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ABSTRACT  

A number of analytical models have been described in the literature to estimate the fuel consumption of vehicles, most of 

which require a wide range of vehicle and trip related parameters as input data, which might limit the practical applicability 

of these models if such data were not readily available.  To overcome this drawback, this study describes the development of 

three data mining models to estimate fuel consumption of a vehicle, including linear regression, artificial neural network and 

support vector machines.  The paper presents comparison results with five instantaneous fuel consumption models from the 

literature using real data collected from three passenger vehicles on three routes.  The results indicate that while the 

prediction accuracy of the instantaneous fuel consumption models varies across the data sets, those obtained by the regression 

models are significantly better and more robust against changes in input data. 

Keywords  

Fuel consumption models, Support vector machine, Artificial neural network, Linear regression  

INTRODUCTION 

Transportation uses more than one third of global energy [Ahn and Rakha, 2008; Rakha et al. 2011] that is obtained from 

petroleum products.  Fuel consumption in vehicles results in greenhouse gas emissions, in particular CO2, with detrimental 

effects on the environment.  The combustion of gasoline and diesel in vehicle engines is the second largest source of CO2 

emissions, the amount of which is proportional to the amount of fuel consumed by the engine.  The rate at which fuel is 

consumed by an engine depends on a wide range of factors, including those that are vehicle specific (such as the engine speed 

or vehicle mass) and those that are trip specific (such as rolling resistance or road gradient).  A number of fuel consumption 

models have been developed in the literature that differ from one another in the way in which they incorporate these factors 

into the calculation. 

This paper contributes to the literature by proposing data mining models for use in estimating fuel consumption of passenger 

vehicles and shows that they provide more accurate estimations as compared to some of the available models in the literature.  

The data mining models we develop range from simple linear regression to more sophisticated models, such as artificial 

neural networks and support vector machines.  We also present real data collected from a passenger vehicle using existing 

on-board diagnostics (OBD2), a Bluetooth interface and a smartphone.  This data is used in the numerical comparison of five 

existing consumption models and three data mining models. 

The rest of the paper is structured as follows.  In Section 2, we provide a brief overview of the relevant literature.  Section 3 

describes the experimental set-up and process of data collection.  Numerical results are presented in Section 4 and 

conclusions are given in Section 5. 

LITERATURE REVIEW 

Much work has been done on the modeling of fuel consumption for vehicles.  We will not present a detailed exposition of the 

existing work but instead refer the interested reader to the review papers (Demir et al. 2011,2014) as well as (Capraz et al. 

2016) where detailed descriptions of fuel consumption models can be found.  In summary, these models tend to come in two 

flavors: (1) macroscopic models, suitable for modeling wide-area emissions and require aggregate parameters, and (2) 

microscopic models, which are instantaneous models described to provide a second-by-second basis fuel consumption of a 

moving vehicle and are to be used mostly for short-trips.  The former class includes models that are simpler and with less 

number of input parameters than the latter. 

Recent years have seen the application of artificial neural networks (ANNs) in automotive engineering, including forecasting 

engine characteristic under different working conditions. Wu and Liu (2011) studied a predictive system for car fuel 

consumption using a back propagation neural network and a radial basis function neural network (Wu and Liu, 2012). The 

engine style, weight of car, vehicle type and transmission system type were used as input parameters for training the neural 

network training and forecasting fuel consumption forecasting procedure in both (Wu and Liu, 2011, 2012).  Togun and 

Baysec (2010a) presented an artificial neural network model and genetic programming model (Togun and Baysec, 2010b) to 

predict the torque and fuel consumption of a gasoline engine. Numerous studies have been undertaken to predict the 

performance and exhaust emission characteristics of internal combustion engines by using ANNs (Parlak et al. 2006; Alonso 

et al. 2007; Sayin et al. 2007). In (Rahimi-Ajdadi et al. 2014), the tractor fuel consumption was estimated on the basis of 

engine speed, throttle and load conditions, chassis type, total tested weight by using ANN. The authors of (Kakaee et al. 



Sevkli et al.  Comparison of Data Mining and Mathematical Models 

 3 

2015) combined ANN and multi-objective optimization was to reduce fuel consumption of and emissions from a heavy-duty 

diesel engine. These prediction results demonstrated the proposed system using the neural network is effective and the 

performance is satisfactory in terms of fuel consumption prediction. 

There exist studies featuring alternative ways to model transportation CO2 emissions. For example, Velázquez-Martínez et 

al. (2015) presented a statistical-mathematical methodology that allows companies to reduce transportation CO2 emissions 

when delivering in regions with a variety of road and traffic conditions. Wong et al. (2016) employed online time-sequence 

incremental and decremental least squares support vector machines for engine air-fuel ratio prediction.  To the best of our 

knowledge, there has not been any other work featuring the use of support vector machines for predicting engine related 

performance measures, such as fuel consumption and emissions. 

 

REAL TIME DATA COLLECTION 

All the numerical experiments conducted in this study use real-data with three different vehicles, the names of which are 

shown in the first column of Table 1.  The rest of the columns defines further specifications.  The data were collected when 

the drivers were in the normal course. 

  
Fuel 

Type 

Engine 

Displacement 

(ml) 

Frontal 

Surface Area 

(m2) 

Vehicle 

Weight 

(kg) 

Trip 

Distance 

(km) 

Average 

Speed 

(km/h) 

Toyota Corolla Diesel 1396 2.09 1425 139.23 140 

Kia Ceed Diesel 1582 2.25 1800 432.42 100 

BMW X3 Diesel 1980 2.66 2610 361.81 120 

Table 1. Vehicle properties 

Data from the vehicles was collected in real-time using existing on-board diagnostics (OBD2), a Bluetooth interface and a 

smartphone.  An OBD2 protocol allows accessing the vehicle’s Engine Control Unit (ECU) easily through a Bluetooth OBD2 

connector. Instant data are obtained via Torque Pro [22] that uses the OBD2 connector.  Many recently manufactured 

vehicles support the use of OBD2.  The diagnostic socket should be fitted to the vehicle using an adapter plug prior to instant 

data collection. In order to capture the parameters needed by the fuel consumption models via Torque Pro, a Bluetooth 

adaptor is plugged into the OBD2 socket of the vehicle, through which parameters such as the vehicle weight and engine 

displacement are input into the Torque Pro application on the smart phone. The three vehicles were driven on three different 

routes and their latitude and longitude coordinates of the origins and destinations were saved.   

 

RESULTS 

In this section, we present numerical results obtained by five fuel consumption models from the literature and the three data 

mining models developed in this paper.  These results are not only used to test the accuracy of the models against real data, 

but also compare the prediction accuracy of eight models.  The former category consists of five microscopic models, 

including an instantaneous fuel consumption model (IFCM) and a four-mode elemental fuel consumption model (FMEFCM) 

both described by Bowyer et al. (1985), physical emission rate estimator (PERE) model presented by Nam and Giannelli 

(2005) a comprehensive modal emission model (CMEM) for heavy-goods vehicles described by Scora and Barth [20] and 

Barth and Boriboonsomsin (2008), and vehicle specific power (VSP) proposed by Jimenez-Palacios (1998).  These models 

were explained in detail by Capraz et al. (2016). 

As for the data mining models, we test linear regression (LR), neural networks (NN) and support vector regression (SVR) 

compared with each other and against the five mathematical models above.   

Numerical Results Obtained by the Fuel Consumption Models 

The fuel consumption on the three routes was estimated via the five fuel consumption models by providing the input data.  

The results are given in Table 2, where the second column presents the actual amount of fuel consumed (in liters) on the three 

routes and the rest of the columns present the predicted amounts for each of the five models. 
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Models 

Real-time  

data IFCM FMEFCM PERE CMEM VSP 

Toyota-Corolla 15.946 29.904 15.100 13.301 12.541 8.462 

Kia-Ceed 30.175 54.534 33.227 25.696 29.901 17.244 

BMW-X3 35.012 63.347 37.094 32.675 36.734 14.527 

Table 2. Real time data and models’ calculations (total consumption) 

Based on the results presented in Table 2, we calculate the mean absolute percentage error (MAPE) and see that FMEFCM, 

PERE and CMEM provide comparatively better estimates of total fuel consumption than the others.  FMEFCM yields the 

minimum average MAPE out of the five models. 

Numerical Results Obtained with the Data Mining Models 

In order to predict the fuel consumptions with the regression models, speed, acceleration, engine RPM, volumetric efficiency, 

EGR commanded and slope of the road are used as input variables for the full regression model.  When all the variables are 

used in analysis, the correlation between real data and predicted data is quite high.  However, although all variables are used 

in the analysis, not all of them are controllable.  Given that speed and acceleration are controllable by driver and the slope is 

dependent on route selection, further analysis was conducted with these three parameters alone.  This applies to the three 

regression models tested here. 

In developing the three data mining models, and prior to applying them, the data was first normalized.  The least squares 

method was used to find parameters for linear regression (LR). For the artificial neural network (ANN), a one hidden layer 

architecture is used with 10 neurons in the hidden layer. The sigmoid activation function (Cybenko. 1989) is used within the 

hidden layer and a linear activation function is used for the output layer. The Levenberg–Marquardt algorithm (Levenberg, 

1944; Marquardt, 1963) is implemented to find the weights which will minimize the least square error. In developing the 

SVR, the epsilon-SVR is applied with radial basis kernel function (Basak et al. 2007).  Both the epsilon value in the loss 

function and gamma value in radial basis kernel function is specified as 0.1, and the cost parameter C is set as 1.  

Random subsampling was used for testing the performance of data mining models. In particular, a randomly selected 80% of 

the data is used for training and 20% for testing for each run.  The procedure is repeated for 1000 times.  The average and 

standard deviation (in parenthesis) of the R values are given in Table 4 for each statistical model, separately for training and 

for testing.  The results presented under columns 3–5 pertain to the full regression (with all variables), whereas columns 6–8 

relate to the smaller regression with only the three independent variables, namely speed, acceleration and slope. 

  All Variables Speed, Acceleration and Slope 

Models  LR ANN SVR LR ANN SVR 

Toyota-

Corolla 

Training 0.89 

(0.005) 

0.96 

(0.007) 

0.97 

(0.001) 

0.85 

(0.006) 

0.93 

(0.007) 

0.93 

(0.002) 

Testing 0.89 

(0.019) 

0.95 

(0.021) 

0.96 

(0.007) 

0.85 

(0.022) 

0.91 

(0.029) 

0.92 

(0.013) 

Kia-Ceed 
Training 0.78  

(0.014) 

0.92 

(0.014) 

0.94 

(0.002) 

0.75 

(0.015) 

0.90 

(0.013) 

0.91 

(0.004) 

Testing 0.76 

(0.056) 

0.89 

(0.048) 

0.92 

(0.014) 

0.74 

(0.057) 

0.88 

(0.033) 

0.90 

(0.018) 

BMW-X3 
Training 0.90 

(0.004) 

0.93 

(0.010) 

0.95 

(0.002) 

0.76 

(0.011) 

0.80 

(0.019) 

0.80 

(0.006) 
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Testing 0.90 

(0.015) 

0.91 

(0.037) 

0.92 

(0.011) 

0.75 

(0.043) 

0.78 

(0.044) 

0.79 

(0.026) 

Table 3. Results of Data mining Models 

As seen from the Table 3, SVR provides the best results for all three vehicles as compared with ANN and linear regression. 

SVR outperforms other models in terms of both accuracy and consistency, as indicated by the average and standard deviation 

of correlation coefficient (R) values. Even when only speed, acceleration and slope are used as input values, SVR delivers 

better results. 

In the next set of experiments, we will present more general results instead of constructing a model for each kind of vehicle.  

These models are constructed by considering additional input variables such as frontal area, engine displacements, and mass 

of vehicle. The new model can be applied all kinds of vehicles.  Table 4 shows result of the new model for each statistical 

model.  In the table, “all variables” indicate that the independent variables are those used in the full regression model as well 

as the additional variables above.  On the other hand, “extended controllable variables” include vehicle characteristics 

(frontal area, vehicle weight and engine displacement) as well as the slope, instantaneous acceleration and speed. 

 All Variables Extended Controllable Variables 

 LR NN SVR LR NN SVR 

Training 0.87 

(0.004) 

0.95 

(0.005) 

0.96 

(0.001) 

0.81 

(0.006) 

0.90 

(0.006) 

0.90 

(0.002) 

Testing 0.86 

(0.016) 

0.94 

(0.019) 

0.95 

(0.005) 

0.80 

(0.022) 

0.88 

(0.024) 

0.90 

(0.009) 

Table 4. Results of a generalized statistical model for all vehicles 

Similar to Table 3, Table 4 shows that SVR outperforms other methods in both cases, where in the first case all variables are 

used as input, and in the second in addition to. ANN also provides competitive results, however SVR yields more robust 

results especially for testing data which can be seen from standard deviations of the R values. 

CONCLUSIONS 

In this study, we numerically compared five fuel consumption models from the literature using real-time data collected from 

three vehicles.  We also developed, tested and compared three data mining models (LR, ANN and SVR) against the real-time 

data. The results suggest that the data mining models can be applied easily for predicting fuel consumption of vehicles, and 

the results indicate that they are superior to the existing fuel consumption models in terms of prediction accuracy.  
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