects studied do not have formal requirements development processes, but
rather rely on developers choosing to work on new features. This approach works because
developers of these projects are often also prominent users, which is not the case for Projects A and
B. Streamline validates requirements by reviewing them with an expert board while FLOSS projects
expose them to public discussion. For example, in JBoss, pre-requirement artefacts (feature
requests) are exposed to the user base for validation and enrichment. Through the issue tracker,
users can add new requirements and vote on existing ones. Then, requirements are allocated to
development iterations in a similar fashion as Streamline does. Volunteer contributors can then pick
tasks that they want to contribute to. This way, JBoss obtains a balance between community driven
development and steering.

Requirement validation can go as far as requiring an actual working implementation before accepting a
new feature (‘code then decide’). Most notably in the Linux kernel community, discussions concerning
new features are even silenced until a working implementation is attached. Then, unambiguous
discussion can follow, working with actual source code and real world benchmarking results. Even then,
Torvalds might not add the feature to the main source code tree because “nobody takes out features,
they are stuck once they get in” (Iannacci, 2003). Real users must be using the feature from one of the
development trees for it to be considered for the production release. This way features, are much more
mature when released and experimentation is kept away from the stable kernel.

4.4. Planning and Control
In the Ericsson projects, the planning is performed in a formal way, where a specific amount of time
has to be allocated for a given set of requirements. We consider three aspects of this process, first
how work is estimated, second, how work is tracked and finally, how deadlines are enforced.
First, Streamline teams are responsible for generating their own planning estimates, considering their
own experience and knowledge of the project. That said, in Project A, given its size, there is a project
manager in charge of planning. However, the final estimations are still carried out by the development

5 SVN: Subversion is a common version control system in the FLOSS community. See http://subversion.tigris.org

99 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

Torkar et al. / Adopting FLOSS for Industrial Use

teams. The estimation in Streamline projects is done in two phases. First, a quick study is performed
in order to receive an approximation of the effort needed to implement each requirement. After that,
resources are allocated and the requirements are prioritised and assigned to the development teams.
The second estimation phase is delegated to the assigned team members. They can then provide a
more detailed estimation based on their own experiences and capabilities. One drawback with this
approach is its rigidity. For example, emerging requirements can arise from development, e.g. the
creation of a support domain specific tool. However, the deadline has already been established and it
is too late to allocate resources for these activities, so they compete with the rest of the planned
tasks. These activities happen below the radar, as 77% of the developers in projects A and B do not
ask for permission and just 38% of them have enough time to complete them. Except for JBoss, the
studied FLOSS projects do not perform an estimation activity. Instead, features are handled
individually and no specific schedule is set by the project (of course, an individual developer may set
his/her own personal schedule).

Second, Streamline provides a set of techniques for controlling the development progress of each
team. The most important ones are the task board and the burn down chart. The task board contains
three columns with the unstarted, ongoing, and finished tasks and is updated continuously. The burn
down chart shows the tasks completed over time and provides a quick view of the development
progress. When looking at the FLOSS projects, JBoss is again the only one that has some kind of
progress monitor for the development. Even the external contributors are recommended to add their
tasks to the issue tracker stating the expected completion dates and the dependencies with other
tasks.

Finally, in Streamline, the deadlines are strict and a lot of effort is put on meeting them. In contrast,
the FLOSS projects studied do not set specific deadlines for their developers. In fact, no matter how
long a feature development takes, it will not be accepted until the expected quality level is met. As an
example, the FreeBSD and Linux kernel pre-commit reviewing phases enforce this. Thus, a code
patch has to be fixed as many times as it takes to pass this phase. An exception to this behaviour is
JBoss. There, an estimation phase is done in order to split the requirements among the development
teams (composed by hired core developers and external contributors) to meet the delivery deadline.
Nevertheless, they still perform a parallel reviewing phase where the possible shortcuts are detected
and fixed so that the required code quality can be ensured.

The short iteration approach and the pressure to meet deadlines can create problems for the
development. Specifically, as mentioned in Appendix B.1.5, this pressure can encourage shortcuts
concerning code maintenance that lead to accumulation of technical debt, that is, a backlog of
deferred technical problems. Design shortcuts made during one iteration to achieve the expected
functionality cannot be fixed in the next because new requirements and deadlines pop up. Streamline
makes use of a team called Design Follow Up that is supposed to fix these kinds of shortcuts.
However their duties also include fixing Trouble Reports, which are prioritised over code clean up. An
employee working in Project A confirmed this problem: “we should educate and encourage
developers to refactor code they modify in line of duty, [if not we will] let the code deteriorate and the
technical debt increases.”

4.5. Information Availability
A significant area of difference between Streamline and FLOSS development concerns the public
availability of information about the development. In industry, software artefacts are meant not to be
visible until they are ‘finished’. In industry, this is usually enforced by some quality checks. In
Streamline, these checks are called Quality Doors and are placed at key iteration points. Obviously,
industry projects have very good reasons to keep information locked in-house (e.g., for intellectual
property protection), but these limits also often stop engineers from working effectively on different
projects in the same company. As many as 63% of the Ericsson survey respondents agree that
information should be easier to retrieve and 38% that they do not receive all information they need.
Also, there is close to zero visibility between projects, effectively blocking component reuse and
collaboration between projects.

Torkar et al. / Adopting FLOSS for Industrial Use

100 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

As is discussed in Section B.1.3, information openness is at the very core of the FLOSS way of
working. While FLOSS projects’ decidedly open attitude towards information can seem a bit extreme,
it is of key importance to a project’s success. In FLOSS projects, artefacts are publicly exposed (not
only source code) from the day they are created. FLOSS projects’ ‘publish immediately policy’ allows
for a kind of informal lazy review process. For instance, anybody can enrich a feature request on the
issue tracker, provide insight to a bug discussion or propose a modification on an already submitted
source code patch, likely increasing the number of contributions that help in enhancing the quality.
Outside the projects, this open door policy is also very useful. A potential user can easily access a lot
of information about the on-going development, making it easy to evaluate the quality of the product,
future plans, open bugs, etc. It is also usually just a matter of minutes to get a working copy of a
FLOSS project along with documentation. This ease of evaluation facilitates the fact that FLOSS
projects many times reuse as much as they can from other projects. For large software companies to
be able to really reuse their software assets, the effort investment needed to find and evaluate
component candidates must be as low as possible.

4.6. Verification and Validation
Verification and validation in both FLOSS and Ericsson projects is composed by two main phases.
First, in Streamline a pair-programming approach is recommended, so developing and reviewing is
done at the same time. In FLOSS, a pre-commit code review is often done, where faults are detected
by reading the source code. The second validation phase concerns automated testing. Both FLOSS
and Ericsson projects use techniques, like unit testing and regression testing, which are automated to
a large extent. However, in projects like FreeBSD or the Linux kernel this automation is more difficult
to handle than in JBoss and Ericsson projects as it is hard to test a complete operating system
without human intervention. Therefore, these projects need to rely on a stricter reviewing phase
before testing commences. This relation is also described further by Rigby and Germán (2006).

When looking at software verification and validation activities in FLOSS projects, we find an important
characteristic that differs from Streamline. In industry, testing traditionally has been seen as a less
qualified and simpler task (although during recent years, testing has gained first class citizen status
among developers). However, a stigma persists which affects the motivation for performing that job.
In Streamline in particular, testers are just responsible for finding bugs, leaving the bug fixing for
developers. Developers get the recognition, and in turn, complain that testers just spot problems
without contributing to the solution. In FLOSS projects, the task of finding a bug is often followed by
the fixing of that same bug by the same person, and is rewarded by recognition by the community.
Thus, not only fixing bugs, but also finding them turns to be a motivator for FLOSS developers
(Jørgensen, 2001).

5. Adoption Opportunities
This section describes the main outcome of this study, i.e. a set of FLOSS practice adoption
opportunities for software firms to consider. For each adoption opportunity, we analyse its expected
advantages as well as its implementation requirements. These adoption opportunities were distilled
from the comparison presented in the previous section and in Appendix B. With the final comparison
done, a final analysis was done where detected weaknesses of Streamline were matched with
relevant strengths of the FLOSS methodology. Where such a match was found, the knowledge
gained though the comparison phase helped isolate the essence of the practice to see if it would be a
candidate for an adoption opportunity. These candidates where later validated as discussed in
Section 6.

Table 4 is provided for traceability. The columns of the table correspond to the different adoption
opportunities described in this section, while the rows refer to the comparison results and the
corresponding section or appendix where they were described. An X in the cell indicates that
evidence from that section of comparison guided development of the particular adoption opportunity.
In the remainder of this section, we describe each adoption opportunity in more detail.

101 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

Torkar et al. / Adopting FLOSS for Industrial Use

Table 4. Which Comparison Result Topics Influenced Which Adoption Opportunity

 RTDa DEPb IAVc ACDMd WoWe ATSf

Background, App. B.1

History, App. B.1.1

Objectives, App. B.1.2

Principles, App. B.1.3 X X X X

Paradigm, App. B.1.4 X

Usage, App. B.1.5 X X

Model, App. B.2 X X X

Life cycle, App. B.3 X

Rules and tools, App. B.4 X X

Participation, App. B.5 X X X X X X

Activities. 4 X

Decision-making. 4.1 X X X X

Coordination and communication. 4.2 X X X

Requirements. 4.3 X X X

Planning and control. 4.4 X X X

Information availability. 4.5 X X X X X

Verification and validation. 4.6 X X X

Note:
a Reduce technical debt
b Define an entry path for newcomers
c Increase information availability and visibility

d Embrace asynchronous tools for communication and
decision-making

e Let practitioners influence ways of working
f Allow task selection

5.1. Reduce Technical Debt
The first FLOSS practice adoption opportunity identified is a set of strategies to reduce technical debt.
Commercial development is unavoidably forced to prioritize particular development tasks to meet
promised deadlines. However, it is important not to let the urgent displace the important. With an
iterative approach in particular, which places a deadline every few weeks, quick solutions often
replace elegant ones as technical debt accumulates, the architecture deteriorates and the code
becomes harder to maintain and bugs become more expensive to fix (see Appendices B.1.5 and B.3).
Reduction of the technical debt will pay off in terms of maintainability. In addition, new developers can
be introduced faster to the current code base if it is easier to understand (see Appendix B.5).

In general, two strategies can be discerned when dealing with technical debt. First, situations that
create technical debt need to be kept at a minimum. Technical debt, as bugs, is cheaper to eliminate
nearer to the creation point. It is important to build developers’ consensus on the minimum quality of
the source code additions made to the code base. While code reviews are very useful to reveal
design shortcuts, it is also expensive. We can learn from FLOSS projects that simply having public
exposure to a broader audience is a cheap and very effective way to invoke some benefits of code
reviews, thus filtering shortcuts that would otherwise pass unnoticed (see Appendices B.3 and 4.5–
4.6).

Second, plan in advance for technical debt. No matter how much effort is put on avoiding it, some
amount will always accumulate so there needs to be a pre-emptive allocation of efforts dedicated to
reduce technical debt, e.g., code clean-up and removal of design shortcuts. While the relative size of

Torkar et al. / Adopting FLOSS for Industrial Use

102 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

this activity will be small compared to the main development effort, it needs to be isolated from
release deadline stress. Having allocated resources would certainly help in decreasing the technical
debt. For example, when one has new personnel involved in a project, they could be assigned initially
to cleaning up code and fixing minor issues.

This sort of initial assignment comes naturally in a FLOSS project, as will be discussed below. The
main strength that FLOSS projects have in reducing technical debt is that they publicly review
(expose) all code submissions to the repository. A submission may therefore turn into a discussion
back and forth between the committer and the core team, with the results that successful code
submissions tend to be polished and there is lower initial technical debt.

5.2. Define an Entry Path for Newcomers
A second finding is that it is important to have a predefined path that allows new developers to learn
while doing productive activities (see Section 4.2). If this issue is left unattended, there is a risk of
placing newcomers in positions for which they are unqualified or making their learning curve
unnecessarily long. With proper support from experienced developers, bug fixing and technical debt
reducing activities are a good entry point for new developers. Such tasks allow new developers to
familiarise themselves with the software architecture, perform tasks with different difficulty levels and
to be productive from the start. Following this strategy, they would be ready to be incorporated sooner
in regular development project activities. Additionally, resourceful developers would have a greater
chance to stand out sooner, reducing employee frustration derived from not being able to deliver their
full potential (see Appendix B.5 and Section 3.6).

5.3. Increase Information Availability and Visibility
Third, a common problem in large software development organisations is that knowledge sharing
between departments often happens only at a managerial level. Often, the same component or tool is
developed in more than one department without realisation that redundant work is being performed.
Such problems can be avoided with greater information visibility.

The first and most important step in order to achieve information visibility is that it should be easy to
locate. A good automated tool must index information sources and allow for centralised searching
(see Appendix B.4). The whole software source code asset of an organisation should also be
searchable. It is especially important for technical roles to have read access to other projects’
resources. This would make reusability possible, not only for software components but also
concerning technical know-how. This public exposure would also favour modularised designs, allow
for external contributions and increase overall code quality, as is so often the case in FLOSS projects
(see Appendices B.2, B.5 and Section 4.5 in this regard).

In order to cope with intellectual property (IP) issues that limit the exposure of particular software, a
black-list approach is proposed, where each department explicitly locks IP sensitive assets. This
approach can be more beneficial and efficient in the long-run than a white-list approach, where all
assets are locked by default and sharing an element requires an explicit and likely time consuming
approval process (see Appendix B.1.5 and Section 4.5 regarding the handling of IP).

Additionally, there are a number of documents that would benefit from being created and edited
online. When a documentation artefact becomes an online object, interested engineers can observe
and subscribe to it before it is finished, providing feedback during its whole evolution. While it may
seem counterintuitive to publish information before it is complete, FLOSS projects have shown that
with proper tool support, the quality of the final artefact increases (see Section 4.5). Simply put,
people deal better with incomplete information rather than no information at all.

5.4. Embrace Asynchronous Tools for Communication and Decision-Making
Fourth, FLOSS development practices suggest the value of asynchronous communications tools. It is
a common software industry practice to use tools to automate some development tasks as much as

103 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

Torkar et al. / Adopting FLOSS for Industrial Use

possible. However, communication is usually overlooked in this regard. Agile methodologies
themselves embrace face-to-face conversation as the most effective method for conveying
information6 (see Appendix B.1.3): a meeting can be the best way to get something decided within a
given deadline when desired participants are clearly identified. However, meetings also have serious
drawbacks, in particular with regards to scalability. Meetings are time-consuming, fully blocking
participant attention and ability to multitask. Many people can be interested in the results of a meeting
but, usually the only outputs are summarised minutes in which the conversational context is lost. Also,
a meeting can be poorly prepared, with uninterested attendants invited and/or interested parties left
outside.

Asynchronous communication technologies allow an individual to go through a larger amount of
information without blocking their attention at any given time (Appendix B.4 contains extensive
discussions on the characteristics of tools used by FLOSS communities). Concurrent tasks that feed
the conversation (like further information processing or gathering) can happen without having to
reschedule a meeting. Additionally, a larger number of individuals, independently of location or time
zone, can observe the conversation with full conversational context available. If it concerns on-going
decision-making, it can not only be improved with feedback, but also drive interested parties to a
bigger endorsement of taken decisions because they can assimilate the rationale behind them (see
Section 4.1).

Most importantly, communication conducted by electronic means can be automatically archived
without loss of information. Especially design and implementation decisions could benefit from being
stored for later reference and retrieval. This archive would form a useful knowledge base that can be
used to lower the learning curve for newcomers and ground further decision-making for experienced
developers. Moreover, this knowledge would be permanent and independent of key employees
leaving a project (see Sections B.5, 4.2 and 4.5 for discussions on the benefits of having a persistent
knowledge base).

5.5. Let Developers Influence Ways of Working
Fifth, it is obvious that when executing a methodology, developers are the ones who see the
processes, methods and tools from a closer perspective. While methodology creators have to deal
with the whole organisation, developers are aware of local project realities. In FLOSS, developers
have a great deal of autonomy is choosing processes, methods and tools. In contrast, developers in
Streamline expressed some frustrations with one size fits all approaches. Streamline might benefit
from additional input from individual developers. For example, a messaging board where anyone
could propose improvements or state problems with the methodology is a simple method for
management to know the practitioners’ opinions. Adding a voting system for possible methodology
changes could help to prioritise the modifications needed. This would drive the methodology to drop
excessive weight in favour of the simplicity principle, as exposed in Appendix B.1.3, which can be
seen in almost all activities in the FLOSS communities (see also Section 4.1).

5.6. Allow Task Selection
The final adoption opportunity is allowing some degree of self-assignment of tasks. Working on the
same project, performing the same tasks over and over again, might decrease employee motivation
and productivity. Curiosity and self-development are good motivators. Providing a way to channel
these motives can be useful to keeping employee commitment high. Appendix B.5 contains collected
data that clearly sustains this claim both in FLOSS and industry projects. One approach is to let
employees dedicate part of their weekly working hours to a pool of diverse available tasks that cross
project and department boundaries. However, this process needs to be implemented carefully, since:

(1) It is important that there are always engineers active in a project at all times, because contributors

will need support.

6 http://agilemanifesto.org

Torkar et al. / Adopting FLOSS for Industrial Use

104 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

(2) There needs to be a permanent knowledge base that outside contributors can look-up without
disturbing engineers with frequently asked questions. If the learning curve is too high, contributors
will simply turn to other projects. (See Sections 5.3 and 5.4.)

(3) The task pool must contain activities of a size that are feasible to conduct during an employee’s

‘free time’. Additionally, to avoid rework, it also must reflect when somebody is already working on
a task. Furthermore, it should be possible for a developer to propose a new task, as an outsider’s
view can be a source of very creative ideas (see Sections 4.3 and 4.5). A resident mentor who
helps new contributors, as in the FreeBSD project, might lower the learning curve and ensure that
contributions meet the locally required quality standards.

This kind of strategy could place significant stress on software development, e.g., if developers tend
to avoid certain tedious tasks or if the development team does not posses varying expertise that
naturally divides the tasks between them (Beck and Fowler, 2000). However, this stress could help
develop ways of working to a state that is more efficient for resident employees too. For instance, a
constant flow of contributors from outside the particular project might help spot issues that
unnecessarily raises the bar concerning the learning process and which, consequently, residents
have learned to avoid (see Appendix B.1.3 for examples on how the simplicity principle works in
FLOSS communities).

6. Static and Dynamic Validation
In the previous section, we described a set of six adoption opportunities, that is, elements of FLOSS
development practice that might be transferred to industry practice. In this section, we discuss our
efforts to validate these findings through interaction with industry partners. By collecting experiences
from many projects over the years, the authors’ research group has developed a research and
technology transfer model (Gorschek et al., 2006) for identifying industry-relevant research issues. The
model is shown in Figure 2. Formulating the problems and devising candidate solutions is done in close
collaboration with industry participants to ensure relevance and scalability. The ultimate test of research
relevance and applicability is done through several validation steps, all used for generating input to
improve the research solutions proposed. The final step in this research cycle would be the live piloting
and release of the solution in practice. For the current study, Steps 1–3 in Figure 2 correspond to the
study described above, and publication and presentation of our results, to Step 4. In this sections we will
cover Step 5 of the study in more detail, while later presenting Step 6, which is still on-going.

6.1. Static Validation of Findings
By static validation of findings, we mean independent review of the findings without putting them in
practice. Static validation of our findings (Step 5) was conducted through a series of workshops that
were held at three different large-sized multinational corporations that are currently using agile
methodologies in their projects.

The first corporation was Ericsson AB, where the case study had been conducted (Company A). The
second company, based in Sweden, is part of an international conglomerate, with headquarters in
Switzerland, focusing on software and hardware development for the space industry (Company B). The
third, and final company, located in Sweden, is part of a Swiss-Swedish multinational corporation that
focuses on power and automation technology (Company C). All workshops were held in the spring
2010. Table 5 provides an overview of the participants and the number of workshops that were held.
The second column in Table 5 provides the total number of workshops given. The third, fourth and fifth
columns covers the number of participants categorised in upper, mid, lower management and experts;
mid-management is usually responsible for complete product portfolios, low-management is involved in
traditional project management activities, while experts are focusing on specific issues dealing with
methodologies at each company. The final column provides the total number of participants in each
company.

105 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

Torkar et al. / Adopting FLOSS for Industrial Use

Figure 2. Validation Process for Research Findings (Gorschek et al., 2006)

Table 5. Descriptive Statistics for the Workshops for the Static Validation

 # Work–shops Upper mgmt. Mid mgmt. Lower mgmt. Experts # partici–pants

Company A 3 2 4 6 2 14

Company B 1 1 1 3 1 6

Company C 2 2 4 3 3 12

 Σ: 32

At each workshop, an introductory presentation was given including the background, aim, purpose
and results from this study. The results, in the form of adoption opportunities (see Section 5) were
covered in detail. Participants then discussed pros and cons of introducing these innovations into their
organisations. As a starting point, to allow discussion to quickly focus on the most relevant issues,
cumulative voting, or the $100 method as it is sometimes referred (Leffingwell and Widrig, 1999), was
performed on the six adoption opportunities. The idea with cumulative voting is to provide input to
discussions by forcing the participants to rank issues or statements by spending $100 on each
category of issues or statements. In our particular case we offered each participant six adoption
opportunities that they then spent $100 on. The participants could spend everything from $0 to $100
on an adoption opportunity (obviously, if they spent all $100 on one adoption opportunity then no

Torkar et al. / Adopting FLOSS for Industrial Use

106 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

other adoption opportunity would receive any money). The results from the voting led to three
adoption opportunities having the majority of the votes, while the other three were deemed to be less
important. In Table 6, the ranking of each adoption opportunity (in each company) is listed. The letters
in the table stands for: a = Reduce technical debt, b = Define an entry path for newcomers, c =
Increase information availability and visibility, d = Embrace asynchronous tools for communication, e
= Let developers influence ways of working, f = Allow task selection. Note that there was a good
degree of agreement about the highest and lowest ranked opportunities, suggesting the
generalisability of these results.

Table 6. The Ranking of the Six Adoption Opportunities

 1st 2nd 3rd Runners-up

Company A b c e a,d,f

Company B c e d f,b,a

Company C b c d e,f,a

While all participants agreed on the potential benefits of all six adoption opportunities, some
implementation roadblocks were identified at all three companies. These were classified into three
main groups: economy of scale, localism, and departmental protectionism. These three sets of
problems were prime issues for the ranking of the adoption opportunities and will be discussed
further.

First, some benefits of FLOSS practices do no really show until there is a critical mass of
practitioners. Practices like implementing an entry path for newcomers, building a permanent
knowledge base or allow early feedback on documentation artefacts require some economy of scale
to truly show its potential. Pilot projects, which are by definition done at a small scale, can mask or
even prevent the delivery of real benefits.

Second, a tradition of collocated development teams, meeting-based culture and agile
methodologies, which embrace face-to-face meetings, makes it difficult for practitioners to voluntarily
use asynchronous tools for communication and decision-making. When the teams are collocated, it is
much easier to setup a stand-up meeting for quick resolution of an issue. However, when
international teams have to interact, it will be much easier for practitioners to see the benefit of a
permanent knowledge base of past decisions and know-how.

Finally, it is a common practice at big corporate settings to setup departments so there is a certain
level of competition between them. This fosters efficiency but has the side effect of managers
becoming protective of their own department assets, in some cases affecting the efficiency of the
organisation as a whole. This practice may lead to a certain degree of resistance to practices based
on sharing or public exposure of artefacts. Upper management commitment is necessary to drive a
cultural change, so that department reputation is not based on the value of locked assets but on the
quality of the final output.

6.2. Dynamic Validation of Findings
By dynamic validation (Step 6 in Figure 2), we mean testing of the research findings in a real
implementation. All three companies are currently evaluating the usefulness of some of the adoption
opportunities (especially the ones they ranked the highest) and have begun to move forward on
implementation. Specifically, Ericsson has introduced a workgroup to develop a set of guidelines that
define an entry path for newcomers, introduced a new asynchronous collaboration tool, is looking into
how employees will be able to influence ways of working to a larger extent and has restarted the work
on controlling technical debt (Tomaszewski et al., 2008). Company B is currently working on
increasing information availability and visibility through the usage of a wiki and setting up workgroups
to investigate possibilities to increase the opportunities for practitioners to influence ways of working
(and allowing for task selection to a larger extent). Company C follows the same approach as

107 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

Torkar et al. / Adopting FLOSS for Industrial Use

Ericsson concerning the development of guidelines for newcomers, in addition to consolidating and
opening up information sources inside the company and investigating the issue of technical debt in
some of their products.

Obviously, the end goal of the above activities is that, after having refined the solutions to the
adoption opportunities in their particular settings, they will finally be released in live projects (Step 7 in
Figure 2).

7. Threats to Validity
This section will present the threats affecting the validity of this research. We will follow the
recommendations from (Creswell, 2008) for addressing validity issues. In the following we will discuss
possible internal and external validity threats as well as reliability issues, and the methods
implemented to minimize these threats. We identified three threats to internal validity: the possible
inaccuracy of the information found, bias of the information with respect to reality, and the
epistemological assumptions caused by our judgment.

To assure the accuracy of the information collected, whenever possible we have triangulated findings,
contrasting several information sources and diverse information gathering methods. At Ericsson,
three different methods have been used: project documentation review, interviewing key personnel,
and a survey. The information found was aggregated using field memos to find convergence. To
reduce incorrect interpretations of the data collected at Ericsson, periodic checks were performed.
Two representative members of both studied projects reviewed the data collection and analysis to
assure its correctness. For FLOSS projects, information found in project documentation was
contrasted with published research. However, it must be acknowledged that reliance on different
kinds of data for the two kinds of projects may introduce some discrepancies.

The second threat to internal validity has been addressed in a similar way. To ensure that data
collected at Ericsson reflected the reality of the methodology as actually executed, we performed
thirteen interviews (six per project and one Ericsson-wide role) and one survey. Having a broad scope
(concerning roles), when selecting the respondents, allowed for the identification of valuable and
trustworthy data. For FLOSS data, we are reliant on the efforts of previous researchers to ensure that
their published work accurate describes FLOSS practices.

Finally, to minimise the information bias introduced by our judgement, we worked as closely as
possible with the practitioners as recommended by Creswell (2008). Another valuable source in this
respect was the survey results, which confirmed and also refuted several assumptions from our
previous research. A limitation of this approach is that we were not able to survey FLOSS developers
in a similar way.

External validity addresses issues that may affect the generalisability of the findings. In this study
three threats have been taken into account: the adequateness of the selected project targets, the
consequences of the appropriateness of the data analysis, and the generalisability of our findings.

As noted above, the selection of the FLOSS target projects was performed considering two main
prerequisites. First, they needed to resemble the available Ericsson projects to obtain an equitable
comparison. Second, they had to be successful projects with a considerable user and community
base to provide valuable points of differences. To ensure a better representativeness of the FLOSS
world, we chose well-known projects with different levels of industry involvement. However, it is
important to note the delimitations in generalisability for this study. As stated previously, this study is a
case study and it does not try to produce conclusions that can be applicable to the whole FLOSS
universe as only a few projects have been selected in this research. This limitation was appropriate,
as the study focuses on producing adoption opportunities that suit this study’s particular context.

The usage of a good data analysis method, which ensured the consideration of as many methodology
issues as possible, was also important to ensure that results could be generalised to other

Torkar et al. / Adopting FLOSS for Industrial Use

108 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

development settings or FLOSS projects. To address this concern, we designed a method that
leverages a formal comparison framework (Avison and Fitzgerald, 1995) and adapted it to FLOSS
methodology characteristics while keeping industrial practice input at the principle level. Although the
comparison phase was performed using specific information from the Ericsson projects, the
generated adoption opportunities should be applicable to other large software development
companies that use agile methodologies in large projects. It was also important to ensure that the
adoption opportunities were extracting FLOSS best practices as opposite to common FLOSS traits
that may or may not contribute to success. As stated before, to ensure this, the analysis of the
FLOSS projects is based on a number of previous research efforts.

Finally, whenever possible, FLOSS practices and traits, as identified in the studied projects, have
been contrasted with previous research targeting wider FLOSS project samples. However, it is
outside the scope of this paper to generate findings that represent the whole FLOSS universe and
that can be generalised to any kind of industrial development setting. What is important to remember
in this case is that the methodology we used, and the framework we developed, can be applied to any
industrial setting with the aim of introducing FLOSS practices, techniques and methods. Furthermore,
the indications from the static validation showed that the results were of general interest for various
companies developing software in quite disparate domains, leading to all participating companies
entering a dynamic validation of several adoption opportunities (see Section 6).

8. Conclusions and Future Work
This research has shown that, while being very different, bridges can be built between industry and
FLOSS projects so best practices can be imported. By implementing our adoption opportunities, we
expect an increase in development productivity as well as better adaptability to today’s geographically
distributed development projects and highly competitive markets. The results from this study have,
through the validation phase, shown a certain degree of generalisability, and consists of six adoption
opportunities: reduce technical debt, define an entry path for newcomers, increase information
availability and visibility, embrace asynchronous tools for communication, let developers influence
ways of working, and allow task selection.

In addition, we have provided a basis for future studies in this direction by developing a comparison
framework especially tailored to spot differences between FLOSS projects and any other
development methodology. Leveraging this framework, FLOSS practices, techniques and methods
can be further explored, revealing further adoption opportunities when compared with other
development methodologies used in industry.

Future lines of research could design a concrete implementation strategy to introduce suggested
practices in a specific industrial setting. This should be done taking into account the risks identified in
the validation phase and the experience drawn from the dynamic validation already performed in
industry. We believe that the introduction of openness concepts in particular can be viewed as a
challenge to established corporate culture and, hence, must be implemented with care.

109 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

Torkar et al. / Adopting FLOSS for Industrial Use

References
Amor, J. J., Robles, G., González-Barahona J. M., and Herraiz, I. (2005) “From pigs to stripes: A

travel through Debian.” in DebConf5 (Debian Annual Developers Meeting).
Anonymous, (2009a) “Linux kernel maintainers file.” http://lxr.linux.no/linux/MAINTAINERS.
Anonymous, (2009b) “JBossWiki.” http://www.jboss.org/community/wiki/Main.
Avison, D. E., and Fitzgerald, G. (1995) “Information systems development: Methodologies,

techniques and tools.” New York, NY: McGraw-Hill.
Avison, D. E., and Fitzgerald, G. (2003) “Where now for development methodologies?”

Communications of the ACM, 46(1), 78–82.
Avison, D.E. and Taylor, V. (1997) “Information systems development methodologies: A classification

according to problem situation”. Journal of Information Technology. 12(1), 73–81.
Beck, K. and Fowler, M. (2000) Planning Extreme Programming (1st ed.). Boston, MA: Addison-

Wesley Longman.
Brooks, Jr., F. P. (1975) “The mythical man month and other essays on software engineering.”

Boston, MA: Addison-Wesley Longman.
Conklin, M., Howison, J., and Crowston, K. (2005) “Collaboration using OSSmole: A repository of

FLOSS data and analyses.” in MSR ’05: Proceedings of the 2005 International Workshop on
Mining Software Repositories, 1–5.

Creswell, J. W. (2008) “Research design: Qualitative, quantitative, and mixed methods approaches.”
New York, NY: Sage Publications.

Daffara, C. (2009) “Free/Libre open source software: A guide for SMEs.” http://guide.conecta.it.
Damm, L.-O., Lundberg, L., and Wohlin, C. (2006) “Faults-slip-through—A concept for measuring the

efficiency of the test process.” Software Process: Improvement and Practice, 11(1), 47–59.
Davis, G. B. (1982) “Strategies for information requirements determination”. IBM Systems Journal,

21(1), 4–30. DOI 10.1147/sj.211.0004.
Dinkelacker, J., Garg, P. K., Miller, R., and Nelson, D. (2002) “Progressive open source.” in ICSE

2002: Proceedings of the 22nd International Conference on Software Engineering, 177–184.
Eisenhardt, K. M. (1989) “Building theories from case study research.” The Academy of Management

Review, 14(4), 532–550.
Fogel, K. (2005) “Producing open source software: How to run a successful free software project.”

Sebastopol, CA: O'Reilly Media.
Gacek, C. and Arief, B. (2004) “The many meanings of open source.” IEEE Software, 21(1), 34–40.
Germán, D. M. (2003) “The GNOME project: A case study of open source, global software

development,” Software Process: Improvement and Practice, 8(4), 201–215.
Glass, L. (2003) “A sociopolitical look at open source.” Communications of the ACM, 46(11), 21–23.
González-Barahona, J. M., Ortuño Pérez, M. A., de las Heras Quirós, P., Centeno González J., and

Matellán Olivera, V. (2001) “Counting potatoes: The size of Debian 2.2.” Upgrade, 2(6), 60–
66.

Gorschek, T., Garre, P., Larsson, S., and Wohlin, C. (2006) “A model for technology transfer in
practice.” IEEE Software, 23(6), 88–95.

Guimarães, L. R, and Souza Vilela, P. R. (2005) “Comparing software development models using
CDM.” in SIGITE ’05: Proceedings of the 6th Conference on Information Technology
Education, 339–347.

Herraiz, I., Gonzalez-Barahona, J. M., and Robles, G. (2007) “Forecasting the number of changes in
Eclipse using time series analysis.” in MSR ’07: Proceedings of the Fourth International
Workshop on Mining Software Repositories, 32–.

Hove, S. E., and Anda, B. (2005) “Experiences from conducting semi-structured interviews in
empirical software engineering research.” in METRICS ’05: Proceedings of the 11th IEEE
International Software Metrics Symposium, 23–.

Hurson. T. (2007). Think Better: An Innovator's Guide to Productive Thinking. New York, NY: McGraw-
Hill,

Iannacci, F. (2003) “The Linux managing model.” First Monday, 8(12).
Iannacci, F. (2005) “Coordination processes in open source software development: The Linux case

study.” Emergence: Complexity and Organization, 7(2), 21–31.

Torkar et al. / Adopting FLOSS for Industrial Use

110 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

Jørgensen, N. (2001) “Putting it all in the trunk: Incremental software development in the FreeBSD
open source project.” Information Systems Journal, 11(4), 321–336.

Kroah-Hartman, G., Corbet, J., and McPherson, A. (2008) “How fast it is going, who is doing it, what
they are doing, and who is sponsoring it.”
http://www.linuxfoundation.org/publications/linuxkerneldevelopment.php.

Lattemann, C., and Stieglitz, S. (2005) “Framework for governance in open source communities.” in
HICSS ’05: Proceedings of the Proceedings of the 38th Annual Hawaii International
Conference on System Sciences, 192-201.

Leffingwell, D., and Widrig, D. (1999) “Managing software requirements: A unified approach.” Boston,
MA: Addison-Wesley Longman.

Li, P. L., Herbsleb, J., and Shaw, M. (2005) “Forecasting field defect rates using a combined time-
based and metrics-based approach: A case study of OpenBSD.” in ISSRE ’05: Proceedings
of the 16th IEEE International Symposium on Software Reliability Engineering, 193–202.

Martin, P. Y., and Turner, B. A. (1986) “Grounded theory and organizational research,” The Journal of
Applied Behavioral Science, 22, 141–157.

Paulson, J. W., Succi, G., and Eberlein, A. (2004) “An empirical study of open-source and closed-
source software products.” IEEE Transactions on Software Engineering, 30(4), 246–256.

Raymond, E. S. (2001) “The cathedral and the bazaar: Musings on Linux and open source by an
accidental revolutionary.” Sebastopol, CA: O'Reilly Media.

Rigby, P. C., and Germán, D. M. (2006) “A preliminary examination of code review processes in open
source projects.” Tech. Rep. DCS-305-IR, University of Victoria, Victoria, BC, Canada.

Robles, G., Scheider, H., Tretkowski, I., and Weber, N. (2001) “Who is doing it? A research on libre
software developers.” http://ig.cs.tu-berlin.de/oldstatic/s2001/ir2/ergebnisse/OSE-study.pdf.

Scacchi, W. (2002) “Understanding the requirements for developing open source software systems.”
IEE Proceedings Software, 149(1), 24–39.

Song, X., and Osterweil, L. J. (1994) “Experience with an approach to comparing software design
methodologies.” IEEE Transactions on Software Engineering, 20(5), 364–384.

Squire, M., Crowston, K., and Howison, J. (2009) “Flossmole.” http://www.flossmole.org.
Tomaszewski, P., Berander, P., and Damm, L.-O. (2008) “From traditional to streamline development

— Opportunities and challenges.” Software Process: Improvement and Practice, 13(2), 195–
212.

Torkar, R., and Mankefors, S. (2003) “A survey on testing and reuse.” in SWSTE ’03: Proceedings of
the IEEE International Conference on Software-Science, Technology & Engineering, 164-173.

Warsta, J., and Abrahamsson, P. (2003) “Is open source software development essentially an agile
method?,” in Proceedings of the 3rd Workshop on Open Source Software Engineering, 143–
147.

Acknowledgements
We would like to thank Ericsson AB, and the other two companies participating in the validation for
providing the means that made this study possible. We are especially grateful to all the people at
Ericsson AB who made time for us in their busy schedules and who provided a wonderful work
environment.

We also acknowledge Dr. Oscar Dieste, Universidad Politécnica de Madrid, and Dr. Barbara Russo,
Free University Bozen/Bolzano, who provided valuable feedback during the course of this study.
Furthermore, Prof. Kevin Crowston and editors at IMD provided feedback and polished this paper in
its final stages.

111 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

Torkar et al. / Adopting FLOSS for Industrial Use

Appendices

Appendix A.
The following table of contents describes the comparison framework we developed that covers the
important characteristics of a development methodology. The framework was created by clustering
information we collected about the two development methodologies, as described in Section 3. As we
used Avison and Fitzgerald’s (1995) frameworks to guide the information collection, there is some
resemblance in the topics covered, though with additions and different arrangement. The framework
contains six main topics, as shown below.

1. Background 5. Participation
 (a) History 6. Activities
 (b) Objectives (a) Decision making
 (c) Principles (b) Coordination and communication
 (d) Paradigm (c) Requirements
 (e) Usage (d) Planning and control

2. Model (e) Information availability
3. Life cycle (f) Verification and validation
4. Rules and tools

This framework is the first contribution of this paper. It can be used as a way to describe a
development methodology from its origins to its practical application, and also as a guide to compare
two or more development methodologies. This comparison can be used to choose the methodology
that better addresses each topic, or as a way to mix the strong points of each one developing a new
and presumably better methodology. In the study presented in this paper, the framework was used to
identify the most significant differences between Ericsson’s Streamline and FLOSS methodologies.
The most interesting differences for the current paper are points where FLOSS is stronger and can
provide a possible improvement for Streamline. In the remainder of this Appendix, each topic is
explained in more detail.

A.1. Background
This section contains five different topics that, together, define the basis of a methodology. Analysing
the background of a methodology is crucial to understanding its assumptions and fundamental
beliefs. When comparing two methodologies, comparison of these background features can reveal
fundamental points of disagreement between them. Clearly identifying these issues is of key
importance to the final objective of the comparison, that is, to adopt best practices from one
methodology to the other.

A.1.1. History
This section describes where the methodology comes from. Having a historical context is important to
understand the driving forces and needs that shaped the methodology during its initial stages. Other
interesting points to consider here, for example, is whether it was created to substitute an existent
methodology or to improve it. Moreover, no methodology is created from vacuum. All methodologies
have roots in other methodologies that should be mentioned as well.

A.1.2. Objectives
When talking about the objectives of a methodology, we are referring to the aims their creators had or
the needs it was meant to solve. For example, some methodologies have as a main objective to
reduce, as much as possible, the product’s time to market, while others intend mainly to improve
software quality. Also, even if high-level objectives are the same, methodologies often disagree on the
means to achieve them. For example, while two methodologies may focus on improving software
quality, one may insist on a more extensive design phase and another in continuous feedback.
Usually, methodologies are thought to improve not only one, but many aspects of the software
development. All these objectives should be mentioned in this section.

Torkar et al. / Adopting FLOSS for Industrial Use

112 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

A.1.3. Principles
The principles are one of the most important things to consider when studying a development
methodology. Discovering the beliefs a methodology relies on provides a better understanding of its
rules or recommendations. It would also help the user to identify the essential activities that should
take place when adopting it, and to clarify the reason behind all that activities. As examples of
methodology principles, agile methodologies rely on small team development and continuous
communication between development stages. FLOSS methodology, on the other hand, believes in
information openness and short release time.

A.1.4. Paradigm
At an even higher level than the principles, we find the paradigm the methodology is enclosed in. The
paradigm discussion can be exercised from a multitude of viewpoints. In this thesis, we have adhered
to the viewpoints proposed by Avison and Fitzgerald (1995), discussing the ontology (realism or
nominalism) and science or systems paradigm.

A.1.5. Usage
This section serves two purposes. First, it gives the reader an overview of the relative size of both
methodologies’ existing implementations. Second, when observing a methodology being practiced,
some shortcomings might be revealed. For example, some methodologies are suitable for small
software development projects and fail when applied to large software projects. Other methodologies
are intended to solve specific problems like development of information systems or web applications.
These kinds of constraints have to be taken into account when describing a development methodology.
Often, these shortcomings are not part of the original design but are instead discovered over time.

A.2. Model
To understand a methodology, there is the need to first understand the terms a methodology uses to
describe itself. This may not be an issue when comparing two methodologies from a common family,
but it certainly is when there is a considerable conceptual gap between them. The terms used, the
concepts behind these terms and the use the methodologies give them form an implicit declaration of
a methodology’s view of the world. This view will influence all activities performed by a methodology
and thus needs to be analysed early.

A.3. Life Cycle
The aim of this section is to describe the development life cycle proposed by the methodology. All the
development stages considered and their interactions should be covered here, as well as the order in
which the stages are executed and whether they are iterative or not. This description will help
understand the interaction between roles and frame the activities covered later.

A.4. Rules and Tools
Usually methodologies declare a set of rules that may or may not translate to concrete activities but
provide a conceptual framework practitioners can use to face unexpected situations. For example,
one of the Extreme Programming7 rules is continuous testing: work produced must be continuously
validated through testing. SCRUM8, on the other hand, has its continuous meetings as a main rule to
increase the teams’ speed to deliver work. In the concrete case of FLOSS projects, an important set
of rules are those for communications, sometimes referred to as netiquette, which are tightly coupled
with the use of tools for communication. For this reason, this section explores both methodology’s
rules and the use of the tools that enforce these.

A.5. Participation
An important characteristic of a development methodology is how it manages the participation of its
participants: how the practitioners are organized to work in a project, which roles take part in the actual code
development and how the newcomers adapt to the development process, are topics to be covered in this
section. This concern is especially relevant for FLOSS projects, as they rely heavily on volunteer participation.

7 http://www.extremeprogramming.org/
8 http://www.scrumalliance.org

113 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

Torkar et al. / Adopting FLOSS for Industrial Use

A.6. Activities
This section includes six subsections covering the activities in a methodology. These activities do not
try to be exhaustive but cover the most interesting ones from our concrete perspective. When
executing our method with another set of products or methodologies, the activities highlighted here
are likely to change.

A.6.1. Decision-Making
Each methodology defines or implies different policies for decision making. Which roles have the
responsibility of development decisions and how the decision-making process is managed are crucial
topics. In traditional methodologies, decisions may be made in a top-down manner, leaving very little
decision power to the developers. In contrast, some agile methodologies encourage the development
teams to decide how the development has to be performed and who is in charge of each task.

A.6.2. Coordination and Communication
Probably the more defining aspect of a methodology is how it arranges the workforce assigned to a
project. Responsibilities need be clearly defined to avoid conflict and redundant or overlapping work.
For this, the communication structures used for coordination among practitioners play a key role.
Some methodologies require specific communication techniques. SCRUM, for example, requires a
daily meeting between the development team and the Scrum Master. While this can improve
communication efficiency locally, it could also cause problems when developers are distributed
among several sites.

A.6.3. Requirements
A crucial stage of a development project is the requirements management. Some methodologies
address this issue at the beginning of the project, requiring the team to agree on the specific
requirements with the customer and write a requirement specification and expecting that
requirements do not change during the development. Other methodologies accept that initial
requirements are likely to change and use a more flexible approach, continuously gathering
requirements and refining the product expectations during the entire development. How the
methodology addresses this issue should be discussed here.

A.6.4. Planning and Control
After the workforce, the most valued and scarce resource a methodology must handle is time. Every
methodology states in some way or another how the planning and control of the development should
be performed. Some have a very light planning phase, focusing on starting the implementation early,
relying on short term planning. Others recommend concrete planning techniques or tools. Usually the
control of the development is linked with an explicit planning phase, but sometimes, as in many
FLOSS projects, the planning is done concurrently with the decision-making.

A.6.5. Information Availability
Having the right information at the right time is crucial for all methodology practitioners. Furthermore,
the quality of the final output of each process is largely dependent on the quality of the required input
information. The technical documentation of a project as well as development guidelines and project
artefacts should be easily and timely available for the interested roles. High information availability,
including logs of past decisions and properly indexed information sources, provides a way to facilitate
reusability and increases the development productivity and quality. Which measures are adopted by
the methodology to improve information availability, and which drawbacks these measures imply,
should be covered here.

A.6.6. Verification and Validation
There are many techniques for detecting bugs and increase product quality. From code reviews to
regression testing, how a methodology ensures product quality should be described here. Not only
the specific techniques used but also when they are performed, how bugs are fixed, and especially
how testing and development interact.

Torkar et al. / Adopting FLOSS for Industrial Use

114 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

Appendix B.

In this appendix, we present the complete details of the comparison between Streamline and FLOSS
development methodologies with accompanying analysis. The comparison follows the outline of the
comparison framework given in Appendix A.

B.1. Background

B.1.1. History
Both the Linux kernel and the FreeBSD projects belong to the early stages of the FLOSS movement.
JBoss by contrast, is a good example of a project born during the rise of FLOSS in mid 1990s.

Streamline was created in 2005 by Ericsson. Development of this methodology was driven by a
benchmark exercise that showed the need for a new methodology to improve certain aspects of the
development processes. Streamline was then designed with the objective of dropping the classical
waterfall concepts in order to embrace a more agile way of working. Later, Streamline was upgraded
to Enhanced Streamline, with a strong emphasis on early fault detection and test automation (Damm
et al., 2006). Streamline is a rather new methodology, but it intensively leverages agile methodology
assets. The Agile manifesto was written in 2001 but the agile philosophy has its roots in what is
commonly known as lightweight methods, developed mainly in the mid-90s. This is usually
understood as a return to how software was developed before the rise of waterfall based
methodologies (Tomaszewski et al., 2008), when the FLOSS way of working was shaped.

Although the histories of the FLOSS and Streamline development methodologies are fundamentally
different, there is at least a connection point in their common history, i.e. the pre-waterfall era. In the
next sections, we will further explore the consequences of this relation.

B.1.2. Objectives
Another significant point of divergence is in the methodology objectives. As explained in the previous
section, Streamline was created as a response to benchmark results. The benchmark showed some clear
issues and Streamline was meant to solve them. Streamline’s high-level objectives can be summarized as:

• Reduce time to market.
• Increase R&D efficiency (Lower development costs to allow for resource reallocation.)
• Improve employee satisfaction and motivation.
• Overall increase in development flexibility, predictability, and product quality.

In contrast, FLOSS methodologies are not designed with any objectives in mind but rather evolve
from the particular needs of FLOSS development itself. These needs are better reflected as FLOSS
development principles rather than objectives, as we will discuss in the following section.

B.1.3. Principles
As previously mentioned, there is a fundamental difference between Streamline and FLOSS origins.
While Streamline has been designed to bring an agile way of working to Ericsson, the FLOSS
methodologies have been evolving from the characteristic needs of different FLOSS communities.
Streamline’s agile roots can be seen in its principles:

• Small, efficient and self-organizing teams, fully responsible from pre-study to delivery.
• Highest prioritized requirements always selected for the next project.
• Predictability by a clear scope. Defined specifications and deadlines to fit into three-month

development efforts, although this iteration time is now being further reduced.
• Use of anatomy plans for design, requirements and project management.
• An LSV (Latest System Version) team to work on the product baseline for maintenance,

new features, and customizations.
• Decoupling development project’s execution from commercial release.

On the other hand, the following two well known principles usually appear when talking about FLOSS

115 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

Torkar et al. / Adopting FLOSS for Industrial Use

(Raymond, 2001):

• Given enough eyeballs, all bugs are shallow.
• Release early, release often.

These two principles are crucial to understanding the role of information openness and participation in
FLOSS communities. The first one, also known as Linus’ Law, focuses on parallel debugging. As
Raymond (2001) states “adding more beta-testers may not reduce the complexity of the current
‘deepest’ bug from the developer’s point of view, but it increases the probability that someone’s toolkit
will be matched to the problem in such a way that the bug is shallow to that person.” Here, the toolkit
must not be confused with a debugging toolset, but rather as e.g. providing a different angle to the
problem. While this could appear to cause a huge duplication of work, this seems not to be an issue
in the Linux community.

However, the sole application of these two principles fails to explain recurrent aspects of FLOSS
development projects. During this study, another principle was revealed, namely simplicity. In short,
when a decision needs to be taken, FLOSS projects tend to always choose the simplest solution.
Simplicity is a clear principle when looking at how FLOSS communities organize themselves. The
preference for the simplest solution extends from software design to tools configuration, all the way
up to coordination and communication rules. FLOSS projects tend to choose the path of least
resistance. FLOSS has a very good reason to avoid complexity wherever possible, i.e. the need to
enable external contributors to make contributions. Unfortunately, this is better reflected in smaller
FLOSS projects compared to the sample used in our study, as one of the selection criteria was to look
for well-established, long-lived and large-sized projects. Even then, this tendency towards simplicity
clearly appears when compared to industry’s methodologies in general.

If we temporarily turn our focus to the numerous small and young FLOSS projects (not selected for
the case study but often mentioned in the literature reviewed), we observe that a new FLOSS project
usually only needs a text editor and a compiler to start. This ease of starting a FLOSS project is
behind its perceived innovative attitude. If the project is successful and starts attracting contributors,
more infrastructure is added as needed, e.g. a mailing list and an issue tracker. If the number of
project contributors keeps growing and the communication channels start to overload, the community
begins to develop behavioural guidelines while splitting teams and communication channels to handle
this growth (Fogel, 2005). These behavioural guidelines are designed and enforced by the community
as a whole. There is a need for the community to perceive given guidelines as valuable or their use
would not withstand the coming and going of contributors. The same policy is similarly applied to the
usage of tools. Contributors are free to select their toolkit hence, as a consequence, only tools that
provide a real value stand in the community.

FLOSS projects, thus appear to follow an approach of least resistance when selecting tools and rules.
When a behavioural rule or development tool loses its value it is quickly dropped from the scene.
However, in industry, modifications to the ways of working (e.g., the addition or removal of a tool, or
simply a change in behavioural conventions) is an activity that usually requires an investment of some
kind. This causes complexity to accumulate until this investment is justified. Thus, it must be
understood that, along with participation and frequent releases, a preference for simplicity is also a
FLOSS principle.

B.1.4. Paradigm
Avison and Fitzgerald (1995) discuss methodology from different paradigmatic points of view. As they
state, the real benefit is not to absolutely classify a methodology but rather to gain the insight that
such a discussion can provide. On a first level, a methodology can be seen as belonging to the
science paradigm, based on decomposing the problem, or to the systems paradigm, based on the
holistic belief that the whole is more than the sum of its parts. Avison and Fitzgerald (1995) are clearly
focused on information systems so they lead the discussion towards the approach a given
methodology takes to decompose the problem to be solved using an information system. In our case,
we will lead the discussion towards how the methodology faces the actual development activities, not

Torkar et al. / Adopting FLOSS for Industrial Use

116 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

the problem per se.

At a process level, both FLOSS methodologies in general and the Streamline methodology endorse
the system paradigm, avoiding the waterfall orientation of decomposing the building of a system into
linear stages. By using iterations and frequent releases, both methodologies understand that
development is more than the sum of all its processes. Interactions between processes are as
important as the processes themselves.

If we concretize this orientation to the requirements and design processes, even if Streamline does
not really address how design should be done, a science paradigm emerges. Both FLOSS and
Streamline, in practice, rely on a divide-and-conquer approach to requirements implementation. For
instance, in our FLOSS projects, especially in the Linux kernel and FreeBSD, contributed source code
must be split in obviously correct patches that fix a single bug or implement a single feature.
Streamline has certain roles dedicated to splitting requirements to fit into 4–6 weeks development
efforts.

Another relevant comparison point is whether the methodology adopts a nominalist or realist
ontological view of software development. While realism postulates that the universe comprises
objectively given, immutable objects and structures, nominalism affirms that reality is not a given
immutable ‘out there’ but rather socially constructed. Here, FLOSS and Streamline offer two radically
different orientations. Traditionally, as shown by Iannacci (2005), all “production processes depend on
pulling together individual efforts in a way that they add up” Although FLOSS is quite particular in this
sense because “authority within a firm and the price mechanism across firms are standard means to
efficiently coordinate specialized knowledge in a complex division of labour—but neither is operative
in open source.” In a FLOSS project the core team, usually formed by the project founder and
experienced developers, maintains the project vision and a, usually very vague, roadmap. However,
there is no particular effort to enforce this roadmap on the community members, who are free to
choose where to focus their efforts. The reality for a FLOSS project is clearly nominalistic, being
socially constructed rather than imposed from a single point of authority. In industry methodologies,
such as Streamline, where the ratio between effort and production is of most importance, it is easy to
detect several realist mechanisms to ensure that all participants’ efforts point at the same direction.
These two radically different ways of understanding the reality of a project is, in our opinion, behind
most failures when commercial firms try to exploit FLOSS methods, techniques and tools.

B.1.5. Usage
This section presents usage information for the FLOSS and Streamline development methodologies.
Specifically, it characterizes the kind of projects that implement these methodologies, the trends that
many of them follow, and the limitations found in their usage.

Streamline is used by approximately 100 projects within Ericsson, with 5 to 100 developers in each
project. FLOSS methodologies of various kinds are found in more than 18,000 active projects
(Daffara, 2009), ranging from 1 to 1,000 participants. However, the majority of the FLOSS projects
involve a small group of developers (Squire et al., 2009).

A small team trend is confirmed in the majority of FLOSS projects, where the developers tend to split
in groups of no more than five to six developers (this is especially the case in larger projects
(Germán, 2003)). This characteristic forces the systems being developed to be more modular, so that
small teams can work concurrently on one artefact. The establishment of a FLOSS project entails
very low investment effort allowing easy exploitation of a given opportunity as well as entry into niche
domains. Even sectors that are not profitable, and thus there is no company exploiting them, often
have some kind of FLOSS presence.

There is no specific rule a project must follow to apply FLOSS methods, tools and techniques besides
the obvious openness of FLOSS. In contrast, projects that wish to adapt the Streamline methodology
to their concrete needs must meet a 60-point checklist. This checklist ensures that the project is
consistent with the methodology and that some crucial roles and processes take place accordingly,

117 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

Torkar et al. / Adopting FLOSS for Industrial Use

e.g., that the LSV team is present and maintains a product baseline (see Appendix B.3). Examples of
different Streamline customizations include ICE (merging the changes made by each team when the
development project reaches a milestone), used by Project A, and One-Track (using only one code
branch where all developers are active), used by Project B.

With regard to possible drawbacks encountered when applying FLOSS and Streamline
methodologies, there is a coincidence. As an interviewed Streamline expert stated, and Tomaszewski
et al. (2008) corroborated, Streamline usage might lead to long-term architecture deterioration. Its
short iteration approach and the focus on adding functionality leads to an increased risk of taking
shortcuts leading to the accumulation of technical debt. Furthermore, when a big architectural change
is needed, the short project iterations become a drawback, due to the difficulty in splitting such an
effort into small tasks. However, these problems are not limited to Streamline. In the FreeBSD project,
when the community faced the architectural change of implementing SMP9 support, they found similar
difficulties due to a similar continuous integration approach (Jørgensen, 2001).

Another drawback of adopting the FLOSS model is the protection of the intellectual property. When a
company needs to secure its intellectual property, adopting a FLOSS approach might seem
counterintuitive. Also, when looking at FLOSS projects, there is another characteristic that might
exclude several software markets from the FLOSS world. Usually, the developers of a FLOSS project
are also users of its output, i.e. the artefact being developed. This increases their knowledge about
the project and also their motivation. Therefore, when this is not the case, the adoption of the FLOSS
model might fail.

B.2. Model
Even if few methodologies state it explicitly, all assume a concrete model or view of how to organize
the development process. For instance, as Streamline has an agile heritage, it endorses an iterative
approach. Terms like processes, procedures and roles are so common that they belong to any
software engineer’s vocabulary, but the specific use that a methodology gives to these concepts
forms an implicit declaration of its view of the world.

FLOSS methodologies are quite different from other well-known industry methodologies in the
explicitness of these descriptions. There have been several research efforts to identify traditional
software engineering processes in FLOSS, with different level of success. In FLOSS, while it is certainly
straightforward to identify development as a process, but requirements, design and planning resist a
process modelling approach. When modelling FLOSS communities (the most famous example being
the onion model (Conklin et al., 2005)), one has to rely almost exclusively in how they define roles and
responsibilities, due to the scarce use that FLOSS makes of explicit defined processes and procedures.
For instance, in the Linux kernel project, the only explicitly specified procedure is the patch submission
process. This procedure was not defined from the beginning but was later added as a way of handling
the growth of the number of developers contributing with patches. Even then, this procedure is not
formally defined nor enforced but written in a series of how-tos and guidelines by experienced patch
contributors. In FreeBSD the situation is even more relaxed as contributors can commit the patches
themselves. However, the contributors generally follow the pre-commit review process because there is
a consensus that this benefits the overall code quality and the project as a whole (Jøgensen, 2001). The
FreeBSD and JBoss projects do maintain comprehensive project documentation efforts10. However, this
documentation is written more as guidelines than specifications and most topics cover recurrent
technological issues rather than procedures. Its objective is clearly more educational than regulatory,
even though JBoss has a slightly higher use of procedure specification due to requirements from Red
Hat, the firm selling JBoss products and services.

In place of defined processes, when we analysed the Linux kernel and the FreeBSD projects, we
found that both communities relied mostly on clearly stating who does what. Examples of this are

9 SMP: Symmetric Multiprocessor Support. The ability of an OS kernel to schedule processing threads to several CPUs so they run

concurrently.
10 http://dl.dropbox.com/u/2437798/JAIS/rawdata.pdf.

Torkar et al. / Adopting FLOSS for Industrial Use

118 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

MAINTAINERS files (Anonymous, 2009a), which play an important role in the patch submission
process, the responsibility distribution and, ultimately, in the process of decision-making. Additionally,
in the Linux kernel, with its huge number of contributors, the MAINTAINERS file is used as a
scalability mechanism to avoid flooding higher roles with too much information. The details of these
activities are further explained in Section 4. Of course, methodologies used in industry also make
intensive use of role definitions. The difference lies in that industry, Streamline specifically, trusts a
combination of roles and procedures, while in FLOSS communities procedures are rarely defined.

B.3. Life Cycle
When looking at the development life cycle of the studied projects, we find that FLOSS and Streamline
approaches are significantly different. However, FLOSS and Streamline share an iterative life cycle
approach that makes the comparison possible. The complete Streamline life cycle is shown in Figure
B.1. (LSV is short for latest system version and NIV stands for network integration verification).

Figure B.1. The Streamline Life Cycle

The first box in Figure B.1 represents the Pre phase that has the prioritized requirements as an input
and includes the first planning activities. The development phase includes the actual implementation
of the requirements and delivers the finished code to the Latest System Version (LSV) team, which
handles the test coordination and controls the project’s baseline. The NIV (Network Integration
Verification) phase is when end-to-end testing is performed. These first four phases are executed in
an iterative way until all desired functionality reaches release status. The following step is then to
package the product and make it commercially available. Finally, the maintenance phase includes
processing ‘Trouble Reports’ from clients, which are retrofitted to the next development iteration, and
for delivering ‘Correction Packages’ when necessary.

In contrast, the Linux kernel and FreeBSD development life cycles are centred on code changes,
showing the path a code change must follow to be included in a release. Based on the life cycle
model of Linux (Iannacci, 2003) and FreeBSD (Jørgensen, 2001), one can clearly see that both life
cycles are very similar and can be summarized as in Figure B.2. When a code patch is ready, it is
sent to the community for parallel reviewing. The contributors review the code and give feedback to
the patch creator until it is considered to have reached a certain degree of quality. At this point
FreeBSD has a pre-commit phase to integrate the patch in the source code repository and perform
local testing to ensure that it does not break the build. Interestingly, the Linux kernel project does not
have this phase because only the project leader Torvalds has the right to commit code to the main
source tree (in some specific cases this is relaxed). Therefore, no patch is added to the official
release until Torvalds, or someone appointed by him, personally accepts it. Instead, the patch might
be incorporated in a development source tree for testing. In the case of the Linux kernel, explicit
endorsements of the patch from all the involved module maintainers and at least one of Torvalds’
lieutenants is needed for Torvalds to even consider it. In FreeBSD instead, any committer can directly
apply the patch, provided nobody has complained about it during the public pre-commit review phase.

119 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

Torkar et al. / Adopting FLOSS for Industrial Use

Figure B.2. The Linux and FreeBSD Life Cycle

Finally, in both cases, several cycles of parallel debugging are performed on development releases until
a production release is made available. These production releases happen every 18 months in the
FreeBSD project and every 3 months in Linux kernel. The release engineer, Torvalds in the case of the
Linux kernel, is responsible for orchestrating the re-base between the development and production code
branches as well as the needed code freeze, during which all patches, which are not bug fixes, are
refused. In fact, this code freeze is usually the only deadline commonly found in FLOSS life cycles.
Concerning FreeBSD, Jørgensen (2001) states that the code freeze helps to establish a common goal
for the entire project; Iannacci (2005) even affirms that the Linux kernel development process may be
decomposed into a sequence of feature freeze cycles, each signalling the impending release of a stable
version. A typical FLOSS life cycle can, thus, be understood as VCS-centric , where iterations are not
delimited by discrete requirements inflow but rather by the possibility to commit to the VCS or not.

The Linux kernel and FreeBSD examples can be considered as typical, if somewhat formal, FLOSS
development approaches. Although they do not explicitly cover requirements or planning phases in
their life cycle picture, it does not mean these phases are incompatible with the FLOSS methodology.
A good example of mixing the open source way of working with more commercially oriented activities
is found in the JBoss Application Server project. In Figure B.3. the JBoss Application Server life cycle
is summarized. Despite the remarkable similarities between JBoss and Streamline life cycles, it
should be noticed that JBoss’ commercial processes must follow FLOSS rules. That is, as the
community participates in all stages, they need to be equally open and transparent.

Figure B.3. The JBoss Life Cycle

Torkar et al. / Adopting FLOSS for Industrial Use

120 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

B.4. Rules and Tools
As mentioned earlier, one of the means by which Streamline achieves a short iteration time is by its
emphasis on automation tools, specifically, test automation. This is a trend that FLOSS projects are
following as well: all three FLOSS projects included in this study rely on test automation.

However, FLOSS projects rely on additional categories of tools to support development. The tools
usually found in FLOSS communities include (Fogel, 2005):

• Web site
• Mailing lists.
• Version control system
• Bug tracking
• Real-time text chat (usually IRC)

Of course, these tools are also found in commercial settings. According to Fogel (2005), the
difference resides in that in FLOSS, “elaborate systems have evolved for routing and labelling data
appropriately; for minimizing repetitions so as to avoid spurious divergences; for storing and retrieving
data; for correcting bad or obsolete information; and for associating disparate bits of information with
each other as new connections are observed.”

These systems are obviously based on tools, but the success of the systems comes from the way
these tools are used. The distributed nature of FLOSS development is obviously behind the need to
use tools for communication, but this need is so heavily rooted in the FLOSS communities that it is
intrinsically mixed with the community behavioural rules. In the 1980s, when FLOSS communities
started to appear, the limitation of the available tools (most importantly, text-based and low
bandwidth) had an important shaping effect on the norms for use of the tools. For instance, VoIP and
videoconferencing software is widely available nowadays, but FLOSS projects rarely make use of
them because these technologies do not fit with the norms of FLOSS communities. A conversation is
not automatically logged and indexed for later retrieval: it is easier to search the last message topics
on a mailing list looking for relevant topics than listen to several potentially non-interesting VoIP
conversations.

In industry, with its intensive use of face-to-face meetings, the advantage of communication tools that
automatically store the conversation is not leveraged. Instead, all the meeting documentation has to
be written down immediately, which is time consuming. Besides, past discussions and decisions are
not always stored, which causes discussions to be repeated when, for instance, people are joining or
leaving the project.

Furthermore, FLOSS communities have a clear preference for tools that allow for asynchronous
communication as these kinds of tools allow a community member to handle a larger amount of
information, regardless of the time zone. In FLOSS projects, having important conversations that the
community cannot observe or participate in, goes against the norms. This combination of tools and
practices gives FLOSS a way to address common scalability issues (usually referred to as Brooks’
Law (Brooks, 1975)). Finally, the openness and the fact that most FLOSS developers participate
concurrently in several projects have facilitated quick propagation of best practice and feedback.
Thanks to this, a collective agreement on tools and rules exists and is quite consistent across FLOSS
projects, despite that it has not been formally written anywhere.

It is also noticeable that this combination of tools and norms scales down to small projects. The
mentioned tools are easy to setup for small projects and their configuration complexity will not appear
until the project starts to experience real growth. Similarly, the norms used at small projects are
simple. For big projects, norms start to evolve with the lessons learned and may reach the point
where a project starts to write some documentation to explain the local behavioural rules to
newcomers. All three of the projects studied have this kind of documentation.

121 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

Torkar et al. / Adopting FLOSS for Industrial Use

On the other hand, with Streamline, 65% of the practitioners in our survey stated that they have the
power to select some tools (mostly local tools), but not the important ones (such as source code
repository, bug tracker, wiki, etc.). This finding was later confirmed in the interviews: there is a general
perception that adding a new tool to the global Ericsson toolset is too bureaucratic. Despite this, 57%
of respondents had a generally good opinion on the tools used. There are good reasons for Ericsson
to enforce some enterprise-wide common tools, for instance, for IT maintenance. However, some
developers have stated that this one size fits all approach is problematic, and that each project should
be able to select a set of tools according to its own local needs. Another interviewee stated that the
important tools are developed outside the company, which leads to too long lead time between
Ericsson needing a feature and receiving it.

B.5. Participation
This section exposes characteristics of the studied FLOSS and Ericsson projects regarding
developer’s organization, project participation and newcomers’ adaptation.

Development in the Ericsson projects studied is done by small self-organizing teams. These teams
are multidisciplinary, being responsible for the design, implementation, testing and technical
documentation of the development project. Streamline handles concurrent development by tracking
dependencies with an anatomy plan. This plan helps in managing the component dependencies so
the tasks can be planned in an efficient manner, i.e. avoiding collisions and architectural deviations.
However, Streamline does not take special measures to enforce modularity per se.

As is mentioned in Section B.1.5, FLOSS projects tend to split in small teams as well. This
characteristic forces the systems that are being developed to become modular, so that small teams
can work concurrently. For instance, the high modularity of the Linux kernel allows hundreds of
developers to work at the same time in different parts of the source code structure with minimum
overlap.

A difference between Ericsson and FLOSS is that FLOSS developers are often members of multiple
teams. A survey conducted among 1,136 FLOSS developers by Robles et al. (2001) showed that, on
average, a single developer contributes to 2.7 FLOSS projects at the same time. Interestingly, Rigby
and Germán, (2006) found the same number when looking at the modules that each Mozilla
developer works on. Taking into account that modules in FLOSS can be considered independent
projects, this shows the trend of developers being involved in more than one project. The willingness
to participate on multiple projects was found in our survey of Ericsson developers. Approximately 70%
of the respondents were willing to either change their common tasks or to have more variety.
Furthermore, 57% express their interest in participating in other projects, given the possibility. It
should be noticed that approximately 28% of the respondents reported being willing to abandon their
current project for another.

Some FLOSS projects have explicit means to channel and encourage participation. In FreeBSD
experienced developers offer their help and supervision to newcomers, reviewing their code and
providing advice in the Mentor matching process. Similarly, the Linux Janitor project provides code
reviews, fixes unmaintained code, and does other cleanups for the Linux kernel, tasks that are usually
suitable for newcomers. This project also provides a TODO list, an IRC channel and helpful
information for those who want to start contributing. Streamline does not provide any special
treatments for new developers. Instead, a common policy is that newcomers start off by being
software testers to familiarize themselves with the project but most of them stay permanently in this
role. Another drawback for newcomers, as indicated by the Ericsson survey results, is the long
learning period they face. Half the respondents spent more than two weeks and 38% spent more than
one month to learn the Streamline methodology.

B.6. Activities
The final set of topics in the framework - the activities followed in the methodology - was presented as
Section 4 of the paper.

Torkar et al. / Adopting FLOSS for Industrial Use

122 Journal of the Association for Information Systems Vol. 12 Issue 1 pp.88-122 January 2011

About the Authors

Richard TORKAR is an Associate Professor at the School of Computing at The Blekinge Institute of
Technology. His focus is on quantitative research methods in the field of software engineering.

Pau MINOVES studied telecommunications at the Polytechnic University of Catalonia. In September
2007, Pau enrolled in the European Master on Software Engineering program provided by the
Polytechnic University of Madrid and the Blekinge Insitute of Technology. In 2009, he joined the i2CAT
foundation as team lead for the Manticore II development effort. He currently leads the technical
executive committee of the Mantycore 7th Framework Programme research project and its software
development work package.

Janina GARRIGÓS holds a degree in Telecommunications Engineering from the Polytechnic
University of Catalonia, and a Master’s degree from the European Master on Software Engineering
program from the Polytechnic University of Madrid and the Blekinge Institute of Technology. In 2009
she joined the i2CAT Foundation where she is coordinating the development of R&D projects in the
eHealth field. She contributed in the creation of a FLOSS Framework for eHealth R&D projects and
presented it recently at Med-e-tel 2010.

