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infancy. With the proposed “Needmining” prototype, we aim to enable 
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1 Introduction 

For modern businesses to thrive, they must design customer-centric, innovative 

products and services [1]. To achieve this goal, providers first need to identify the needs 

of existing and potential customers—so they can directly address them within their 

marketing activities [2], and, more importantly, create innovative offerings which are 

tailored to those needs [3].   

For customer need elicitation, the application of different methods like interviews, 

focus groups or conjoint analyses is typical [4]. These methods, however, can be very 

expensive and time-consuming [5]. This is mainly due to the manual effort required, as 

these traditional methods do neither scale well nor can they be automated. 

Fortunately for businesses, customers are in most cases well aware of what they 

actually need [6]. Today, it is very common for customers to voluntarily and 

intrinsically share personal information via social media. Some of these social media 

instances may contain valuable insights about their concerns, wants, demands and 

problems [7]. These insights are publicly available and free of cost—but any manual 

review would be laborious and would only allow a snapshot at the time of the analysis. 

In the proposed prototype, we show the feasibility to automatically identify and 

quantify customer needs from a publicly available source like Twitter. The developed 

artifact utilizes natural language processing and machine learning techniques to provide 

innovation managers with an aggregated overview of customer needs—and does so on 

an ongoing, “always current” basis. This contribution has the potential to drive a step 

change towards automated, analytical support for customer need elicitation.  

2 The Needmining artifact 

Within an overall Design Science Research (DSR) effort of automatically 

identifying customer needs from Twitter data [8], a first cycle evaluated the feasibility 

of “need tweet” identification as a basis. We implemented an automated identification 
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of tweets containing customer needs with supervised machine learning models for the 

exemplary domain of e-mobility [9]. The results from the technical experiment of this 

first cycle show the feasibility by providing superior statistical classification results 

compared to all regarded baselines [10]. Additionally, the best-working classification 

model is deployed as a single service. The second DSR cycle requires this service to 

output “need tweets” only, as we analyze possibilities on how to identify the needs 

themselves from this output. As a result of the second cycle, we achieve an additional 

service which is able to automatically assign tweets to multiple need categories for the 

domain of e-mobility [11]. Therefore, the previous two cycles demonstrate the 

feasibility of (a) automatic “need tweet” identification and (b) automatic quantification 

of the needs themselves. Apart from showing the statistical evaluations for each cycle, 

two isolated services are designed: One capable of identifying tweets containing needs, 

one capable of assigning these tweets to pre-defined need categories—based on 

supervised machine learning. Both services, however, are not tailored to a non-IT 

focused user, since all other activities would need to be undertaken manually.  

For the proposed prototype, we add a third DSR cycle to integrate both services into 

a comprehensive Needmining artifact. With this resulting artifact we later aim to 

evaluate not just statistical performance, but also (real) user acceptance. The 

Needmining artifact aims at automatically visualizing the most frequently expressed 

customer needs, which are autonomously posted on Twitter.  

For a general architecture of the software design, we follow two principles: model-

view-controller (MVC) [12] and service-oriented architecture (SOA) [13]. Figure 1 

depicts the general overview of the architecture and its different web services. We 

structure our general architecture into three layers (model, view, controller) and a 

number of web services as independent instances, which can be accessed via a well-

defined interface. 

First, the tweets need to be received (tweet collection) and then stored for further 

processing. As multiple services need to access the storage, it is important to implement 

a database handler, which allows access to the database and monitors these accesses. 

Figure 1. General architecture of the Needmining artifact 
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The database itself is part of the model layer. Apart from the tweet collection and the 

database handler, the controller layer consists of multiple other services. The need tweet 

prediction classifies whether a tweet from the database contains a need or not. In order 

to aggregate the needs themselves and achieve a distinct representation, they are 

automatically assigned to need categories as part of the need prediction. Moreover, the 

possibility of monitoring a change in needs over a specified period and differences due 

to demographic factors—like gender—can provide further insights into the 

development and the characteristics of certain needs. As an example, we additionally 

implement a self-built gender prediction. To automatically identify the sentiment of a 

tweet, we also utilize a sentiment prediction [14]. All these services (need tweet 

identification, need clustering, sentiment detection and gender detection) need to be 

orchestrated with regard to their access to databases as well as their sequence and error 

handling. To address this, we implement a central orchestrator service, which 

orchestrates the main functions within the controller layer. As the orchestrator ensures 

a coherent processing of the data, the Web GUI from the view layer can directly access 

the data and visualize it for the end user (see figure 2). As the view layer is independent 

of the controller and the model, it can be enhanced or exchanged at any time, e.g. with 

a smartphone app interface. 

3 Evaluation 

As it is important to evaluate the artifact in a real-world scenario, we conduct an 

industry workshop with a large German utility and e-mobility services provider. The 

participants are from different divisions with different roles in the company. In total, 

seven employees take part in the three-hour workshop. The group consists of a product 

& innovation manager, a senior project manager, the head of a competence center, a 

group leader, a user researcher and an R&D project manager as well as an intern. 

To evaluate the prototype, all participants can use the Needmining artifact for up to 

30 minutes. Then, they fill out a further questionnaire regarding the experiences with 

Figure 2. Screenshot from the Needminer GUI 
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using the software and we openly discuss positive and negative feedback. The 

questionnaire contains questions to assess (a) the helpfulness of the software, (b) its 

possible application within the company, (c) its ability to replace existing methods as 

well as (d) feedback regarding functionalities and design. 

Out of seven participants, six regard the Needmining artifact as a helpful software. 

Furthermore, five participants can imagine using it for their daily business within their 

company. None of the participants states that the Needmining artifact in its current 

implementation can fully replace existing need elicitation methods. We further analyze 

the additional feedback, separated into functional and design feedback. 
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